Methods of Applied Math Exam Prep 2018.

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and office hours related to our course MAT614 and additional references.

1 Problem August 2018 4:

$$
x^{2} y^{\prime \prime}-\left(2 x+2 x^{2}\right) y^{\prime}+\left(x^{2}+2 x+2\right) y=0 .
$$

We substitute:

$$
\begin{gathered}
y=v x, y^{\prime}=v^{\prime} x+v, y^{\prime \prime}=v^{\prime \prime} x+2 v^{\prime} . \\
x^{2}\left(v^{\prime \prime} x+2 v^{\prime}\right)-\left(2 x+2 x^{2}\right)\left(v^{\prime} x+v\right)+\left(x^{2}+2 x+2\right)(v x)=0 . \\
\left(v^{\prime \prime} x^{3}+2 v^{\prime} x^{2}\right)-\left(2 v^{\prime} x^{2}+2 x^{2} v+2 x^{3} v^{\prime}+2 x v\right)+v\left(x^{3}+2 x^{2}+2 x\right)=0 .
\end{gathered}
$$

Quite a few terms add to zero, leaving us with:

$$
v^{\prime \prime} x^{3}-2 x^{3} v^{\prime}+v x^{3}=0
$$

\Longrightarrow Non trivial solution: $v^{\prime \prime}-2 v^{\prime}+v=0=\Longrightarrow(r-1)^{2}=0 \Longrightarrow r=1$ with double multiplicity .

1.1 Frobenius practice

Frobenius form requires:

$$
\begin{gathered}
x^{2} y^{\prime \prime}+(-2-2 x) x y^{\prime}+\left(x^{2}+2 x+2\right) 1 y=0 . \\
x^{2}(R(x)) y^{\prime \prime}+x(P(x)) y^{\prime}+((Q(x))) y=0 .
\end{gathered}
$$

$$
\begin{aligned}
& R_{0}=1, R_{1}, R_{2}, \ldots,=0 \\
& P_{0}=-2, P_{1}=-2, P_{2}=\ldots=0 \\
& Q_{0}=2, Q_{1}=2, Q_{2}=1, Q_{3}=\ldots=0 . \text { Indicial equation is: }
\end{aligned}
$$

$$
R_{0} s(s-1)+P_{0} s+Q_{0}=0 \Longrightarrow s^{2}-3 s+2=0 \Longrightarrow(s-1)(s-2)=0 \rightarrow s_{+}=2, s_{-}=1
$$

The difference of $s_{+}-s_{-}=1=N$, thus we need to further test to see which case of Frobenius we have:
$A_{n}^{-}\left[(n+s)(n+s-1)+P_{0}(n+s)+Q_{0}\right]=-\sum_{m=1}^{n} A_{n-m}^{-}\left[R_{m}(n-m+s)(n-m+s-1)+P_{m}(n-m+s)+Q_{m}\right]$.
We take our sum up to the N we found, with $s_{-}=1$:
Our left hand side is:
$A_{n}^{-}\left[(n+1)(n+1-1)+P_{0}(n+1)+Q_{0}\right]=$ Substitute 1 for $\mathrm{n}=A_{1}^{-}[2(1)+(-2)(2)+2]=A_{1}^{-}(0)=0$.
Our right hand side is:

$$
-\sum_{m=1}^{N} A_{n-m}^{-}\left[R_{m}(n-m+s)(n-m+s-1)+P_{m}(n-m+s)+Q_{m}\right]=\star
$$

$\star=A_{0}^{-}[0((n-m+s)(n-m+s-1))-2(1)+2(1)]=A_{0}^{-}(0) . \Longrightarrow A_{1}^{-}$is arbitrary.
For our larger root $s_{+}=2$ we have that:
Left hand side:

$$
A_{n}^{+}\left[R_{0}(n+2)(n+2-1)+P_{0}(n+2)+Q_{0}\right]=A_{n}^{+}[(n+2)(n+2)-2(n+2)+2]=A_{n}^{+}[n(n+1)]
$$

Right hand side:

$$
-\sum_{m=1}^{N} A_{n-m}^{+}\left[R_{m}(n-m+2)(n-m+2-1)+P_{m}(n-m+2)+Q_{m}\right]=\star
$$

For $m=1$:
$-A_{n-1}^{+}\left[R_{1}(n-1+2)(n-1+2-1)+P_{1}(n-1+2)+Q_{1}\right]=-A_{n-1}^{+}[(0)+-2(n+1)+2]$.

For $m=2$:

$$
-A_{n-2}^{+}\left[R_{2}(n-2+2)(n-2+2-1)+P_{2}(n-2+2)+Q_{2}\right]=-A_{n-2}^{+}[(0)+0+1] .
$$

Thus, we put it all together:

$$
A_{n}^{+}[n(n+1)]=+2 n A_{n-1}^{+}-A_{n-2}^{+} \Longrightarrow A_{n}^{+}=\frac{1}{n+1} 2 A_{n-1}^{+}-\frac{1}{n(n+1)} A_{n-2}^{+} .
$$

Forn $=1$:

$$
\Longrightarrow A_{1}^{+}=\frac{2}{2} A_{0}^{+}
$$

For $n=2$:

$$
\Longrightarrow A_{2}^{+}=\frac{2}{3} A_{1}^{+}-\frac{1}{(2)(3)} A_{0}^{+} \frac{1}{2} A_{0}^{+}
$$

Forn $=3$:

$$
\Longrightarrow A_{3}^{+}=\frac{2}{4} A_{2}^{+}-\frac{1}{(4)(3)} A_{1}^{+} \Longrightarrow \frac{1}{4} A_{0}^{+}-\frac{1}{3(4)} A_{0}^{+}=\frac{1}{6} A_{0}^{+}
$$

Thus, we have that:

$$
A_{n}^{+}=\frac{1}{n!} A_{0}^{+} \Longrightarrow y=A_{0}^{+} x^{2} \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \Longrightarrow y=A_{0}^{+} x^{2} e^{2}
$$

2 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, as well as anyone else for reading this work, as well as any instruction, lectures and future office hours efforts. I look forward to any feedback and learning more of the material in this course and qualifying exams.

References

[1] Kendall E Atkinson. An introduction to numerical analysis. John wiley \& sons, 2008.

