Complex AnalysisMAT656.

José Pabón

May, 2020

These problems are from the pdf received from Prof. Blackmore. The course textbook is Ablowitz and Fokas [1].

1 August 2018 Problem4. - REDACTED

1.1 Proof from Ablowitz and Fokas:

$f(z)$ analytic at z_{0} implies the function has a Taylor series expression about $z=z_{0}$. If it has a zero of order n, we have that:

$$
f(z)=\left(z-z_{0}\right)^{n} g(z) .
$$

With $g(z)$ analytic and having a Taylor series at $z=z_{0}$ and $g\left(z_{0}\right) \neq 0$. There must exist a maximum integer n, otherwise $f(z)$ would be identically zero in a neighborhood of z_{0} and must vanish everywhere in our domain. This is a result from previous theorems including this theorem (3.2.6 in the text):

Theorem - If $f(z), g(z)$, are analytic in common domain D, if $f(z), g(z)$
coincide in some subportion $D^{\prime} \subset D$, then $f(z)=g(z) \forall z \in D$.
Given $g(z)$ is analytic, we have that:
$\exists \epsilon>0,\left|g(z)-g\left(z_{0}\right)\right|<\epsilon$ whenever z is in a neighborhood of $z_{0}, 0<\left|z-z_{0}\right|<\delta$.
Thus, $g(z)$ can be made arbitrarily as close to $g\left(z_{0}\right)$ as desired, thus:

$$
g(z) \neq 0, f(z) \neq 0, \text { in this neighborhood }
$$

\therefore if f is a nonconstant analytic function in a domain $D \subset C$, then if $f\left(z_{0}\right)=0$ for $z_{0} \in$ D, there exists an $\epsilon>0$ such that f is not zero for any point of the punctured neighborhood \checkmark.

2 Conclusion

Thank you to Prof. Blackmore for his instruction, lectures and office hours effort. I look forward to any feedback and learning more of the material in this course and beyond.

References

[1] Mark J Ablowitz, Athanassios S Fokas, and AS Fokas. Complex variables: introduction and applications. Cambridge University Press, 2003.

