Optimal-Rate Characterisation for
Pliable Index Coding using Absent Receivers

Lawrence Ong
University of Newcastle
Email: lawrence.ong@newcastle.edu.au

Abstract—We characterise the optimal broadcast rate for a
few classes of pliable-index-coding problems. This is achieved by
devising new lower bounds that utilise the set of absent receivers
to construct decoding chains with skipped messages. This work
complements existing works by considering problems that are not
complete-S, i.e., problems considered in this work do not require
that all receivers with a certain side-information cardinality to
be either present or absent from the problem. We show that for
a certain class, the set of receivers is critical in the sense that
adding any receiver strictly increases the broadcast rate.

I. INTRODUCTION

Index coding studies the optimal coding and rate require-
ments in a network with a single sender and multiple receivers
connected by a noiseless broadcast link. In index coding, the
sender is assumed to have m messages and each receiver knows
a subset of the m messages and wants a specific subset of
messages it does not know. Index coding [1]-[4], its secure
variant [5, 6], and its connection to network coding [7]-[9]
have received significant research interest.

Recently, a variant of index coding, known as pliable index
coding, was introduced [10]. In this pliable variant, each
receiver is posited not to want a specific subset, but instead to
want any subset of ¢ messages it does not already know. This
variant is natural in applications where the receiver is flexible in
which unknown message it wants to receive. One such example
is when multiple receivers are each seeking a picture of an
object on the internet, but each does not particularly care for
a specific picture of the object.

Brahma and Fragouli [10] focused solely on linear codes for
pliable-index-coding problems and established that the problem
is NP-hard. Further, they showed that if each receiver has at
least spmin and at most sp,x messages, then min{smax +, 11— Smin }
is an upper bound on the minimum number of transmissions
(which is referred to as the minimum broadcast rate) required
for each receiver to obtain ¢ additional messages. And this
bound is tight if the sender knows only the number of messages
(as opposed to the exact message sets) that each receiver knows.
For a general setup, they approximated the order of dependence
of the minimum broadcast rate in the limit as the number of
messages and receivers grows.

Song and Fragouli [11] also restricted their analysis to linear
codes to show that if receivers having every possible strict
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subset of the message set are present, then the sender needs
to send all m messages. This result of all receivers being
present was further strengthened by Liu and Tuninetti [12] to
all (including non-linear) pliable index codes.

Liu and Tuninetti [12] defined a class of complete-S pliable-
index-coding problems, where S C {0,...,m—1} is a parameter.
Given S C {0,...,m—1}, a complete-S problem consists of all
(") receivers each having a different combination of i messages,
for every i € S. Focusing on the case that each receiver requires
only one message (that is, # = 1), they showed that the minimum
broadcast rate for any linear or non-linear pliable index code for
a complete-S problem with S = {0,...,m—1}\ {Smin, -
is precisely |S| = m — smax + Smin + 1

They later [13] derived tight lower bounds based on decoding
chains and maximum acyclic induced subgraphs to show that
the minimum broadcast rate for any linear or non-linear pliable
index code for a complete-S problem with S = {Smin, . - - » Smax |
and ¢ = 1 equals min{smax + 1,m — Spin}-

Existing results on exact minimum broadcast rates were
established for certain complete-S problems. This paper con-
siders the case r = 1 and problems that are in general not
complete-S. We identify a new technique based on absent
receivers to construct decoding chains with skipped messages
to derive lower bounds on the minimum broadcast rate for
all pliable-index-coding problems that are applicable to both
linear and non-linear codes. When combined with matching
transmission codes (upper bounds), we establish precisely the
minimum broadcast rate for several classes of pliable-index-
coding problems.

We also introduce a notion of critical set of receivers; such
sets of receivers are maximal in the sense that the addition of
any new receiver (that is absent) strictly increases the broadcast
rate. In other words, each critical set of receivers is a maximal
set of receivers supported by a fixed broadcast rate.

. -,Smax}

A. Problem Formulation

We use the following notation: Z* denotes the set of natural
numbers, [a : b] := {a,a + 1,...,b} for a,b € Z* such that
a<b,and Xg = (X; :i € §) for some ordered set S.

Consider a sender having m € Z* messages, denoted by
X(t:m) = (X1,...,Xm). Each message X; € F, is independently
and uniformly distributed over a finite field of size g. There
are n receivers having distinct subsets of messages, which we
refer to as side information. Each receiver is labelled by its
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side information, i.e., the receiver that has messages Xy, for
some H ¢ [1 : m], will be referred to as receiver H or receiver
with side information H. The aim of the pliable-index-coding
problem is to devise an encoding scheme for the sender and a
decoding scheme for each receiver satisfying pliable recovery
of a message at each receiver.

Without loss of generality, the side-information sets of
the receivers are distinct; all receivers having the same side
information can be satisfied if and only if (iff) any one of
them can be satisfied. Also, no receiver has side information
H = [1 : m] because this receiver cannot be satisfied. So, there
can be at most 2™ — 1 receivers present in the problem. A
pliable index coding problem is thus defined uniquely by m and
the set U € 2151\ {[1 : m]} of all receiver side information
present in the problem. Lastly, any receiver that is not present,
ie., receiver H € 251\ ({[1 : m]} U U), is said to be absent.

Example 1: Let m = 3, and U = {0,{1},{2},{1,2},{2,3}]}.
Then, the receivers {3} and {1,3} are absent.

Given a pliable-index-coding problem with m messages and
receivers U, a pliable index code of length £ € Z* consists of

« an encoding function of the sender, E : IF’Z’ — IFS; and

« for each receiver H € U, a decoding function Dy : Pé X
]F,llH‘ — F,, such that Dy (E(X[1.)), Xu) = X;, for some
ie[l:m]\H.

The above formulation requires the decoding of only one
message at each receiver, similar to that in Liu and Tuninetti [12,
13]. Lastly, the aim is to find the optimal broadcast rate for
a particular message size ¢, denoted by 3, := ming (p) ¢ and
the optimal broadcast rate over all ¢, denoted by g := inf, §,.

Remark 1: All results in this paper will be derived for g,
for all g € Z*. Consequently, the results are also valid for 8.

II. NEw LOWER BOUNDS
A. An optimal-rate expression

We first express a lower bound on the optimal broadcast
rate for pliable index coding in terms of an equivalence notion
for index coding. Define decoding choice D as follows:

D :U — [1:m], such that D(H) € [1 : m] \ H.

Here, D(H) is the message decoded by receiver H.

Let $,,,u denote a pliable-index-coding problem with m
messages and a set of receivers U. For a fixed decoding
choice D for Py, iy, denote the problem by P, y,p. This means
any code for #,, i p is a pliable index code for P,, 1y with
the restriction that Dy (E(Xj1.m]), Xn) = Xp(m) for all H € U,
and vice versa. With an abuse of notation, let the optimal
broadcast rate for P,y p be S4(Pm,u,p). We can establish
the following:

Lemma 1: ,Bq(Pmyu) = minp ﬂq(Pm,U,D)~

Proof: Clearly, B4(Pm,u) < Bq(Pm,u,p) for all D because
any code for P, u.p is a code for P, y. Since the inequality
must be tight for at least one D, we have Lemma 1. |

Pm,u,p is in fact an index-coding problem [2]-[4], with
a message set X[, and a receiver set U, where each
receiver H € U has Xy and wants Xpp).

)

From Lemma 1, 8,(%m,u) can be obtained by evaluating
the optimal broadcast rates 84(#m,u,p) of index-coding prob-
lems P, uy,p for all D. However, the optimal broadcast rate
for index coding is not known in general, and the search space
over all possible D grows exponentially with m.

B. A lower bound based on acyclic subgraphs

Nonetheless, we will utilise Lemma 1 to formulate a lower
bound for pliable index coding using results for index coding.
More specifically,

ﬁq(Pm,U) 2 IIlDiII d’q(Pm,U,D),

where ¢, (Pm,u,p) is any lower bound on S4(Pm.u,p)-

We now state a lower bound for index coding [2], expressed
through a directed-bipartite-graph representation of an index-
coding problem. Any index-coding problem can be specified by
a bipartite graph with these two disjoint, independent sets: the
message node set and the receiver node set. A directed edge
from receiver node r to message node m exists iff receiver r
has X,, as side information; a directed edge from message
node m to receiver node r exists iff receiver r wants X,.

Now, we perform one or more of following pruning opera-
tions, as many times as desired: (@) remove a message node
and all its incoming and outgoing edges; (b) remove a receiver
node and all its incoming and outgoing edges; (C) remove a
message-to-receiver edge. After a series of pruning operations,
remove all message nodes with no outgoing edge. Let the
resultant bipartite graph be G’, and the number of message
nodes left by m(G’). If G’ is acyclic (in the directed sense),
then we have the following lower bound, which generalises the
maximum-acyclic-induced-subgraph (MAIS) lower bound [1].

Lemma 2: [2, Lem. 1] Consider an index-coding problem 1
and its bipartite-graph representation G. After a series of
pruning operations, if the resultant graph G’ is acyclic, then
By(I) = m(G").

A pliable-index-coding problem %,y with a decoding
choice D—that is, the index-coding problem %,y p—can
be described by the following bipartite graph: (a) message
nodes i € [1 : m]; (b) receiver nodes H € U; (C) each receiver
node H has an outgoing edge to every message node i € H
and an incoming edge from node D(H). Name this graph Gp,
and let G}, denote the resultant graph after a series of pruning
operations on Gp.

Using Lemmas 1 and 2, we obtain the following lower bound
for pliable index coding:

Lemma 3: [Lower bound] Consider a pliable-index-coding
problem P, y, and a set of bipartite graphs {Gp} formed by
all possible decoding choices D. Perform pruning operations
on each Gp to obtain an acyclic G7,. Then,

Bo(Prm0) = minm(G)).

2)

(€))

C. Constructing acyclic subgraphs using decoding chains with
skipped messages

To use Lemma 3, one needs to consider all D, perform
pruning operations on each Gp to get an acyclic graph G},
and count the remaining number of message nodes m(Gp)).
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We will instead use a decoding-chain argument to obtain the
required m(GJ,). The concept of decoding chains was used to
prove the MAIS lower bound [1] and its extension [2, Lem. 1]
for index coding, and lower bounds for certain pliable-index-
coding problems [12, 13].

In this paper, we propose the a new approach to construct
decoding chains by introducing skipped messages, which is
implemented in the following randomised algorithm:

Algorithm 1: An algorithm to construct a decoding chain
with skipped messages

input : %, u.p
output : A decoding chain C (a totally ordered set with a total
order <¢) and a set of skipped messages S
C «— 0; (initialise C)
S «— 0; (initialise S)
while C # [1 : m] do
if C ¢ U then (receiver C is absent)
Choose any a € [1:m]\ C; *
(a is called a skipped message)
C «— (CuU{a}, with i <¢ a, for all i € C); (expand
C)
S « SU{a}; (expand S)
else (receiver C is present)
C — (CU{D(C)}, with i <¢ D(C), for all i € C);

(add the message that receiver C decodes)

We say that the algorithm “skips” a message a, whenever we
execute the step marked # for that message a. We will see later
that the number of skipped messages is an important parameter
characterising lower bounds. We say that the algorithm “hits”
a receiver H whenever C is updated as C < H. If receiver H
is absent, we say that it hits an absent receiver H. Note that
receiver [1 : m] cannot exist, so when the algorithm ends,
[1: m] is not considered an absent receiver being hit.

Remark 2: We highlight some properties of Algorithm 1:

1) For a fixed D, the only uncertainty in constructing a chain
is the choice of skipped messages. So, (C, S) is completely
determined by D and the choice of skipped messages.

2) If an absent receiver H is hit, then subsequently a
message a ¢ H will be skipped, and vice versa. So, we
skip a message iff we hit an absent receiver.

3) The algorithm always commences by hitting receiver 0
first.

For a fixed #,,,u,p, any choice of skipped messages results
in a pair of (C,S). Let C be the set of all (C, S) pairs, obtained
by varying different skipped messages. We have the following:

Lemma 4: For each (C, S) € C derived from a given £, .u.p
(or equivalently, G p), there exists a series of pruning operations
on Gp yielding an acyclic G}, with m(G},) = [C\ S| = m—|S|.

Proof: Remove from Gp all present receivers not being hit
in the algorithm, and their connected edges. Let the elements
of C in the order of construction of C be ciy,cs,...,¢,...,c|C)s
that is, ¢; <c ¢; iff i < j, where underlined elements are
present in S as well. By construction, if ¢; is underlined, then
receiver {cy,...,ci—1} is absent. So, for each ¢; in C that is not
underlined, receiver {cy,...,c;_1} is present and has been hit in
the algorithm, and therefore remains. This includes receiver 0

if ¢; is not underlined. So, |C \ S| receivers remain. Next,
remove all messages in S (and their associated edges) so that
only messages in C \ S remain.

After these pruning operations, the graph G/, consists of
the following edges for each remaining receiver node H:
(a) outgoing edges from H to all message nodes i € H \ S,
(b) incoming edge from message node D(H) to H. Also, by
construction, for each remaining receiver node H, i <¢ D(H)
foralli e H.

For a <c¢ b, we say that b is larger than a in C, and a
is smaller than b in C. In G},, all edges flow from message
nodes that are larger in C to message nodes that are smaller in
C, through receiver nodes. Hence, G’D is acyclic. Also, since
each message node that remains is requested by a receiver
that remains, no message node is removed after the pruning
operations. So, G}, contains |C \ S| message nodes. As C
contains all the messages [1 : m], we have |[C\S|=m—|S|. &

D. A lower bound via decoding chains with skipped messages

We can express the lower bound in Lemma 4 as follows:
Lemma 5: [Lower bound] Consider a pliable-index-coding
problem P, y and its bipartite-graph representation G.
By(Pv) = m=max min_|S]. )
Proof: From Lemmas 3 and 4, we know that 8,(P,u) >
minp (m — |S|), for any (C,S) € C for each decoding choice D.
By optimising (C,S) € C for each D, we get Lemma 5. H
Remark 3: Although the lower bound (4) involves minimis-
ing over all (C,S) € C, it is clear that any choice of (C,S)
for each D will also give us a lower bound. Having said that,

maximising over all D is compulsory.

E. A lower bound based on nested chains of absent receivers

Denote the set of absent receivers by U2 := 2l \ ({[1 :
m]} U ).

Lemma 6: If an instance of Algorithm 1 skips L € Z*
messages, then there exists a nested chain of absent receivers
of length L, thatis, H} C H, C --- € Hp, with each H; € Uabs,

Proof: A decoding chain C is constructed by adding
messages one by one. So, any receiver that is hit must contain
all previously hit receivers. From Remark 2, we know that if
the algorithm skips L messages, it must hit L absent receivers,
and these absent receivers must form a nested chain. |

We will now prove another lower bound that is easier to use
compared to Lemma 5 in some scenarios (for example, case 2
in Theorem 3 and Theorem 4).

Lemma 7: [Lower bound] Consider a pliable-index-coding
problem %,y and its bipartite-graph representation G. Let
L € Z" be the maximum length of any nested chain constructed
from receivers absent in P, 7. We have that 8, (Pp.uy) = m—L.

Proof: L must be the largest number of skipped messages
evaluated over all decoding choices D and skipped-message
sets. Otherwise, from Lemma 6, we have a nested chain of
absent receivers of length L+ 1, which is a contradiction. Thus,

€]
S| < m—-max min |S| < P, .
| I ) (C,S)ECI | ﬂq( m,U)
||

m—L = m—max max
D (C,S)eC
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ITI. CRITICALITY AND MONOTONICITY

Before we characterise the optimal broadcast rate of certain
classes of pliable-index-coding problems, we introduce the
notion of critical receivers for pliable index coding.

In index coding, it is well-known that removing any message
from the side information of any receiver cannot decrease the
optimal broadcast rate 5. Hence, the side-information sets of
all receivers are said to be critical if removing any messages
therein results in a strictly larger 8.

However, in pliable index coding, removing messages from
side-information sets may increase or decrease 5. We will
establish this in Corollary 1 later. Hence, criticality should not
be defined for the messages in side-information sets. However,
we can define criticality of pliable index coding with respect to
the receivers. By noting that any pliable index code for P, iy
is also a pliable index code for P, y-, we have the following:

Lemma 8: Let U~ C U. Then, By(Pm,u-) < Bg(Pm.v).

In light of this, we define the following.

Definition 1: For pliable-index-coding %, uy, the set of
receivers U is said to be critical iff adding any receiver to U
strictly increases f.

So, for pliable index coding, critical receivers can be seen as
a maximal receiver set that a broadcast rate can support. This
is different from index coding, where critical side information
can be seen as the minimal side information that is required
to maintain a broadcast rate.

IV. RESULTS ON OPTIMAL BROADCAST RATES

We now derive B, for a few classes of pliable-index-coding
problems. For lower bounds, we use Lemma 5 and Lemma 7 for
different settings. For achievability, we will engage cyclic codes
defined as follows. A cyclic code for messages {X1, X, ..., X1}
is (X; + X2, X2 + X3,..., X, + X) € F-~'. For notational
convenience, we let the cyclic code for a single message X;
be nil (that is, sending nothing).

Theorem 1: Let $,,, y be such that

U H#[1:m]. 5)
HeU‘dbs
Then B;(Pmuy) =m—1.

Proof: If receiver ) € U, we remove it to get another
pliable-index-coding problem £~ = P, 1 (9. Using Lemma 8,
Ba(P™) < By(Prn).

We run Algorithm 1 on . Since receiver () is missing, we
start by skipping some message a € [1 : m]. We choose any
a € [1 : m]\Upycy»s H, which is possible due to (5). After this
step, for any decoding choice D, Algorithm 1 must terminate
without skipping any more messages (meaning that it will not
hit any absent receiver). This is because a (which is included
in C in the first step) is not in the side-information set of any
absent receiver. So, Algorithm 1 terminates with S = {a}.

Invoking Lemma 5, we have S,($~) = m — 1. Note that
we need not minimise the algorithm over all (C,S) here; see
Remark 3. This completes the lower bound.

For achievability, pick any H € U, We send Xy uncoded,
and X[i.,,)\ g using a cyclic code. This gives a codelength of

m — 1. Note that any receiver that does not have all messages
in H as side information will be able to decode a new message.
Also, any receiver that has all messages in H must also have
at least one (but not all) messages in [1 : m] \ H—Dbecause
receiver H is absent—and hence it can decode a new message
from the cyclic code. u

It has been shown [12] that if all receivers are present, then
By = m. We now strengthen the result to if and only if.

Theorem 2: B, (Pp.u) = m iff U =271\ {[1 : m]}.

Proof: We only need to prove the “only if” part. Equiva-
lently, we show that if U # 2l11\ {[1 : m]}, then By (Pm.v) #
m. We start by observing that if U # 2[™1\ {[1 : m]}, then at
least one receiver must be absent. By letting the absent receiver
be H, we have U C 25\ {[1 : m], H} := U*. As H # [1 : m],
we have B4 (Pm,u) < Byg(Pm,u+) = m— 1, where the inequality
follows from Lemma 8 and the equality from Theorem 1 H

We now present our results to absent receivers U in some
cases where |Jg s H = [1 : m].

Theorem 3: Consider a pliable-index-coding problem %y, 1.
If any of the following is true, then B4 (Pm,u) =m — 1.

1) (no nested absent pair) J ¢ K, for all distinct J, K € U2,

2) (one nested absent pair) J € K, for exactly one pair of

J,K € U™,

Proof: Theorem 1 covers the case |Jgcyaws H # [1 1 m].
So, in the proof, we consider only |Jgcyaws H = [1 : m].

For achievability, we use the coding scheme for Theorem 1,
that is, we choose any H € U2, and then send Xg uncoded,
and Xj.,,)\g using a cyclic code. This gives a code of length
m — 1. Note that this code works for the case where only
receiver H is missing, will therefore works for the case where
H and more receivers are missing.

For lower bounds, we start with case 1. Since no pair of
absent receivers are nested, using Lemma 7, we obtain the
required lower bound m — 1.

For case 2, as there is a pair of nested absent receivers,
Lemma 7 gives a loose lower bound of m — 2. Suppose that
receiver () is absent, then J = @, and only one another receiver
K can be absent, since the presence of any other absent receiver
will yield at least two pairs of nested absent receivers. In this
setting then, | Uy cyas H = OU K # [1 : m], and by Theorem 1,
we see that B, (Pmu) =m— 1.

Now, suppose that case 2 holds and 0 is present. With § € U,
we know that Algorithm 1 can start without skipping the first
message to be included in C. We split the decoding choices into
three sub-cases, and skip specific messages to avoid |S| = 2.
Sub-case 1: D such that the decoding chain does not hit any
absent receiver. For this case, |S| = 0.

Sub-case 2: D such that the decoding chain first hits any absent
receiver H # J. Then, we arbitrarily skip one message, and
will not hit another absent receiver, since every receiver that
has H as a subset is present. This gives |S| = 1.

Sub-case 3: D such that the decoding chain first hits J. Then,
we skip a message a € [1 : m] \ K. We will not hit another
absent receiver, as every receiver that has J U {a} as a subset
is present. This results in |S| = 1.

Maximising |S| over all D, we get the lower bound m —1 ®
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For the next result, we need first define a class of pliable-
index-coding problems.

Definition 2: A pliable-index-coding problem is said to have
perfectly L-nested absent receivers iff the messages [1 : m]
can be partitioned into L + 1 € [2 : m] subsets Py, Py,...,PL
(that is, ULy P; = [1:m] and P; N P; = 0 for all i # j), such
that only Py can be an empty set, and there are exactly 2- — 1
absent receivers, which are

PyU ( U P,-) , foreach Q ¢ [1:L]. (6)

ieQ
Figure 1 depicts an example of perfectly 3-nested absent
receivers.
Theorem 4: For any pliable-index-coding problem P,
with perfectly L-nested absent receivers, By (Pp,u) = m — L.

Proof: For achievability we send Xp, uncoded and Xp,
for each i € [1 : L] using a cyclic code. One can verify that
decodability of each present receiver can be satisfied.

Since the maximum length of any nested chain of absent
receivers is L, Lemma 7 gives Bq(Pm,u) = m — L. [ |

Lemma 9: If U™ is set of perfectly L-nested absent
receivers, then U is critical.

Proof: Start with P, 1y with perfectly L-nested absent
receivers. Imposed by the structure of U, the maximum length
of any nested chain of absent receivers is L, and they each
must be in the following form:

Py S PoUP;, C PoUP;UP;, C---C PoUl U Py,

for some distinct iy,...,ip_; € [1:L].

We need to show that if we augment U with any absent
receiver H = Py U (U;ep Pi) for some Q ¢ [1 : L], then
By(Pmu+) 2 m— L+ 1, where U" = UU {H} is the set of
receivers after augmenting H.

Clearly, if H = Py, then receiver Py is no longer absent,
and (7) is not possible. So, the maximum length of any nested
chain constructed from receivers absent in $,, y+ is L — 1.
Using Lemma 7, we have B,(Pnu+) 2 m— L+ 1.

Otherwise, without loss of generality, let H = Py U
(Ui<j<o Pj) for Q € [1 : L —1]. We will use Lemma 5
to show that for any decoding choice D, we can construct a
series of skipped messages S such that |S| < L — 1.

Since in any attempt to skip L messages, chain (7) is
necessary, we only need to consider all decoding choices for
which the first absent receiver being hit is Py. After this, we
choose to skip any message in P;. Again, in the attempt to
skip L messages, the decoding choice must be made such that
the next absent receiver being hit is Pp U P;. Repeating this, in
iteration i € [1 : Q — 1], after hitting each PoU (U <;<; Pj), we
choose to skip any message in P;;1. The next absent receiver
being hit must then be Py U (U, <j<;+1 Pj), €xcept when we
reach i + 1 = O, where the absent receiver Po U (U <j<o Pj)
has been included in U*. In this case, either (a) the next
absent receiver being hit is Po U (U <;<o Pj) U P for some
kel[Q+1:L]if Q <L -2, or (b) the decoding chain
terminates without hitting another absent receiver if Q = L — 1.
In any case, by the choice of skipped messages we devised, the

Py P, P P3; Message Partitions
~— m . -
o0 O oo @ @ Messages
D) Hy =Py \
(@e}-{o) Hy=PyUP,
(0 0)-—-{00 Hy = PyUP,
@' """""""""" @ Hy, =P UP; } Absent Receivers

H,3=POUP] UPQ
(@ ®)-{®)}-—---- @@ Hi=PUPUP
@0 @888 r-rurun )

Fig. 1: Perfectly 3-nested absent receivers, where circles denote

messages, {Pi}fzo partitions, and {Hi}17=1 absent receivers.

maximum skipped messages is L — 1 for any decoding choice,
and therefore Lemma 5 gives B, (Pnu+) =2 m—L + 1. |

With the above results, we can show the following:

Corollary 1: For any #,, uy, removing a message from a
present receiver H € U may strictly increase or strictly decrease
the optimal broadcast rate S (Pp.u).

We prove Corollary 1 using the example below:

Example 2: Consider m = 5 and a set of absent re-
ceivers U‘i‘bs = {{1,2,3},{3},{3,4}}. Using Theorem 1, we
have By(Pm,u,) = m — 1. Now, we remove message 5
from a present receiver {3,4,5} € U;. This is equivalent to
replacing the present receiver {3,4,5} with a new present
receiver {3,4}. We get Ugbs = {{1,2,3},{3},{3,4,5}}, which
forms perfectly 2-nested absent receivers. Using Theorem 4,
Bqg(Pm,u,) = m — 2. We continue by removing messages 2
and 4 from the present receiver {2,3,4} € U,. This replaces
the present receiver {2,3,4} with a new present receiver {3}.
We get Ugbs ={{1,2,3},{2,3,4},{3,4,5}}. Using Theorem 3,
ﬁq(Pm,U3) =m- L
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