Numerical Analysis Previous Qual - May 2018.

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and office hours related to our course MAT614 and additional references.

1 Problem May 2018 1-

1.1 1a

Let A be a real symmetric 3×3 matrix with eigenvalues $0,3,5$ and corresponding eigenvectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

1.1.1 REDACTED

By definition, the nullspace of A is spanned by $c \mathbf{u}, c$ any arbitrary scalar. Similarly, the column space is spanned by $d \mathbf{v}, e \mathbf{w} d, e$ any arbitrary scalars.

1.1.2 REDACTED

Given that u spans the nullspace, there is no solution for $A x=u$.

1.1.3 REDACTED

Given that A is rank deficient, since it has one eigenvalue of $0, A$ is singular and not invertible, it is not full rank.

1.2 1b - REDACTED

1.2.1 Show they have the same determinant

We have that:

$$
\begin{gathered}
A=S B S^{-1} \\
A S=S B
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{det}(A S) & =\operatorname{det}(S B) . \\
\operatorname{det}(A) \operatorname{det}(S) & =\operatorname{det}(S) \operatorname{det}(B) . \\
\operatorname{det}(A) & =\operatorname{det}(B) .
\end{aligned}
$$

1.2.2 REDACTED. We have that:

$$
\begin{gathered}
A=S B S^{-1} . \\
A-\lambda I=S B S^{-1}-\lambda I . \\
A S-\lambda I S=S B-\lambda I S . \\
\operatorname{det}((A-\lambda I) S)=\operatorname{det}(S(B-\lambda I)) . \\
\operatorname{det}(A-\lambda I) \operatorname{det}(S)=\operatorname{det}(S) \operatorname{det}(B-\lambda I)) . \\
\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)) .
\end{gathered}
$$

Thus, the characteristic polynomial of $\mathrm{A}, \operatorname{det}(A-\lambda I)=0$ is the same as $\operatorname{det}(B-\lambda I)=$ 0.

2 Problem 2

2.12 a

2.2 2b

3 Problem August 20183 - REDACTED

$$
\begin{gathered}
y^{\prime}=5 y_{1}-6 y_{2} . \\
y^{\prime}=3 y_{1}-4 y_{2} . \\
y_{1}(0)=4, y_{2}(0)=1
\end{gathered}
$$

3.1 Study notes:

For IVP problems of this type, we have that our standard solutions relative to eigenvalues $\lambda=\mu+i \nu$ are:

$$
y=e^{\mu t}(\alpha \sin (\nu t)+\beta \cos (\nu t)) .
$$

3.2 Solution proof

We have that our corresponding matrix representation for this system is:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
5 & -6 \\
3 & -4
\end{array}\right] \\
& {\left[\begin{array}{ll}
5 & -6 \\
3 & -4
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]}
\end{aligned}
$$

We calculate the eigenvalues of A by solving $\operatorname{det}(A-\lambda I)=0 \Longrightarrow(5-\lambda)(-4-\lambda)-$ $(3(-6))=0 \Longrightarrow \lambda^{2}-\lambda-2=0$. We use these two eigenvalues to solve $(A-\lambda I) v=0$ to find the corresponding eigenvalues:

$$
\begin{gathered}
\text { For } \lambda_{1}=2, v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] . \\
\text { For } \lambda_{2}=-1, v_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{gathered}
$$

We thus have our general solution:

$$
y_{g e n}=\alpha e^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\beta e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

We find our particular solution to this IVP by using the initial condition provided:

$$
y_{\text {part }}=\alpha e^{20}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\beta e^{-0}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right] .
$$

We solve this system of equations to determine that $\alpha=3, \beta=-2$.
Thus, our final particular solution to this particular initial value problem is:

$$
y_{(\text {part.final })}=3 e^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]-2 e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Or, equivalently:

$$
\therefore y_{(\text {part.final) })}=y_{1}+y_{2}, y_{1}=6 e^{2 t}--2 e^{-t}, y_{2}=3 e^{2 t}--2 e^{-t} \cdot \checkmark
$$

4 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, for reading this work, for her instruction, lectures and future office hours efforts. I look forward to any feedback and learning more of the material in this course.

References

[1] Kendall E Atkinson. An introduction to numerical analysis. John wiley \& sons, 2008.

