José L. Pabén

Numerical Analysis Previous Exam August 2018.
José L. Pabén

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and

office hours related to our course MAT614 and additional references.

1 Problem August 2018 3 - REDACTED
IVP:

y = 5y, — 6ya.
y =3y — 4y

y1(0) = 4,15(0) = 1



1.1 Study notes: José L. Pabon

1.1 Study notes:

For IVP problems of this type, we have that our standard solutions relative to eigenvalues

A = p+iv are:
y = e (asin (vt) + B cos (vt)).

1.2 Solution proof

We have that our corresponding matrix representation for this system is:
5 —6
A=
3 —4
5 —6 Y1
3 —4] |y
We calculate the eigenvalues of A by solving det(A —AX) =0 = (5—\)(—4—)\) —

(3(=6)) =0 = A\ — X —2=10. We use these two eigenvalues to solve (A — A\I)v = 0

to find the corresponding eigenvalues:

2
For \y =2,v; = L] )

1
For )\2 = —1,’02 = [1] .

We thus have our general solution:
1
+ Be? .

We find our particular solution to this IVP by using the initial condition provided:

-l

We solve this system of equations to determine that a = 3,5 = —2.

2

_ 2t
Ygen = Q€ 1

_ 20
ypart = e

Thus, our final particular solution to this particular initial value problem is:

2 |1
Y(part.final) = 36% [1] — 2e t [1] .

Or, equivalently:

- Y(part. final) = Y1 +Y2,Y1 = 6€2t - _267157 Y2 = 36% - _26725-\/
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2 Problem August 2018 4:

2.1 REDACTED
REDACTEd?

2.2 Solution:

We have that Newton’s method algorithm is of the form :

1
Tp+1 = Tp — mf(xn)
We insert our g(z):

1, 11
Tpy1 = Tp — ) (7)) = xp — E(xn) = 5(9{;“)

Thus, the iterations of Newton’s method would yield for us that:

1
ZEn+1 = (5)711_0

We note that we do have linear convergence:

1 1 1
@(5(%)) <l1= (3=l

Quadratic convergence would imply that:

(xn—:w)z(xnﬂ —a) <k.
1 1
— G —a) <k

Given our root is a = 0, we have that:

1 1

If Newton’s method were to converge for this function, we’d have lim,,__.., z,, = 0,

thus:

1 1
. lim (=) =00 = no finite constant k such that :
n—0o0 (Tp) 2 (0)?

Thanks for the advice pointing me in the right direction!

(‘(In)) <kv



2.3 4b - f(x) € C3 q has degree less than or equal to two interpolating f at g, x1, T2,
Let h = max (z1 — ), (x2 — x1), K be the max over the x’s in the interval of ‘f”l (:17)‘
Show that: José L. Pabén

2.3 REDACTED
polating f at xg,zy,x2,. Let h = max (x; — ), (x2 — x1), K be
the max over the x’s in the interval of ‘f”/(m)‘. Show that:

max |f'(z) — ¢’ (ac)’ — Che.

r€[zo,z2]

2.4 Solution proof:

Our general Newton’s polynomial of second degree for the given points is:

N(x) = f(xo) + [f(20), f(z1)](x — 20) + [f(20), f(21), f(22)](T — 20) (7 — 21).

We have that:

[f(x0), f(x1)] = (f(z1 = f(20))-

(21— 20)

and:

1 1
(o), (1), f(w2)] = o) =F o)), =)

(22 — 1)(22 — 20)

(f (1) = f (o).

We put everything together to get our form for ¢(z):

1

(21 — o)

q(z) = f(zo) + (f(21) — f(20))(x — 20)

+{ ! (f (w2) = f(21)) = (21 — :1:0)1(332 — o)

(29 — 1) (2 — 70)

(f(z1) = f(x0)) }(z—0) (T —21).

We compute the second derivative of ¢(z):

" 1 1
q (z) =2( (f(z2) = fl21)) — (21 — o) (2 — 20)

(22 — @1) (22 — 20)

(f (1) = f(20))).

Thus, we know that the second derivative of ¢ is just a number. Perhaps computing
all of the before is not a judicious use of time.

We will now show that the expression of f(x) — ¢"(z) has at least one zero in the
domain for this problem. We use a clever new function suggested by Prof. Siegel, m(z) =
f(z) — q(x). By construction, m(z) = 0 at © = x¢, 1, 22. Via mean value theorem (for
derivatives?), there exists some 1, € [xg, z1] such that m (1) = 0, 02 € |7y, 25 such that

m’'(ny) = 0. Thus, we have that m'(z) has at least two zeroes in the interval € [z, 22].

4



2.4 Solution proof: José L. Pabén

Using the same, or, you know, extremely similar mean value theorem argument, there

exists some 7 € [20, 2] such that m” (n) = 0. Thus, we know " (n) —q¢"(n) = m"(n) = 0.

We follow the provided hint and consider the integral:

1" " ’

f(@) = q'(2) = (f

/ ") —q" () de = / (7 (©)—0)de =

Now we apply the constants provided in the problem K, h:

m

|7 e < = mmax )]

Given the x that maximizes this could be ’on the other side’ of x; with respect to 7,
we put our inequalities together and have that (z —n) < 2h, C' = %K , such that:

This equation:
[ f©-d"@a= [ ("€ - 0de= '@ - d'@)
n n

Combined with this inequality:
[ 7@ < (0= mymax| )| < 2k
1

1
— fora=1,(x—n) <2h,C = §K provides the requested shown :

['(@)— (@) < cnev

. IMax
T€[x0,22]

I'm unsure if the inequalities here can be considered equality for some x in the interval

as requested by the original enunciation of the problem.
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3 Problem 5 - Consider the scheme:

1" 1"

1 !/ / ].
Ynt+1 = Yn + §h‘(yn+1 + yn) + EhZ(yn - yn+1)

3.1 REDACTED
We use Taylor expansions:

! 1 12; 1 " 1 "
Ynt1 = Yn + hy,, + §h2yn + éhgyn + ﬂh4yn + O(hs)

/ ! 1" 1 1" 1 "
Yns1 = Yp + hy, + §h2yn + gh?’yn + O(h")

17 17 " 1 "
yn-i—l I yn + hyn + Ehzyn + O(h3)

We plug this into our scheme:

"

]. ! ! 1 1
Yn+1 = Yn + §h(yn+l +9,) + Eh2(yn — Ypt1) =

! 1 1" 1 " 1 " 1 ! / 1

R —h? —h3 —pt O(h®) =y, +=h —h?

= Yoty + Sy SRy oy (h?) Yt (yn+1+yn)+12 (
We group and simplify:

1 / !/ 1 / ’ " 1 nr 1 "
3P+ 9n) = (U + Y+ b+ 5Py, + SHy, + O(RY))
We group and simplify:
ih2<y// . y// ) _ ihQ(y// . y// . hy/// i lh2y//// . O(hg))
12 n n+1 12 n n n 2 n
We group like terms:

Yo (1—1) =0

Yn(h—h) =0

noo, 11
R (= —=)=0

" 1 1 1 "
R3(= — =+ —) =y kS

" "

Yn — yn—i—l)



3.1 Find the order of the scheme. José L. Pabén

mn 1 1 1 "
o= 75 T o) = n h'(0)

Il T 12T
At this point we realize that we haven’t expanded far enough so we need to Taylor

expand farther. Incoming;:

We use Taylor expansions:

" " 1 mn 1
il = Un + hy, h2 h3 h4 —h%yY + O(h®

!/ " " 1
Uni1 = Yn + by, + = h2 w + 6h3 ﬂh‘lyf + O(R°)

17 17 1n 1
Yns1 = Yo + Yy + thn + 5 + O
We plug this into our scheme:

"

]_ I ! 1
Ynt1l = Yn + §h(yn+l + yn) Eh2( yn-l-l) =

! 1 1" " 1 1 ’ 12
= yn+hyn+§h2yn+6h3yn h“yn 7h5y5+0(h6)=yn+§h(yn+1+yn)+ h2( ~Yns1)

We group and simplify:

1 1 !/ 1 "
—h(Ypy1 + Yn) = Qh(yn + Yy, + hy, + thn + 6h3 ﬂh“ + O(h?))

We group and simplify:
" ]_ " " n ]_ mn ]_
—hy, = 5h*y, — =%y, +O(Y))

Av h2 — Ry —

We group like terms:

Yo (1—1) =0
(h—h)

" 2 1_ - .

1 1 "
-+ _) = (O)yn h3



3.2 5b - Show that the region of absolute stability contains the entire negative real

axis of the h\ plane. José L. Pabén
" 1 1 1 "
M (—— —+—)= KA
1 1 1 1
Vh5 - Y = (o Vh5.
(55 ~ 5 T ) = (g ¥

We have that 48 = 2%(3),72 = 23(3%),120 = 23(3)(5), the least common multiple for
the denominators in the fractions involved is 720 = 2*(3%)5.

Thus the computed coefficient is:

6 15 10 1

720 720 720 720
=5)yw b7, ie. of order O(h®) in our

computation of y,,1 — y,. Now our local truncation error is:

Thus, the lowest term of nonzero coefficients are (

1 1 1
Tn+1l = E(yn—i-l = yn) == Tp41 = E(ﬁ)%‘fhs

Thus, the method is of fourth order O(h*)v'.

3.2 5b - Show that the region of absolute stability contains the

entire negative real axis of the h\ plane.

We define 3y = Ay, y(0) = 4o, and we consider the method applied to this function. We

will use notation of f, = f™, which will not denote the nth derivative. We have that:

- df(»’g; Yn) f(%yn)df(z?; Yn)
I = Ayn.
f2 = Xy(aa) = A" = Ny,
Jy = A
We examine the method within this framework:
h. / h:
Yt = Y+ S+ Yna] T 5000 — Y-

h h?
Yni1 = Un + §[fn + fn—H] + E[f;z + ]mf; . f;z—i—l + fn+1f;+1]-

2

h h
Ynt1 = Yo+ 5[ + Agnia] + E[)‘2yn + XY — N Yns1 — NYnpa].

h2\?

hA
Ynt+1 = Yn + _[yn + yn—l-l] + [yn - yn+1]'

2 6



3.2 5b - Show that the region of absolute stability contains the entire negative real
axis of the h\ plane. José L. Pabén

1.1 1.1
= (1 ghA PNy = (145 hA+ SNy, = (6-3hA+h*N)yas1 = (6+3hA+H*N )y,

Thus we have our relation:

(6 + 3h\ + h?\?)
(6 — 3R\ + h2)\2)

We verify the stability of the method for this function by studying:

(6 + 3hX + h2\?)
(6 — 3h\ + h2)\?)

By definition and convention, we have step size of A > 0 and we define A < 0 =
hA < 0. For the method to be stable, we find we need the condition:

yn:(

)nyo-

(6 + 3hA + h2\?) 1
(6 — 3hA + h2)2) ’
hA <0 = (6 —3hA+ h*)\?) >0
So we have that
212
1< (6 + 3R\ + h*)\?) <1

(6 — 3hX + h2X2)

—1(6 — 3hA + h®X\?) < (6 + 3hA + R?A?) < (6 — 3R\ + A%)\?).

We examine these inequalities and have that:

—1(6 — 3hA + h*X\?) < (6 4+ 3hA + h*N?) = —6 < (6 + 2h*N\?).V

This inequality holds for all values of h, A\. For the second set of inequalities we find that:

(6 4+ 3hA + h2A?) < (6 — 3hA + h*\?) = 3hA < —3h\.V

This inequality holds for A\ < 0.

Thus
(6 + 3R\ + h?\?)

(6 — 3hA + h2)2)

When h > 0, A <0 = hX < 0 giving us our region of stability.
.. The region of absolute stability contains the entire negative real axis of the h\

plane.
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4 Problem August 2018 6 - Show the degree of pre-
cision is less than or equal to 2n — 1, and then that

it 1s no more than the same.

Suppose inner product with weight is defined by:

< fig>= / f(@)g(z)w(z)d.

Consider quadrature formula:

b n
1) = [ e = Q) = 3 wi(w))

We have that:

And

4.1 Solution, proof:

Degree of precision is defined as the highest order polynomial that the quadrature will
return an exact answer for. Study note - for Simpsons rule this is three, for trapezoid
rule this is one.

The key idea of this proof is division of the polynomial f. We define polynomials such
that:

S@) (@)
pa(z)  polz)

Where rational expression is shorthand for polynomial division. We construct this

=q(zr) = f(x) = pa(x)q(x) + r(x).

with the degrees of f,p,q,r being < 2n — 1,n,n — 1,n — 1 and by construction and the
interpolation of I(f), x we have that r(z) is exact and there is no further remainder.

Note to reader - I went to Prof. Hamfeldt’s office hour to talk about this problem,
she mentioned this claim in italics is not clear or obvious. I thus proffer the follow
explanation:

We have that r(z) is exact without a further remainder because it is of degree less
than or equal to n — 1, thus there via fundamental properties of polynomials, there is an
expression for r(x) in terms of basis function monomials of up to n degree, thus for some

constantsa;, r(z) = ag + a1x + asx? + ... such that r(x) is an exact n — 1 degree polyomial

10



4.2 Show that the precision is no greater than 2n — 1. José L. Pabon

in x.
We have that p,x is orthogonal to all polynomials of degree < n — 1, thus we have
that:

b b b
I(f) = I(qpn+r) = / q(x)pn(x)+r(3:)das+/ r(x)w(x)dr = 0+/ r(x)w(z)dz = Q(r).

Thus we find that:

I(f) =Q(r) = ijr(xj ij (pn(zj)r(z)) + 7(25)) ZO"‘wJ r(z;)) = Q(f)-

Need to show the remainder polynomials are exact.

Thus, we have that the precision of this method (Gaussian quadrature) is < 2n — 1.

4.2 Show that the precision is no greater than 2n — 1.

We assume the same construction as in the previous argument, except for the degrees of

the polynomials:

fl@) _ r(@)
pn(l’) pn(ZL’)

Where rational expression is shorthand for polynomial division. We construct this

=q(zr) = f(z) = pa(x)q(x) + r(x).

with the degrees of f,p,q,r being < 2n,n,n,n — 1 and by construction and the interpo-
lation of I(f), we have that r(x) is still exact and there is no further remainder.
We have that p,x is orthogonal to all polynomials of degree < n—1 but not orthogonal

to all polynomials of degree n, thus we have that:

I(f) = I(qgpn+r) = / q(a:)pn(x)—l—'r(x)dx—l—/ r(z)w(z)dr = 0—|—/ r(z)w(z)de = Q(r)+ < q,pn > .

Thus,< ¢, p, ># 0.

We still have the same zeros of our p,,, so thus we find that:

f):ijr(l‘j): (qpn +71) ng pn()r () + 7(25)) ZO+T$] Q(r).

Thus,
Q(f) # Q(r)

Thus, for all polynomials f of degree 2n or higher, the quadrature formula is not

precise.

11
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5 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, as well as anyone else for reading this work,
as well as any instruction, lectures and future office hours efforts. I look forward to any

feedback and learning more of the material in this course and qualifying exams.
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