
Methods of applied mathematics and Modeling.
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These problems are from past quals mostly. Thanks for reading.

1 Modeling practice:

The chemical master equation is:

dpn
dt

= (n− 1)rbpn−1 + (n + 1)rdpn+1 − (n− 1) + (−rb − rd)npn.

We collect our r terms:

dpn
dt

= rb((n− 1)pn−1 − npn) + rd((n + 1)pn+1 − npn).

We multiply the whole equation by zn:

zn
dpn
dt

= zn{rb((n− 1)pn−1 − npn) + rd((n + 1)pn+1 − npn)}.

Via class theorems we know that:

d

dt
F (z, t) =

∞∑
n=0

zn
dpn
dt

=

∞∑
n=0

zn{rb((n− 1)pn−1 − npn) + rd((n + 1)pn+1 − npn)}.

We want to get this whole expression in terms of pn:
For zn(n− 1)p(n− 1), we let m = n− 1, which would make this summation zm+1(m)p(m), which we

can reindex to n abd then will leave us with:

d

dt
F (z, t) =

∞∑
n=0

zn{rb(z(n)pn − npn) + rd((n + 1)pn+1 − npn)}.

which we can simplify to:

d

dt
F (z, t) =

∞∑
n=0

zn{(n)pnrb(z − 1) + rd((n + 1)pn+1 − npn)}.
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Methods of applied mathematics outline:

2 First topic (ODE)

Methods to solve ODEs:

• Exact equations

• Substitutions or change of variables, such as y
′

= F 1
xy.

• Variation of parameters for second order ODEs, catch all. Pro’s always works, con’s - takes longer,
have to do integrals.

• Undetermined coefficients - Useful until its not. Many times may be faster. Keep in mind that
different right hand side nonhomogeneous terms will require different starting points to determine
the particular solution.

• Reduction of order - seems useful, but we haven’t seen it on many qual problems.

• Hamiltonian systems

• Frobenius series solutions

• Integrating factor.

• Sturm Lioville

3 Frobenius

Step 1 Write everything in terms of Frobenius form.

R(x)x2y + P (x)xy + Q(x)y = 0.

Where R, P, Q are analytic functions of x.
You should get coefficients for as far as the order of the ODE provided.
To determine if it is a regular singular point:
lim P

R and lim Q
R .

We check the indicial equation, we check the difference between the roots S+ − S−, if it is not equal
a nonnegative integer, then there exists two linearly independent solutions.

(Other cases exist)
Then find the recurrence relationship.

4 Phase portraits

• I think maybe Hamiltonian systems go here.

• This is two

• So on

5 Partial Differential equations

5.1 General PDEs, linear

• Homogeneous PDE, homogeneous boundary conditions, simplest case.

• Some problems have reference temperature distributions, which may be found applying the steady
state.

• So on
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5.2 Heat equation

• Method of Separation of variables, which has different flavors in terms of the sources (homogeneous
terms), boundary conditions, etc.

• This is two

• So on

5.3 Wave equation

• Method of characteristics?

• There’s three types of wave equations, linear, quasi-linear, semi-linear.

• So on

5.4 Laplace equation

• Generally, Laplace is the same process as previously detailed linear PDEs but you have to follow
the procedure on Page 72, section 2.5 in Haberman, which includes separation of variables.

• This is two

• So on

–Form fractions, with A of du/dx -¿ 1/A=f(x,y,u) dx B du/dy -¿ 1/B=f(x,y,u) dy C whatever is left -¿ 1/f(x,y,u) dx. –Integrate in a manner to have two equations integrated in the same variable. – Each equation should have a different, labeled C1 C2 constant of integration. – Solve first equation for the constant of integration C1. –Solve second equation to formulate expression for u(x,y) = ?? + C2. –Define a function G(C1) that relates C1 and C2, G(C1)=C2. –Use Initial Conditions provided to solve for function G with these conditions, you’ll need to use the expression for u(x,y). –Once G is determined, you plug in the expression for C1 into G to find your expression in x and y for C2, and plug back into your equation for u..

5.5 Algorithm for Method of Characteristics

Algorithm to do Method of Characteristics general PDE style, not Matveev Modeling style A du/dx + B du/dy + C( f(x,y,u).

6 Practicing - MAT651 Final exam

6.1 REDACTED:

a- x2y
′′ − 3xy

′
+ 4y = x2.

We find an Euler form ODE, we use ansatz of y = xs into our homogeneous ODE, we find that:

xs((s)(s− 1)− 3s + 4) = 0.

We discard the trivial solution and find that:

s2 − 4s + 4 = 0 =⇒ s+ = 2 = s−.

We thus have that we have two solutions:

y1 = Cx2, y2 = Dx2 lnx

.
For any constants C,D ∈ C.

6.1.1 Undetermined coefficients method for finding the nonhomogenous solution.

a−A(2x(lnx)2 + 2x lnx.

y1 = Cx2, y2 = Dx2 lnx

.
We find that one of our solutions are linearly dependent on the nonhomogeneous term x2, thus we

have that we ansatz for our particular solution:

yp = Ax2(lnx)2; y
′

p = A(2x(lnx)2 + 2x lnx) = A(2x lnx((lnx) + 1)).

y
′′

p = A(2(lnx)2 + 6 lnx + 2).
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We plug this particular solution into our ODE a- x2y
′′ − 3xy

′
+ 4y = x2.

x2A(2(lnx)2 + 6 lnx + 2)− 3x(A(2x(lnx)2 + 2x lnx)) + 4Ax2(lnx)2 = x2.

2A(lnx)2x2 + 6Ax2 lnx + 2Ax2 − 6Ax2(lnx)2 − 6Ax2(lnx) + 4Ax2(lnx)2 = x2.

2Ax2 = x2 =⇒ A =
1

2
.

6.2 REDACTED:

y
′′′ ′′ ′− 3y + 3y − y = cos x.

We solve the homogenous equation, we ansatz y = erx and find that:
r3 − 3y2 + 3r − 1 = 0 =⇒ (r − 1)3 = 0 =⇒ r = 1 with a multiplicity of 3.
We form our homogeneous solution:
yhomogeneous = ex + xex + x2ex.
We ansatz our particular solution yparticular = A(sin(x)) + B cos(x), take its derivatives, plug it 
intothe ODE, to find that.

sin(x)(B + 3A− 3B −A) =⇒ 2A− 2B = 0 =⇒ A = B

.

cos(x)(−A + 3B + 3A−B) =⇒ 2A + 2B = 1 =⇒ A = B =
1

4
.

Full solution is thus:

y = Cex + Dxex + Ex2ex +
1

4
(sin(x)) +

1

4
cos(x)

.
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