Numerical Analysis August 2019 Previous Qual Question 6

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and office hours related to our course MAT614 and additional references. This is for the May 2018 qualifying exam.

1 Problem August 2019 3:

1.1 REDACTED

with respect to the weight function $w(x)=\frac{1}{\sqrt{1-x^{2}}}$.
The Chebyshev polynomials are of the form:

$$
T_{n}(x)=\cos (n \arccos (x)) .
$$

We consider the weighted inner product for positive integers $m, n \in \mathbf{N}$:

$$
<T_{n}(x), T_{m}(x)>=\int_{-1}^{1} T_{n}(x) T_{m}(x) w(x) d x
$$

We define $\theta=\arccos (x) \Longrightarrow d \theta=-\frac{1}{\sqrt{1-x^{2}}} d x$, and substitute into our integral:

$$
\int_{-1}^{1} T_{n}(x) T_{m}(x) w(x) d x=-\int_{\pi}^{0} \cos (n \theta) \cos (m \theta) d \theta=\int_{0}^{\pi} \cos (n \theta) \cos (m \theta) d \theta
$$

The integrand functions are an orthogonal family of functions which will equal to zero unless n equals to m .
$\frac{1}{2} \int_{0}^{\pi} \cos ((n+m) \theta)+\cos ((n-m) \theta) d \theta=\left.\frac{1}{2}\left[\frac{1}{(n+m)} \sin ((n+m) \theta)+\frac{1}{(n-m)} \sin ((n-m) \theta)\right]\right|_{0} ^{\pi}$.
Thus we have that:

$$
\left.\frac{1}{2}\left[\frac{1}{(n+m)} \sin ((n+m) \theta)+\frac{1}{(n-m)} \sin ((n-m) \theta)\right]\right|_{0} ^{\pi}=\left\{\begin{array}{l}
\pi, \text { for } m=n=0 \\
\frac{1}{2} \pi, \text { for } m=n \neq 0 \\
0, \text { otherwise }
\end{array}\right.
$$

1.2 REDACTED

Show that $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), n \geq 2$.
The left hand side is:
We again define $\theta=\arccos (x) \Longrightarrow \cos \theta=x$

$$
T_{n+1}(x)=\cos ((n+1) \arccos (x)) \Longrightarrow T_{n+1}(\theta)=\cos ((n+1) \theta) .
$$

The right hand side we have is:

$$
2 x T_{n}(x)-T_{n-1}(x) \Longrightarrow 2 \cos \theta \cos (n \theta)-\cos ((n-1) \theta) .
$$

Then:

$$
2 \cos \theta \cos (n \theta)=\cos (n+1) \theta-\cos (n-1) \theta .
$$

Thus:

$$
\begin{gathered}
2 \cos \theta \cos (n \theta)-\cos ((n-1) \theta)=\cos (n+1) \theta . \\
\therefore T_{n+1}(\theta)=\cos ((n+1) \theta)=2 \cos \theta \cos (n \theta)-\cos ((n-1) \theta) \Longrightarrow \\
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \checkmark .
\end{gathered}
$$

1.3 REDACTED

Derivfortftalathree point Chebyshev Gauss quadrature

$$
I(f)=\int_{-1}^{1} f(x) \frac{1}{\sqrt{1-x^{2}}} d x \approx \sum_{i=1}^{3} w_{i} f\left(x_{i}\right)
$$

We begin by computing the three roots of our $n=3$ Chebyshev polynomial:

$$
T_{n}(x)=\cos (n \arccos (x)) \text { or } T_{n}(\theta)=\cos (n \theta) .
$$

Via the previous identities derived in the previous parts of this problem:

$$
T_{3}(x)=\cos (3 \arccos (x)) \Longrightarrow 2 x T_{2}(x)-T_{1}(x) \Longrightarrow 2 x \cos (2 \arccos (x))-\cos (1 \arccos (x)) .
$$

We have that $\cos (1 \arccos (x))=x$. We apply the same recursion formulate to our term $\cos (2 \arccos (x))$:

$$
\cos (2 \arccos (x))=2 x \cos (1 \arccos (x))-\cos (0 \arccos (x)) .
$$

Thus, we have that:

$$
T_{3}(x)=2 x\left(2 x^{2}-1\right)-x=4 x^{3}-2 x-x=4 x^{3}-3 x .
$$

This gives us our collocation points:

$$
x_{1}=-\frac{1}{2} \sqrt{3}, x_{2}=0, x_{3}=-\frac{1}{2} \sqrt{3} .
$$

We form our system of equations with our monomial basis $1, x, x^{2}$:
For $f(x)=1$ we have that:

$$
\begin{gathered}
\int_{-1}^{1} 1 \frac{1}{\sqrt{1-x^{2}}} d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)=w_{1}+w_{2}+w_{3} . \\
\int_{-1}^{1} 1 \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin 1-\arcsin -1=\frac{1}{1} \pi-\left(-\frac{1}{1} \pi\right)=\pi
\end{gathered}
$$

. Thus:

$$
w_{1}+w_{2}+w_{3}=\pi
$$

For $f(x)=x$ we have that:

$$
\int_{-1}^{1} x \frac{1}{\sqrt{1-x^{2}}} d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)=w_{1}-\frac{1}{2} \sqrt{3}+w_{2} 0+w_{3} \frac{1}{2} \sqrt{3} .
$$

$\int_{-1}^{1} x \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin 1-\arcsin -1=$ An odd integrand over a symmetric interval $=0$ Thus:

$$
0=w_{1}-\frac{1}{2} \sqrt{3}+w_{2} 0+w_{3} \frac{1}{2} \sqrt{3}
$$

We multiply this equation by $2 \sqrt{3}$ on both sides to find:

$$
-3 w_{1}+0 w_{2}+3 w_{3}=0
$$

For $f(x)=x^{2}$ we have that:

$$
\int_{-1}^{1} x^{2} \frac{1}{\sqrt{1-x^{2}}} d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)=w_{1}\left(-\frac{1}{2} \sqrt{3}\right)^{2}+w_{2} 0+w_{3}\left(\frac{1}{2} \sqrt{3}\right)^{2} .
$$

Integrating by parts we have that:
$\int x^{2} \frac{1}{\sqrt{1-x^{2}}} d x=\frac{1}{2} \pi$.
Thus:

$$
\frac{1}{2} \pi=w_{1}\left(-\frac{1}{2} \sqrt{3}\right)^{2}+w_{2} 0+w_{3}\left(\frac{1}{2} \sqrt{3}\right)^{2}=w_{1}\left(\frac{1}{4} 3\right)+0+w_{3}\left(\frac{1}{4} 3\right)
$$

Equivalently, we multiply this resulting equation by 4 on both sides, we have that:

$$
2 \pi=3 w_{1}+0+3 w_{3} .
$$

Thus we have our systems of equations:

$$
\begin{gathered}
w_{1}+w_{2}+w_{3}=\pi \\
-3 w_{1}+0+3 w_{3}=0 . \\
3 w_{1}+0+3 w_{3}=2 \pi .
\end{gathered}
$$

We solve this system of equations to find that our weights are:

$$
w_{1}=w_{2}=w_{3}=\frac{1}{3} \pi .
$$

1.4 d - Approximate $I(f)=e^{-2 x^{2}}$.

Thus, by our previous result, we know that:

$$
I(f) \approx \sum_{i=1}^{3} w_{i} f\left(x_{i}\right)=\frac{1}{3} \pi f\left(x_{1}\right)+\frac{1}{3} \pi f\left(x_{2}\right)+\frac{1}{3} \pi f\left(x_{3}\right)=\frac{1}{3} \pi e^{-2\left(-\sqrt{3} \frac{1}{2}\right)^{2}}+\frac{1}{3} \pi e^{-2(0)^{2}}+\frac{1}{3} \pi e^{-2\left(\sqrt{3} \frac{1}{2}\right)^{2}} .
$$

Then we have that:

$$
\left.\left.\frac{1}{3} \pi e^{-2\left(-\sqrt{3} \frac{1}{2}\right)^{2}}+\frac{1}{3} \pi e^{-2(0)^{2}}+\frac{1}{3} \pi e^{-2\left(\sqrt{3} \frac{1}{2}\right)^{2}}=\frac{1}{3} \pi\left(1+e^{-6\left(\frac{1}{4}\right.}\right)+e^{-6\left(\frac{1}{4}\right.}\right)\right)=\frac{1}{3} \pi\left(2 e^{-3 \frac{1}{2}}+1\right) .
$$

1.5 Show the area of A stability.

2 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, for reading this work, for her instruction, lectures and future office hours efforts. I look forward to any feedback and learning more of the material in this course.

References

[1] Kendall E Atkinson. An introduction to numerical analysis. John wiley \& sons, 2008.

