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Numerical Analysis Previous Exam August 2018.

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and 
office hours related to our course MAT614 and additional references.

1 Problem August 2018 3 - REDACTED
IVP:

y
′
= 5y1 − 6y2.

y
′
= 3y1 − 4y2.

y1(0) = 4, y2(0) = 1

.
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1.1 Study notes: José L. Pabón

1.1 Study notes:

For IVP problems of this type, we have that our standard solutions relative to eigenvalues

λ = µ+ iν are:

y = eµt(α sin (νt) + β cos (νt)).

1.2 Solution proof

We have that our corresponding matrix representation for this system is:

A =

[
5 −6

3 −4

]
[

5 −6

3 −4

][
y1

y2

]
We calculate the eigenvalues of A by solving det(A− λI) = 0 =⇒ (5−λ)(−4−λ)−

(3(−6)) = 0 =⇒ λ2 − λ − 2 = 0. We use these two eigenvalues to solve (A − λI)v = 0

to find the corresponding eigenvalues:

For λ1 = 2, v1 =

[
2

1

]
.

For λ2 = −1, v2 =

[
1

1

]
.

We thus have our general solution:

ygen = αe2t

[
2

1

]
+ βe−t

[
1

1

]
.

We find our particular solution to this IVP by using the initial condition provided:

ypart = αe20

[
2

1

]
+ βe−0

[
1

1

]
=

[
4

1

]
.

We solve this system of equations to determine that α = 3, β = −2.

Thus, our final particular solution to this particular initial value problem is:

y(part.final) = 3e2t

[
2

1

]
− 2e−t

[
1

1

]
.

Or, equivalently:

∴ y(part.final) = y1 + y2, y1 = 6e2t −−2e−t, y2 = 3e2t −−2e−t.X
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2 Problem August 2018 4:

2.1 REDACTED
REDACTEd?

2.2 Solution:

We have that Newton’s method algorithm is of the form :

xn+1 = xn −
1

f ′(xn)
f(xn).

We insert our g(x):

xn+1 = xn −
1

2(xn)
(x2n) = xn −

1

2
(xn) =

1

2
(xn).

Thus, the iterations of Newton’s method would yield for us that:

xn+1 = (
1

2
)nx0.

We note that we do have linear convergence:

1

(xn)
(
1

2
(xn)) ≤ 1 =⇒ (

1

2
) ≤ 1.

Quadratic convergence would imply that:

1

(xn − α)2
(xn+1 − α) ≤ k.

=⇒ 1

(xn − α)2
(
1

2
(xn)− α) ≤ k.

Given our root is α = 0, we have that:

1

(xn)2
(
1

2
(xn)) ≤ k =⇒ 1

(xn)
(
1

2
) ≤ k.

If Newton’s method were to converge for this function, we’d have limn−→∞ xn = 0,

thus:

∴ lim
n−→∞

1

(xn)
(
1

2
) =∞ =⇒ no finite constant k such that :

1

(xn)2
(
1

2
(xn)) ≤ k.X

Thanks for the advice pointing me in the right direction!
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2.3 4b - f(x) ∈ C3 q has degree less than or equal to two interpolating f at x0, x1, x2,.

Let h = max (x1 − x0), (x2 − x1), K be the max over the x’s in the interval of
∣∣∣f ′′′

(x)
∣∣∣.

Show that: José L. Pabón

2.3 REDACTED
polating f at x0, x1, x2,. Let h = max (x1 − x0), (x2 − x1), K be

the max over the x’s in the interval of
∣∣∣f ′′′

(x)
∣∣∣. Show that:

max
x∈[x0,x2]

∣∣∣f ′′
(x)− q′′(x)

∣∣∣ = Chα.

2.4 Solution proof:

Our general Newton’s polynomial of second degree for the given points is:

N(x) = f(x0) + [f(x0), f(x1)](x− x0) + [f(x0), f(x1), f(x2)](x− x0)(x− x1).

We have that:

[f(x0), f(x1)] =
1

(x1 − x0)
(f(x1 − f(x0)).

and:

[f(x0), f(x1), f(x2)] =
1

(x2 − x1)(x2 − x0)
(f(x2)−f(x1))−

1

(x1 − x0)(x2 − x0)
(f(x1)−f(x0)).

We put everything together to get our form for q(x):

q(x) = f(x0) +
1

(x1 − x0)
(f(x1)− f(x0))(x− x0)

+{ 1

(x2 − x1)(x2 − x0)
(f(x2)−f(x1))−

1

(x1 − x0)(x2 − x0)
(f(x1)−f(x0))}(x−x0)(x−x1).

We compute the second derivative of q(x):

q
′′
(x) = 2(

1

(x2 − x1)(x2 − x0)
(f(x2)− f(x1))−

1

(x1 − x0)(x2 − x0)
(f(x1)− f(x0))).

Thus, we know that the second derivative of q is just a number. Perhaps computing

all of the before is not a judicious use of time.

We will now show that the expression of f
′′
(x) − q′′(x) has at least one zero in the

domain for this problem. We use a clever new function suggested by Prof. Siegel, m(x) =

f(x) − q(x). By construction, m(x) = 0 at x = x0, x1, x2. Via mean value theorem (for

derivatives?), there exists some η1 ∈ [x0, x1] such that m
′
(η1) = 0, η2 ∈ [x1, x2] such that

m
′
(η2) = 0. Thus, we have that m

′
(x) has at least two zeroes in the interval ∈ [x0, x2].
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L. Pabón

2.4 Solution proof: José L. Pabón

Using the same, or, you know, extremely similar mean value theorem argument, there

exists some η ∈ [x0, x2] such that m
′′
(η) = 0. Thus, we know f

′′
(η)− q′′(η) = m

′′
(η) = 0.

We follow the provided hint and consider the integral:

∫ x

η

f
′′′

(ξ)−q′′′(ξ)dξ =

∫ x

η

(f
′′′

(ξ)−0)dξ =
∣∣∣f ′′

(x)− q′′(x)− (f
′′
(η)− q′′(η)

∣∣∣ =
∣∣∣f ′′

(x)− q′′(x)
∣∣∣.

Now we apply the constants provided in the problem K,h:∫ x

η

f
′′′

(ξ)dξ ≤ (x− η) max
∣∣∣f ′′′

(x)
∣∣∣.

Given the x that maximizes this could be ’on the other side’ of x1 with respect to η,

we put our inequalities together and have that (x− η) ≤ 2h, C = 1
2
K, such that:

This equation:∫ x

η

f
′′′

(ξ)− q′′′(ξ)dξ =

∫ x

η

(f
′′′

(ξ)− 0)dξ =
∣∣∣f ′′

(x)− q′′(x)
∣∣∣

Combined with this inequality:∫ x

η

f
′′′

(ξ)dξ ≤ (x− η) max
∣∣∣f ′′′

(x)
∣∣∣ ≤ 2hK.

=⇒ for α = 1, (x− η) ≤ 2h,C =
1

2
K provides the requested shown :

∴ max
x∈[x0,x2]

∣∣∣f ′′
(x)− q′′(x)

∣∣∣ ≤ Chα.X

I’m unsure if the inequalities here can be considered equality for some x in the interval

as requested by the original enunciation of the problem.
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L. Pabón

R© Not For Disse
minatio

n
R© José
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3 Problem 5 - Consider the scheme:

yn+1 = yn +
1

2
h(y

′

n+1 + y
′

n) +
1

12
h2(y

′′

n − y
′′

n+1)

.

3.1 REDACTED

We use Taylor expansions:

yn+1 = yn + hy
′

n +
1

2
h2y

′′

n +
1

6
h3y

′′′

n +
1

24
h4y

′′′′

n +O(h5)

y
′

n+1 = y
′

n + hy
′′

n +
1

2
h2y

′′′

n +
1

6
h3y

′′′′

n +O(h4)

y
′′

n+1 = y
′′

n + hy
′′′

n +
1

2
h2y

′′′′

n +O(h3)

We plug this into our scheme:

yn+1 = yn +
1

2
h(y

′

n+1 + y
′

n) +
1

12
h2(y

′′

n − y
′′

n+1) =⇒

=⇒ yn+hy
′

n+
1

2
h2y

′′

n+
1

6
h3y

′′′

n +
1

24
h4y

′′′′

n +O(h5) = yn+
1

2
h(y

′

n+1+y
′

n)+
1

12
h2(y

′′

n−y
′′

n+1)

We group and simplify:

1

2
h(y

′

n+1 + y
′

n) =
1

2
h(y

′

n + y
′

n + hy
′′

n +
1

2
h2y

′′′

n +
1

6
h3y

′′′′

n +O(h4))

We group and simplify:

1

12
h2(y

′′

n − y
′′

n+1) =
1

12
h2(y

′′

n − y
′′

n − hy
′′′

n −
1

2
h2y

′′′′

n −O(h3))

We group like terms:

yn(1− 1) = 0

y
′

n(h− h) = 0

y
′′

nh
2(

1

2
− 1

2
) = 0

y
′′′

n h
3(

1

6
− 1

4
+

1

12
) = y

′′′

n h
3(0)
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3.1 Find the order of the scheme. José L. Pabón

y
′′′′

n h
4(

1

24
− 1

12
+

1

24
) = y

′′′′

n h
4(0)

At this point we realize that we haven’t expanded far enough so we need to Taylor

expand farther. Incoming:

We use Taylor expansions:

yn+1 = yn + hy
′

n +
1

2
h2y

′′

n +
1

6
h3y

′′′

n +
1

24
h4y

′′′′

n +
1

120
h5yVn +O(h6)

y
′

n+1 = y
′

n + hy
′′

n +
1

2
h2y

′′′

n +
1

6
h3y

′′′′

n +
1

24
h4yVn +O(h5)

y
′′

n+1 = y
′′

n + hy
′′′

n +
1

2
h2y

′′′′

n +
1

6
h3yVn +O(h4)

We plug this into our scheme:

yn+1 = yn +
1

2
h(y

′

n+1 + y
′

n) +
1

12
h2(y

′′

n − y
′′

n+1) =⇒

=⇒ yn+hy
′

n+
1

2
h2y

′′

n+
1

6
h3y

′′′

n +
1

24
h4y

′′′′

n +
1

120
h5yVn +O(h6) = yn+

1

2
h(y

′

n+1+y
′

n)+
1

12
h2(y

′′

n−y
′′

n+1)

We group and simplify:

1

2
h(y

′

n+1 + y
′

n) =
1

2
h(y

′

n + y
′

n + hy
′′

n +
1

2
h2y

′′′

n +
1

6
h3y

′′′′

n +
1

24
h4yVn +O(h5))

We group and simplify:

1

12
h2(y

′′

n − y
′′

n+1) =
1

12
h2(y

′′

n − y
′′

n − hy
′′′

n −
1

2
h2y

′′′′

n −
1

6
h3yVn +O(h4)))

We group like terms:

yn(1− 1) = 0

y
′

n(h− h) = 0

y
′′

nh
2(

1

2
− 1

2
) = 0

y
′′′

n h
3(

1

6
− 1

4
+

1

12
) = (0)y

′′′

n h
3
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3.2 5b - Show that the region of absolute stability contains the entire negative real
axis of the hλ plane. José L. Pabón

y
′′′′

n h
4(

1

24
− 1

12
+

1

24
) = (0)y

′′′′

n h
4

yVn h
5(

1

120
− 1

48
+

1

72
) = (

1

720
)yVn h

5.

We have that 48 = 24(3), 72 = 23(32), 120 = 23(3)(5), the least common multiple for

the denominators in the fractions involved is 720 = 24(32)5.

Thus the computed coefficient is:

6

720
− 15

720
+

10

720
=

1

720
.

Thus, the lowest term of nonzero coefficients are ( 1
720

)yVn h
5, i.e. of order O(h5) in our

computation of yn+1 − yn. Now our local truncation error is:

τn+1 =
1

h
(yn+1 − yn) = =⇒ τn+1 =

1

h
(

1

720
)yVn h

5

Thus, the method is of fourth order O(h4)X.

3.2 5b - Show that the region of absolute stability contains the

entire negative real axis of the hλ plane.

We define y
′

= λy, y(0) = y0, and we consider the method applied to this function. We

will use notation of fn ≡ fn, which will not denote the nth derivative. We have that:

y
′′

n =
df(xn, yn)

dx
+ f(xn, yn)

df(xn, yn)

dx
.

fn = λyn.

fnx = λy′(xn) = λfn = λ2yn.

fny = λ.

We examine the method within this framework:

yn+1 = yn +
h

2
[y

′

n + y
′

n+1] +
h2

12
[y

′′

n − y
′′

n+1].

yn+1 = yn +
h

2
[fn + fn+1] +

h2

12
[fnx + fnfny − fn+1

x + fn+1fn+1
y ].

yn+1 = yn +
h

2
[λyn + λyn+1] +

h2

12
[λ2yn + λ2yn − λ2yn+1 − λ2yn+1].

yn+1 = yn +
hλ

2
[yn + yn+1] +

h2λ2

6
[yn − yn+1].
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3.2 5b - Show that the region of absolute stability contains the entire negative real
axis of the hλ plane. José L. Pabón

=⇒ (1−1

2
hλ+

1

6
h2λ2)yn+1 = (1+

1

2
hλ+

1

6
h2λ2)yn =⇒ (6−3hλ+h2λ2)yn+1 = (6+3hλ+h2λ2)yn.

Thus we have our relation:

yn+1 =
(6 + 3hλ+ h2λ2)

(6− 3hλ+ h2λ2)
yn.

We verify the stability of the method for this function by studying:

yn = (
(6 + 3hλ+ h2λ2)

(6− 3hλ+ h2λ2)
)ny0.

By definition and convention, we have step size of h > 0 and we define λ < 0 =⇒
hλ < 0. For the method to be stable, we find we need the condition:∣∣∣∣∣(6 + 3hλ+ h2λ2)

(6− 3hλ+ h2λ2)

∣∣∣∣∣ < 1.

hλ < 0 =⇒ (6− 3hλ+ h2λ2) > 0

So we have that

−1 <
(6 + 3hλ+ h2λ2)

(6− 3hλ+ h2λ2)
< 1.

−1(6− 3hλ+ h2λ2) < (6 + 3hλ+ h2λ2) < (6− 3hλ+ h2λ2).

We examine these inequalities and have that:

−1(6− 3hλ+ h2λ2) < (6 + 3hλ+ h2λ2) =⇒ −6 < (6 + 2h2λ2).X

This inequality holds for all values of h, λ. For the second set of inequalities we find that:

(6 + 3hλ+ h2λ2) < (6− 3hλ+ h2λ2) =⇒ 3hλ < −3hλ.X

This inequality holds for hλ < 0.

Thus ∣∣∣∣∣(6 + 3hλ+ h2λ2)

(6− 3hλ+ h2λ2)

∣∣∣∣∣ < 1.

When h > 0, λ < 0 =⇒ hλ < 0 giving us our region of stability.

∴ The region of absolute stability contains the entire negative real axis of the hλ

plane.
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L. Pabón

R© proprie
tary

R©José
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L. Pabón
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4 Problem August 2018 6 - Show the degree of pre-

cision is less than or equal to 2n− 1, and then that

it is no more than the same.

Suppose inner product with weight is defined by:

< f, g >=

∫ b

a

f(x)g(x)w(x)dx.

Consider quadrature formula:

I(f) =

∫ b

a

f(x)w(x)dx ≈ Q(f) =
n∑
j=1

wjf(xj).

We have that:

wj =

∫ b

a

lj(x)w(x)dx.

And

lj(x) =
∏

i=1,2,3,...,n−−−i 6=j

(x− xj)
(xi − xj)

.

4.1 Solution, proof:

Degree of precision is defined as the highest order polynomial that the quadrature will

return an exact answer for. Study note - for Simpsons rule this is three, for trapezoid

rule this is one.

The key idea of this proof is division of the polynomial f . We define polynomials such

that:

f(x)

pn(x)
− r(x)

pn(x)
= q(x) =⇒ f(x) = pn(x)q(x) + r(x).

Where rational expression is shorthand for polynomial division. We construct this

with the degrees of f, p, q, r being ≤ 2n− 1, n, n− 1, n− 1 and by construction and the

interpolation of I(f), ? we have that r(x) is exact and there is no further remainder.

Note to reader - I went to Prof. Hamfeldt’s office hour to talk about this problem,

she mentioned this claim in italics is not clear or obvious. I thus proffer the follow

explanation:

We have that r(x) is exact without a further remainder because it is of degree less

than or equal to n− 1, thus there via fundamental properties of polynomials, there is an

expression for r(x) in terms of basis function monomials of up to n degree, thus for some

constantsai, r(x) = a0 +a1x+a2x
2 + ... such that r(x) is an exact n− 1 degree polyomial

10
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L. Pabón

José
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4.2 Show that the precision is no greater than 2n− 1. José L. Pabón

in x.

We have that pnx is orthogonal to all polynomials of degree ≤ n − 1, thus we have

that:

I(f) = I(qpn+r) =

∫ b

a

q(x)pn(x)+r(x)dx+

∫ b

a

r(x)w(x)dx = 0+

∫ b

a

r(x)w(x)dx = Q(r).

Thus we find that:

I(f) = Q(r) =
∑

wjr(xj) =
∑

wj(pn(xj)r(xj) + r(xj)) =
∑

0 + wjr(xj)) = Q(f).

Need to show the remainder polynomials are exact.

Thus, we have that the precision of this method (Gaussian quadrature) is ≤ 2n− 1.

4.2 Show that the precision is no greater than 2n− 1.

We assume the same construction as in the previous argument, except for the degrees of

the polynomials:

f(x)

pn(x)
− r(x)

pn(x)
= q(x) =⇒ f(x) = pn(x)q(x) + r(x).

Where rational expression is shorthand for polynomial division. We construct this

with the degrees of f, p, q, r being ≤ 2n, n, n, n− 1 and by construction and the interpo-

lation of I(f), we have that r(x) is still exact and there is no further remainder.

We have that pnx is orthogonal to all polynomials of degree ≤ n−1 but not orthogonal

to all polynomials of degree n, thus we have that:

I(f) = I(qpn+r) =

∫ b

a

q(x)pn(x)+r(x)dx+

∫ b

a

r(x)w(x)dx = 0+

∫ b

a

r(x)w(x)dx = Q(r)+ < q, pn > .

Thus,< q, pn >6= 0.

We still have the same zeros of our pn, so thus we find that:

Q(f) =
∑

wjr(xj) = Q(qpn + r)
∑

wj(pn(xj)r(xj) + r(xj)) =
∑

0 + r(xj)) = Q(r).

Thus,

Q(f) 6= Q(r)

Thus, for all polynomials f of degree 2n or higher, the quadrature formula is not

precise.
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5 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, as well as anyone else for reading this work,

as well as any instruction, lectures and future office hours efforts. I look forward to any

feedback and learning more of the material in this course and qualifying exams.
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