Complex Analysis HW4

José Pabón

February, 2020

These problems are usually from the course textbook [1], but sometimes directly from Prof. Blackmore, as is the case in this instance.

1 Problem 1 - Show that the countour integral is invariant under different parametrizations.

See original text for full conditions on the problem.
We define a mapping H such that $\tau=H(t), H:[a, b] \rightarrow[\alpha, \beta]$, noticing that H is one to one and

$$
\begin{gathered}
\text { invertible with } t=H^{-1}(\tau) \text { and } H(a)=\alpha, H(b)=\beta \text {, We then have that: } \\
\psi(\tau)=\psi(H(t))=\phi(t) . \\
\text { Via chain rule we have that: } \\
\frac{d \psi}{d \tau} \frac{d \tau}{d t}=\frac{d \psi}{d H} \frac{d H}{d t} . \\
\frac{d \psi}{d \tau} d \tau=\frac{d \psi}{d H} \frac{d H}{d t} d t . \\
\text { We also have that; } \\
\psi(H(t))=\phi(t) \text { implies that } \frac{d \psi}{d H} \frac{d H}{d t}=\frac{d \phi}{d t}=\frac{d \psi}{d H} \frac{d H}{d t} d t=\frac{d \phi}{d t} d t \text {. } \\
\text { Thus, we use these equations and we have that: } \\
\int_{c} f(z) d z=\int_{\alpha}^{\beta} f(\psi(\tau)) \frac{d \psi}{d \tau}(\tau) d \tau=\int_{a}^{b} f(\psi(H(t))) \frac{d \psi}{d H} \frac{d H}{d t} d t=\int_{a}^{b} f(\phi(t)) \frac{d \phi}{d t}(t) d t .
\end{gathered}
$$

2 Conclusion

Thank you to Prof. Blackmore for his instruction, lectures and office hours effort. I look forward to any feedback and learning more of the material in this course.

References

[1] Mark J Ablowitz, Athanassios S Fokas, and AS Fokas. Complex variables: introduction and applications. Cambridge University Press, 2003.

