Complex Analysis MAT656.

José Pabón

May, 2020

These problems are from the pdf received from Prof. Blackmore. The course textbook is Ablowitz and Fokas [1].

This ${ }^{A} T_{E X}$ document will contain the main points of the exposition, please see the handwritten work following for more details on the calculations and computations.

$1 \quad 1$ - Prove that if $f=u+i v$ is analytic on a domain \mathbf{D} and $|f|^{2}=u^{2}+v^{2}=c$ is constant, then \mathbf{f} is constant.

We are given that $|f|^{2}=u^{2}+v^{2}=c$, for some constant c. This implies for $\sqrt{c}=k$, for some other constant k , we have that:

$$
\sqrt{u^{2}+v^{2}}=\sqrt{c}=k \Longrightarrow \sqrt{|f|^{2}}=k \Longrightarrow|f|=k
$$

Thus $|f|=\sqrt{u^{2}+v^{2}}=k$ is constant. From here, we reuse the same argument used on a previous work this semester course using Cauchy Riemann equations.

We have that $f(x, y)=u(x, y)+i v(x, y)$ is analytic and therefore holomorphic on domain D, as well as $|f|=c$ in the same domain. From the Cauchy Riemann equations, we also have that $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.

$$
|f|=c \Longrightarrow|f|=\sqrt{u^{2}+v^{2}}=c \text {. Then } u^{2}+v^{2}=c^{2} .
$$

We take partial derivatives:

$$
\begin{aligned}
2 u u_{x}+2 v v_{x}=0.2 u u_{y}+2 v v_{y} & =0 \Longrightarrow u u_{x}+v v_{x}=u u_{y}+v v_{y}=0 . \\
\text { Then } u^{2} u_{x}+u v v_{x} & =0 \text { and } u v u_{y}+v^{2} v_{y}=0 .
\end{aligned}
$$

We substitute $u_{y}=-v_{x}$ in the second equation, and add these two to get: $u^{2} u_{x}+v^{2} v_{y}=0$; which given $u_{x}=v_{y} \Longrightarrow u^{2} v_{y}+v^{2} v_{y}=\left(u^{2}+v^{2}\right) v_{y}=0$.
We know $u^{2}+v^{2}=c^{2}$, so the equation $\left.u^{2}+v^{2}\right) v_{y}=0$ admits only two cases. Either

$$
u^{2}+v^{2}=c^{2} \Longrightarrow c=0 \Longrightarrow \mathrm{f} \text { is constant on domain } D \text {, or } v_{y}=0 \Longrightarrow u_{x}=0
$$

Via similar computation and argument, we have that $\left(u^{2}+v^{2}\right) u_{y}=0$ which, again in the same manner, only admits either $u^{2}+v^{2}=c^{2} \Longrightarrow c=0 \Longrightarrow \mathrm{f}$ is constant on

$$
\text { domain } D \text {, or } u_{y}=0 \Longrightarrow-v_{x}=0 \text {. }
$$

Thus, it must be that either f is constant on domain D or $-v_{x}=u_{x}=v_{y}=u_{y}=0$, which implies that $v=u=v=u=c_{i}$ for some constants c_{i} and thus, $f(u(x, y), v(x, y))$ is constant on domain D.

3 Conclusion

Thank you to Prof. Blackmore for his instruction, lectures and office hours effort. I look forward to any feedback and learning more of the material in this course.

References

[1] Mark J Ablowitz, Athanassios S Fokas, and AS Fokas. Complex variables: introduction and applications. Cambridge University Press, 2003.

