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ABSTRACT
In this paper, we use mutual information (MI) as a measure to quan-
tify the subjective perception of audio quality by directly measuring
the brainwave responses of human subjects using a high resolution
electro-encephalogram (EEG). Specifically, we propose an informa-
tion theoretic model to interpret the entire “transmission chain” com-
prising stimulus generation, brain processing by the human subject,
and EEG measurements as a nonlinear, time-varying communica-
tion channel with memory. In the conducted experiment, subjects
were presented with audio whose quality varies between two quality
levels. The recorded EEG measurements can be modeled as a mul-
tidimensional Gaussian mixture model (GMM). In order to make
the computation of the MI feasible, we present a novel approxima-
tion technique for the differential entropy of the multidimensional
GMM. We find the proposed information theoretic approach to be
successful in quantifying audio quality perception, with the results
being consistent across different subjects and distortion types.

Index Terms— mutual information, perception, audio quality,
electro-encephalography (EEG), Gaussian mixture model (GMM)

1. INTRODUCTION

The current state-of-the-art approach for subjective quality testing of
audio is Multi Stimulus with Hidden Anchor (MUSHRA) [1]. One
characteristic that MUSHRA and most of the other existing audio
and video testing protocols have in common is that each human par-
ticipant assigns a single quality-rating score to each test sequence.
Such testing suffers from a subject-based bias towards cultural fac-
tors in the local testing environment and tends to be highly variable.
Recently, there has been a growing interest in using EEG to clas-
sify human perception of audio [2, 3] and visual [4–6] quality. For
example, [3] investigates the use of a time-space-frequency analysis
to identify features in EEG brainwave responses corresponding to
time-varying audio quality. Further, [2,4] propose to use Linear Dis-
criminant Analysis (LDA) classifiers to extract features based on the
P300 evoked response potential (ERP) component [7,8] for classify-
ing noise detection in audio signals and to assess changes in percep-
tual video quality, respectively. Similarly, in [6] the authors employ
a wavelet-based approach for an EEG-classification of commonly
occurring artifacts in compressed video, using a single-trial EEG.

In this paper, we provide a novel information theoretic frame-
work to assess the subjective perception of audio quality using EEG
data. Our approach here is different compared to the above men-
tioned studies in that we analyze the overall transmission chain com-
prising of stimulus generation, processing by the human brain, and
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Fig. 1: Communicating over the ERP channel.

the EEG sensors as a time-varying, nonlinear communication chan-
nel with memory by determining the corresponding mutual infor-
mation (MI) [9]. In the neuroscience literature such a channel in
general is referred to as the ERP channel [10] and is shown in Fig-
ure 1. We are motivated here by the fact that a better understanding
of the stochastic characteristics of the end-to-end perceptual pro-
cessing chain in-turn enables us to create better models/metrics of
how the brain responds to changes in observed audio quality. The
ERP channel can be considered equivalent to a single-input multiple-
output (SIMO) communication channel with unknown characteris-
tics, where the quality of the audio stimulus represents the scalar
(single) input, and the observation at the EEG sensors on the scalp
is the vector (multiple) output. In particular, we show that the EEG
measurements on this channel can be modeled as a Gaussian mix-
ture model (GMM). Further, in order to make the computation of the
MI over the ERP channel feasible, we present a novel approximation
technique for the differential entropy of the multidimensional GMM
based on a Taylor series expansion. Unlike current methods, em-
ploying MI does not assume stationary of the EEG signal and does
not rely on linear dependencies. Therefore it represents a well suited
measure to model nonlinear, time-varying phenomena like brain ac-
tivity. In the past, previous EEG studies have successfully used MI
to analyze corticocortical information transfer [11–14], and for fea-
ture extraction and classification purposes (see, e.g., [15–19]). To the
best of our knowledge, however, this is the first time that an infor-
mation theoretic characterization has been used in conjunction with
EEG measurements to quantify human perception of audio quality.

2. EXPERIMENT

To collect the data required for the study in our experiments, test
subjects were presented with a variety of different audio sequences
whose qualities varied with time. A total of 19 test subjects, all with
normal hearing capability, participated in the experiment with the
majority of them being male. We employed an ActiveTwo Biosemi
EEG system, which captures data on 128 spatial channels, sampled
at 1024 Hz. An average re-referencing and baseline removal was
performed, and the EEG data was passed through a high-pass filter
with a cut-off frequency at 1 Hz.

All stimulus test-sequences were created from three funda-



mentally different base-sequences sampled at a ‘high’ quality of
44.1 kHz, with a precision of 16 bits per sample. Two different
types of distortions were considered — scalar quantization and fre-
quency band truncation. To generate the ‘distorted’ quality each
of these base-sequences were passed through a 2048 MDCT (with
50% overlap) and either the frequency truncation or the scalar quan-
tization was applied to the coefficients prior to reconstruction. The
frequency truncation was implemented by setting all the coefficients
above 1.1 KHz to zero, while the scalar quantization was performed
by only retaining up to the second most significant bit of the MDCT
coefficient. The test-sequence for a specific trial was then created
by selecting one of the two distortion types and applying it over
the duration of the entire sequence using a time-varying pattern of
non-overlapping five second blocks, each comprising of a piecewise
constant ‘high’ or ‘distorted’ quality [20]. Multiple of such trials
were conducted for each subject by choosing all possible combina-
tions of sequences, distortion types, and time-varying patterns.

To better manage the large amount of collected data while effec-
tively mapping the activity across different regions of the brain, we
suggest grouping the 128 electrodes of the EEG-system into specific
regions of interest (ROI). A potential grouping scheme [21] and the
one that we use is shown in Figure 1. While a large number of group-
ing schemes are possible, this scheme is favored for our purposes as
it efficiently covers the different cortical regions (lobes) of the brain
with a relatively low number of ROIs.
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Fig. 2: Schematic representation of the 128-channel EEG system. The elec-
trodes are grouped into eight regions of interest (ROI) to effectively map the
activity across different regions of the brain.

3. INFORMATION THEORETIC ANALYSIS

3.1. ERP channel
The input random variable X of the ERP channel is uniformly dis-
tributed over a set of class indices X which describe the quality of
the stimulus sequences at any given time interval. The audio qual-
ity of the input sequence can then be represented as an equiprobable
Bernoulli distribution

X =

{
x1, if the input stimulus is of high quality,
x2, if the input stimulus is of distorted quality,

with a priori probabilities p(x1) = p(x2) = 1/2.
The output of the channel is given by the index set Y contain-

ing all possible values of the EEG potential at any given time inter-
val. For a total of n ROIs we therefore get a (multivariate) output

Fig. 3: Normalized probability distributions p(y|x1) and p(y|x2) of a sub-
ject over a single ROI, for high quality and frequency truncated audio input-
stimulus, respectively. The Gaussian fit is obtained by using an estimator that
minimizes the L1 distance between the fitted Gaussian distribution and the
histogram data.

vector of random processes Y (t) = (Y1(t), . . . , Yn(t)). To reduce
the variance of the ERP channel measurements we consider every
electrode in the i-th ROI as an independent realization of the same
random process Yi(t), i = 1, . . . , n. Further, we assume the ran-
dom process to be ergodic within the five second non-overlapping
blocks of a trial with constant audio quality, and therefore without
any loss of generality we can set Y (t) = Y . Note that this assump-
tion does not rule out any non-stationary behavior between sections
of different audio quality within the same trial.

Since the input can take on two distinct values, there are two
conditional distributions p(yi|x1) and p(yi|x2) corresponding to
any given ROI. Figure 3 shows the normalized conditional distribu-
tions obtained via histogram measurements of a single ROI output
over time. A detailed inspection using different subjects, input se-
quences, and ROIs allows us to assert two important facts about this
distribution. First, the conditional distribution converges to a Gaus-
sian with zero mean. The potential recorded at the EEG electrode
at any given time-instant can be considered as the superposition
of responses of a large number of neurons. Thus, the distribution
of a sufficiently high number of these trials taken at different time
instances converges to a Gaussian distribution as a result of the
Central Limit Theorem (CLT). It then follows directly from the CLT
that the probability distribution for n ROIs will also converge to a
n-dimensional multivariate Gaussian distribution. Second, we ob-
serve from Figure 3 that there is a difference between the variances
of the distributions p(yi|x1) and p(yi|x2). This indicates that Yi

is dependent on X , i.e., the EEG data is related to and contains
“information” about the input stimulus. In information theory this
is measured with the MI I(X;Yi), typically measured in bits [9].
In particular, the MI quantifies the information transfer over the
communication channel X → Yi. Further, if we consider the con-
ditional probability distributions corresponding to n ROIs chosen
simultaneously, then each of the distributions p(Y |X = x1) and
p(Y |X = x2) are n-dimensional Gaussian distributions, with K1

and K2 being the n× n covariance matrices of each of the distribu-
tions, respectively. The conditional differential entropy h(Y |X) in
bits is then defined as [9]

h(Y |X) , −
∑

x∈X
p(x)

∞∫

−∞

p(y|x) log p(y|x) dy

=
1

4
{log(2πe)n|K1|+ log(2πe)n|K2|} , (1)



where here and in the following all logarithms are taken with base 2.
Using the the law of total probability we can rewrite p(y) in terms
of the Gaussian conditional probabilities as

p(y) =
∑

x∈X
p(Y=y|x)p(x) =

1

2

{
p(y|x1) + p(y|x2)

}
. (2)

The differential entropy of Y in bits is therefore given as

h(Y )=−1

2

∫

<n

[p(y|x1)+p(y|x2)]·log
1

2
[p(y|x1)+p(y|x2)]dy. (3)

where <n denotes the support region of the distribution p(y|xi)+
p(y|x2). The MI between the output EEG data and the input au-
dio stimulus can then be calculated by using I(X;Y ) = h(Y ) −
h(Y |X).

3.2. Entropy approximation

It turns out that, to the the best of our knowledge, there is no closed
form solution for the entropy of a mixture of Gaussian random vari-
ables (3) which is a recurring open problem in the literature. This is
due to the fact that (3) consists of a multiple integral over a logarithm
of a sum of exponential functions which makes it difficult to formu-
late a general closed-form analytical solution. In the absence of an
analytical solution it is usually common to use numerical methods to
calculate a sufficiently accurate estimate of the solution. However,
as the dimensionality of the Gaussian multivariate random variable
increases, it becomes computationally infeasible to evaluate the n-th
order multiple integral using numerical integration.

Therefore, we propose an approximation for the entropy by per-
forming a component-wise Taylor series expansion of the logarith-
mic function [22]. This approximation makes no prior assumptions
and is suitable in general for estimating the entropy of any given
multidimensional GMM. If we assume pi(z) to be the probability
distribution for the i-component of the GMM associated with the n-
dimensional Gaussian distributionN (z;µ

i
,Ci) with mean µ

i
∈ Rn

and covariance matrix Ci ∈ Rn×n then the probability distribution
of the GMM is given by

p(z) =

L∑

i=1

wipi(z), (4)

where L is the number of mixture components, and wi denotes the
weight of the i-th component of the GMM, respectively. Let

f(z) = log p(z) = log

(
L∑

j=1

wjpj(z)

)
. (5)

If we then use the Taylor series to expand the function f(z) around
µ
i
, we obtain

f(z) = f(µ
i
) +

f
′
(µ

i
)

1!
(z − µ

i
) +

f
′′

(µ
i
)

2!
(z − µ

i
)2 + . . . (6)

The odd central moments of a Gaussian distribution are zero, there-
fore all the odd order terms in the Taylor series expansion are also
zero. The differential entropy of the Gaussian mixture therefore re-
duces to

h(z) = −
∫

<n

p(z) log p(z) dz = −
∫

<n

p(z)f(z) dz
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Using the the law of total probability we can rewrite p(y) in terms
of the Gaussian conditional probabilities as

p(y) =
X

x2X

p(Y =y|x)p(x) =
1

2

�
p(y|x1) + p(y|x2)

 
. (2)

The differential entropy of Y is therefore given as

h(Y )=�1

2

Z

<n

[p(y|x1)+p(y|x2)]·log
1

2
[p(y|x1)+p(y|x2)]dy. (3)

The MI between the output EEG data and the input audio stimulus
can then be calculated using I(X; Y ) = h(Y ) � h(Y |X).

3.2. Entropy Approximation

It turns out that, to the the best of our knowledge, that there is no
closed form solution for the entropy of a mixture of Gaussian ran-
dom variables (3) and it’s a recurring open problem in the literature.
Eq. (3) consists of a multiple integral over a logarithm of a sum of
exponential functions which makes it difficult to formulate a general
closed-form analytical solution. In the absence of an analytical so-
lution it is usually common to use numerical methods to calculate a
sufficiently accurate estimate of the solution. However, as the dimen-
sionality of the Gaussian multivariate random variable increases, it
becomes computationally infeasible to evaluate the n-order multiple
integral using numerical integration.

Therefore, we propose an approximation for the entropy by per-
forming a component-wise Taylor series expansion of the logarith-
mic function [24]. This approximation makes no prior assumptions
and is suitable in general for estimating the entropy of any given
multidimensional Gaussian mixture model (GMM). If we assume
pi(z) to be the probability associated with the N -dimensional Gaus-
sian distribution, N (z; µ

i
,Ci), then the probability of the GMM is

given by

p(z) =
LX

i=1

wipi(z) (4)

where L is the number of mixture components, and wi, µ
i

and Ci is
the weight, mean vector and the covariance matrix of the i-th com-
ponent of the GMM, respectively. Let

f(z) = log p(z) = log

 
LX

i=1

wiN (z; µ
i
,Ci)

!
. (5)

If we then use the Taylor series to expand the function f(z) around
µ
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, we obtain
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i
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f
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i
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The odd central moments of a Gaussian distribution are zero, there-
fore all the odd order terms in the Taylor series expansion are also
zero. The differential entropy of the Gaussian mixture therefore re-
duces to

h(z) = �
Z

<N

p(z) log p(z) = �
Z

<N

p(z)f(z)

Table 1: Four-component variance split

k ⌫̄k �̄k µ̄k

1 0.127380 0.5175126 -1.41312
2 0.372619 0.5175126 -0.44973
3 0.372619 0.5175126 0.44973
4 0.127380 0.5175126 1.41312

= �
LX

i=1

Z

<N

wipi(z) ·
(

f(µ
i
) +

f
00
(µ

i
)

2!
(z � µ

i
)2 + . . .

)
(7)

The Gaussian mixture is a smooth function and the derivatives of the
function f(z) will therefore always exist. The Taylor series approx-
imation is exact only if an infinite order of terms are considered, and
the accuracy of the approximation therefore depends on the number
of expansion terms used. We provide closed form expressions for the
zeroth-order and second-order terms of the Taylor series expansion.
We define the zeroth-order Taylor series expansion term as

h0 , �
LX

i=1

Z

<N

wipi(z) · f(µ
i
) = �

LX

i=1

wi. log p(µi) (8)

The second-order expansion term requires us to calculate the gradi-
ent g and Hessian H of the distribution

g , rp(z) = p(z)C�1(µi � z) (9)

H , (rrT )p(z) =
ggT

p(z)
� p(z)C�1 (10)

where r is the gradient w.r.t (z). Accordingly, the Hessian for the
log-density, f(z), is

Hl , (rrT )f(z) = � 1

p(z)2
ggT +

1

p(z)
H. (11)

Finally, the second-order term of the Taylor expansion can be defined
as

h2 , �
LX

i=1

Z

<N

wipi(z) · 1

2
Hl(z � µi)(z � µi)

T

= �1

2

LX

i=1

wi.HlCi

����
Hl(z=µi)

. (12)

The second-order Taylor expansion of the differential entropy can
then simply be calculated from (7), (8) and (12) as h(z̄) = h0 + h2.
Also, as the variance of the distribution increases more terms are
required to reduce the approximation error which is complex and
computationally demanding. In order to obtain a high accuracy ap-
proximate while keeping the number of expansion terms used con-
stant, we propose using a variance splitting approach. In this ap-
proach we split and replace the high-variance Gaussian component
with a mixture of Gaussians, each with a substantially lower vari-
ance than the original. The i-th component for splitting is identified
and aligned such that the multidimensional Gaussian has its longest
ellipsoid along the principal axis. This is done by diagonalizing the
covariance matrix

Di = ⌃T Ci⌃, (13)

Fig. 4: Entropy approximation using a second-order Taylor expansion
for a sample synthetic GMM with zero mean vectors, equal weights and
C1 = [4, 2; 2, 4],C2 = [5 + p, 2; 2, 5 + p], where the variance of the
second distribution is incremented using the parameter p. The true entropy
was calculated using numerical integration.

=−
L∑

i=1

∫

<n

wipi(z) ·
{
f(µ

i
) +

f
′′

(µ
i
)

2!
(z − µ

i
)2 + . . .

}
dz.

(7)

The Gaussian mixture is a smooth function and the derivatives of the
function f(z) will therefore always exist. The Taylor series approx-
imation is exact only if an infinite order of terms are considered, and
the accuracy of the approximation therefore depends on the number
of expansion terms used. We provide closed form expressions for the
zeroth-order and second-order terms of the Taylor series expansion.
We obtain the zeroth-order Taylor series expansion term of (7) as

h0 = −
L∑

i=1

∫

<n

wipi(z)f(µ
i
) dz = −

L∑

i=1

wi log p(µi). (8)

The second-order expansion term requires us to calculate the gradi-
ent g(z) and Hessian H(z) of the distribution

g(z) , ∇p(z) = p(z)C−1(µ
i
− z), (9)

H(z) , (∇∇T )p(z) =
g(z)g(z)T

p(z)
− p(z)C−1, (10)

where ∇ is the gradient with respect to z. Accordingly, the Hessian
for the log-density f(z) is

Hl(z) , (∇∇T )f(z) = − 1

p(z)2
g(z)g(z)T +

1

p(z)
H(z). (11)

Finally, the second-order Taylor expansion term of (7) can be ob-
tained as

h2 = −
L∑

i=1

∫

<n

wipi(z) · 1

2
Hl(µ

i
) · (z − µi)(z − µi)

T dz

= −1

2

L∑

i=1

wi ·Hl(µ
i
) ◦Ci, (12)

where ◦ is the Frobenius product, defined as A◦B =
∑
i

∑
j

aij ·bij .

The second-order Taylor expansion of the differential entropy can
then simply be calculated from (7), (8), and (12) as h(z̄) = h0 +h2.



Also, as the variance of the distribution increases in each di-
mension more terms are required to reduce the approximation error
which becomes increasingly complex and computationally demand-
ing. In order to obtain a high accuracy approximate while keeping
the number of expansion terms used constant, we propose using a
variance splitting approach [22]. In this approach we split and re-
place the high-variance Gaussian component with a mixture of Gaus-
sians, each with a substantially lower variance than the original. The
i-th component for splitting is identified and aligned such that the
multidimensional Gaussian has its longest ellipsoid along the princi-
pal axis. This is done by diagonalizing the covariance matrix

Di = ΣTCiΣ, (13)

where Di is diagonal matrix containing the eigenvalues of Ci, and Σ
is the diagonalization matrix whose columns are the the eigenvectors
of Ci. The i-th component is then split as

wi · pi(z) =

M∑

k=1

ŵk · p̂k(z), (14)

where

p̂k(z) ∼ N (z; µ̂
k
, Ĉk) with Ĉk = ΣDkΣT ,

ŵk = ν̄kwi, µ̂
k

= µ
i

+
√
λd · µ̄k · [0, . . . , 1, . . . , 0]T ,

Dk = diag
(
λ1, . . . , λd−1, σ̄

2
k, λd+1, . . . , λn

)
, (15)

and d is the index of the largest eigenvalue of Ci. The parameters
w̄k, ν̄k, and σ̄k in (15) are calculated using the splitting library [23]
shown in Figure 4. The figure also shows the simulation results for
the entropy approximation for a sample GMM for n = 2 as its vari-
ance is increased, calculated using a second-order Taylor series ex-
pansion, with and without the variance split. While maintaining a
high degree of accuracy, this split is not perfect and introduces a
marginal amount of error due to the limited number of Gaussians in
the splitting library. However, we have observed that the splitting
approach is especially helpful at higher variances and, if required,
can be performed repeatedly to further refine the approximation.

4. RESULTS

The MI can be trivially upper bounded as

I(X;Y ) = H(X)−H(X|Y ) ≤ H(X) = 1 bit, (16)

where we have used the fact that X is drawn from an equiprobable
Bernoulli distribution. Therefore, the maximum information that can
be transferred over the ERP channel for the given input is 1 bit. This
upper bound is based on the entropy of the input random variable
and depends only on the quality of the audio stimulus. It is also
independent of subjective perception, mental state of the individual,
any pre-processing to the EEG data, or even the number of ROIs
considered.

The output of the ERP channel maps the activity spread over the
entire cortex and the total MI is therefore a contribution of all the
eight ROIs. To calculate the entropy over these multiple regions we
use the second-order Taylor series approximation presented in the
previous section. A four-component variance split is then performed
twice to further refine the approximation result. Figure 5 shows the
final estimates for the MI, calculated for each trial. We observe that
the MI over the ERP channel for a given trial is in general moderate-
to-high. This shows that the recorded EEG data reveals a significant
amount of information about the quality of the audio sequence in the
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Fig. 5: Mutual information estimates for a total of 314 trials for each
distortion-type, conducted across all 19 test subjects using different com-
binations of base sequences and time-varying distortion patterns. The total
number of trials presented to each subject varied between 32-36.
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Fig. 6: The median mutual information estimates for each of the 19 test
subjects when presented with the same set of trial-sequences, across the two
different distortion-types. By taking the median we are able to remove any
outlying values corresponding to the trials when the subject was either dis-
tracted or not paying attention to the audio sequence.

trial. Also, the subset of trials with low MI suggest that the brain
activity of the subject in those trials is less aligned in response to
the audio quality, e.g., if the subject is either distracted or not pay-
ing attention to the presented audio sequences. The individual MI
estimates for each subject are summarized in Figure 6. These results
indicate the MI to be fairly consistent across the entire pool of test
subjects. Further, subjects that show a low level of quality perception
appear to do so over both the distortion types, indicating once again
that the particular subject did not comply very well with the test pro-
cedures. Overall, the MI results are uniformly high across different
subjects, trials, and distortion-types, thus demonstrating the viabil-
ity of both the proposed end-to-end channel model and the MI as a
suitable measure for subjective audio quality perception.

5. CONCLUSION
We have presented a novel information theoretic framework for sub-
jective quality assessment based on observed EEG data for subjects
listening to time-varying distorted audio. By modeling the end-
to-end perceptual processing chain as a discrete-input time-varying
nonlinear SIMO channel with memory, we aim to better understand
its stochastic characteristics and in-turn create better models/metrics
of how the brain processes audio stimuli and responds to changes
in observed audio quality. The MI estimate computed over the ERP
channel quantifies the information transmitted between the input au-
dio stimulus and the EEG measurements, thus serving as a direct
performance measure for audio quality perception. The approach
presented here can be extended for assessing the subjective percep-
tion of video quality and can also be generalized to other assessment
techniques like MEG, albeit with a higher complexity.
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