Methods of applied mathematics and Modeling.

José Pabón

July 2020

These problems are from past quals mostly. Thanks for reading.

1 Modeling practice:

The chemical master equation is:

$$
\frac{d p_{n}}{d t}=(n-1) r_{b} p_{n-1}+(n+1) r_{d} p_{n+1}-(n-1)+\left(-r_{b}-r_{d}\right) n p_{n}
$$

We collect our r terms:

$$
\frac{d p_{n}}{d t}=r_{b}\left((n-1) p_{n-1}-n p_{n}\right)+r_{d}\left((n+1) p_{n+1}-n p_{n}\right)
$$

We multiply the whole equation by z^{n} :

$$
z^{n} \frac{d p_{n}}{d t}=z^{n}\left\{r_{b}\left((n-1) p_{n-1}-n p_{n}\right)+r_{d}\left((n+1) p_{n+1}-n p_{n}\right)\right\} .
$$

Via class theorems we know that:

$$
\frac{d}{d t} F(z, t)=\sum_{n=0}^{\infty} z^{n} \frac{d p_{n}}{d t}=\sum_{n=0}^{\infty} z^{n}\left\{r_{b}\left((n-1) p_{n-1}-n p_{n}\right)+r_{d}\left((n+1) p_{n+1}-n p_{n}\right)\right\}
$$

We want to get this whole expression in terms of p_{n} :
For $z^{n}(n-1) p(n-1)$, we let $m=n-1$, which would make this summation $z^{m+1}(m) p(m)$, which we can reindex to n abd then will leave us with:

$$
\frac{d}{d t} F(z, t)=\sum_{n=0}^{\infty} z^{n}\left\{r_{b}\left(z(n) p_{n}-n p_{n}\right)+r_{d}\left((n+1) p_{n+1}-n p_{n}\right)\right\}
$$

which we can simplify to:

$$
\frac{d}{d t} F(z, t)=\sum_{n=0}^{\infty} z^{n}\left\{(n) p_{n} r_{b}(z-1)+r_{d}\left((n+1) p_{n+1}-n p_{n}\right)\right\} .
$$

2 First topic (ODE)

Methods to solve ODEs:

- Exact equations
- Substitutions or change of variables, such as $y^{\prime}=F \frac{1}{x} y$.
- Variation of parameters for second order ODEs, catch all. Pro's always works, con's - takes longer, have to do integrals.
- Undetermined coefficients - Useful until its not. Many times may be faster. Keep in mind that different right hand side nonhomogeneous terms will require different starting points to determine the particular solution.
- Reduction of order - seems useful, but we haven't seen it on many qual problems.
- Hamiltonian systems
- Frobenius series solutions
- Integrating factor.
- Sturm Lioville

3 Frobenius

Step 1 Write everything in terms of Frobenius form.

$$
R(x) x^{2} y+P(x) x y+Q(x) y=0 .
$$

Where $\mathrm{R}, \mathrm{P}, \mathrm{Q}$ are analytic functions of x .
You should get coefficients for as far as the order of the ODE provided.
To determine if it is a regular singular point:
$\lim \frac{P}{R}$ and $\lim \frac{Q}{R}$.
We check the indicial equation, we check the difference between the roots $S_{+}-S_{-}$, if it is not equal a nonnegative integer, then there exists two linearly independent solutions.
(Other cases exist)
Then find the recurrence relationship.

4 Phase portraits

- I think maybe Hamiltonian systems go here.
- This is two
- So on

5 Partial Differential equations

5.1 General PDEs, linear

- Homogeneous PDE, homogeneous boundary conditions, simplest case.
- Some problems have reference temperature distributions, which may be found applying the steady state.
- So on

5.2 Heat equation

- Method of Separation of variables, which has different flavors in terms of the sources (homogeneous terms), boundary conditions, etc.
- This is two
- So on

5.3 Wave equation

- Method of characteristics?
- There's three types of wave equations, linear, quasi-linear, semi-linear.
- So on

5.4 Laplace equation

- Generally, Laplace is the same process as previously detailed linear PDEs but you have to follow the procedure on Page 72, section 2.5 in Haberman, which includes separation of variables.
- This is two
- So on

5.5 Algorithm for Method of Characteristics

Algorithm to do Method of Characteristics general PDE style, not Matveev Modeling style A du/dx $+B d u / d y+C(f$

6 Practicing - MAT651 Final exam

6.1 REDACTED:

a- $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2}$.
We find an Euler form ODE, we use ansatz of $y=x^{s}$ into our homogeneous ODE, we find that:

$$
x^{s}((s)(s-1)-3 s+4)=0 .
$$

We discard the trivial solution and find that:

$$
s^{2}-4 s+4=0 \Longrightarrow s_{+}=2=s_{-}
$$

We thus have that we have two solutions:

$$
y_{1}=C x^{2}, y_{2}=D x^{2} \ln x
$$

For any constants $C, D \in \mathbf{C}$.

6.1.1 Undetermined coefficients method for finding the nonhomogenous solution.

$a-A\left(2 x(\ln x)^{2}+2 x \ln x\right.$.

$$
y_{1}=C x^{2}, y_{2}=D x^{2} \ln x
$$

We find that one of our solutions are linearly dependent on the nonhomogeneous term x^{2}, thus we have that we ansatz for our particular solution:

$$
\begin{gathered}
y_{p}=A x^{2}(\ln x)^{2} ; y_{p}^{\prime}=A\left(2 x(\ln x)^{2}+2 x \ln x\right)=A(2 x \ln x((\ln x)+1)) . \\
y_{p}^{\prime \prime}=A\left(2(\ln x)^{2}+6 \ln x+2\right) .
\end{gathered}
$$

We plug this particular solution into our ODE a- $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2}$.

$$
\begin{gathered}
x^{2} A\left(2(\ln x)^{2}+6 \ln x+2\right)-3 x\left(A\left(2 x(\ln x)^{2}+2 x \ln x\right)\right)+4 A x^{2}(\ln x)^{2}=x^{2} . \\
2 A(\ln x)^{2} x^{2}+6 A x^{2} \ln x+2 A x^{2}-6 A x^{2}(\ln x)^{2}-6 A x^{2}(\ln x)+4 A x^{2}(\ln x)^{2}=x^{2} . \\
2 A x^{2}=x^{2} \Longrightarrow A=\frac{1}{2} .
\end{gathered}
$$

6.2 REDACTED:

$y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=\cos x$.
We solve the homogenous equation, we ansatz $y=e^{r x}$ and find that:
$r^{3}-3 y^{2}+3 r-1=0 \Longrightarrow(r-1)^{3}=0 \Longrightarrow r=1$ with a multiplicity of 3 .
We form our homogeneous solution:
$y_{\text {homogeneous }}=e^{x}+x e^{x}+x^{2} e^{x}$.
We ansatz our particular solution $y_{\text {particular }}=A(\sin (x))+B \cos (x)$, take its derivatives, plug it theiDtDE, to find that.

$$
\begin{aligned}
\sin (x)(B+3 A-3 B-A) & \Longrightarrow 2 A-2 B=0 \Longrightarrow A=B \\
\cos (x)(-A+3 B+3 A-B) & \Longrightarrow 2 A+2 B=1 \Longrightarrow A=B=\frac{1}{4}
\end{aligned}
$$

Full solution is thus:

$$
y=C e^{x}+D x e^{x}+E x^{2} e^{x}+\frac{1}{4}(\sin (x))+\frac{1}{4} \cos (x)
$$

References

