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This work is based on the course textbook [1], the material discussed in lectures and
office hours related to our course MAT614 and additional references. This is for the May
2018 qualifying exam.

1 Problem May 2018 1 -

1.1 1a
Let A be a real symmetric 3 x 3 matrix with eigenvalues 0,3,5 and corresponding eigen-

vectors u, v, w.

1.1.1 REDACTED

By definition, the nullspace of A is spanned by cu, ¢ any arbitrary scalar. Similarly, the
column space is spanned by dv,ew d, e any arbitrary scalars.

1.1.2 REDACTED

Given that u spans the nullspace, there is no solution for Ax = u.

1.1.3 REDACTED
Given that A is rank deficient, since it has one eigenvalue of 0, A is singular and not

invertible, it is not full rank.

1.2 REDACTEd

1.2.1 Show they have the same determinant

We have that:

A=SBS !
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AS = SB.
det(AS) = det(SB).
det(A) det(S) = det(S) det(B).

det(A) = det(B).

1.2.2 Show they have the same characteristic polynomial and eigenvalues.

We have that:

A=SBS™
A— N =SBS™' — AL
AS — \IS =SB — \S.
det((A — A)S) = det(S(B — M)).
det(A — A1) det(S) = det(S) det(B — AI)).
det(A — \I) = det(B — \)).

Thus, the characteristic polynomial of A, det(A — AI') = 0 is the same as det(B — A\I) =

2 Problem May 2018 4:

2.1 a - REDACTED
function with n + 1 continuous derivatives. Let P,(z) be

the lagrange polynomial of degree n that interpolates as
Po(x;) = f(i).

We are asked to show that:

V z € domainof f 3 £ € R | f(z)—Pu(x) = n 1)'(x—xo)(x—xl)...(x—xn)f(”H)(5).
n !
We notice the right hand side term looks suspiciously like a Taylor Remainder / end
of a Taylor expansion.

We calculate the Taylor expansion around zy, i.e., for some £ € [z, x¢):

f(x) = f(xo) + —(x —x0) f (20) +%(w—$0)2f (zo) + ... + '(x—xo)(nﬂ)f(nﬂ)(ﬁ)-
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Similarly, we calculate the Taylor expansion around z1,i.e., for some £ € [z, x1]:

1 / 1 " 1

f(x) :f(%)‘i‘ﬁ(I—ﬂCl)f ($1)+5($—$1)2f (z1)+ ...+ (n+1)!(x—$1)(n+l)f(n+l)(§)-

And so on; finally we calculate the Taylor expansion around x,,i.e., for some £ €

[z, x,]:

1 / 1 " 1

F(@) = Fla)+ e —a)f (o) + gy =) F (@) o oy =) SO ),

It is at this point I realize that I cannot bootstrap or formulate a proof in this direction.
Checking our lecture notes, I found a correct argument:
Sketch of proof:

e Construct a function ¢(x) which is the collection of products of (xr—z¢)(x—21)...(z—

e Formulate the error function E(x) = f(x) — P.(x)
e Construct another function G in the form of G(z) = E(z) — ﬁgb(:ﬂ)E(t)
e Show that G(x) has n + 2 zeroes, and has n + 1 derivatives.
e Invoke higher order mean value theorem to arrive at precise result requested.
2.2 b- Prove that the function g(x) = (2T1x) has a unique fixed

point in z* € [0, 1], describe the convergence of the iteration
Ln+1 = g(xn)ny = 1.

REMEMBER HAVE TO HAVE G(X) CONTINUOUS.

Via theorems from class, existence of fixed points occur when for any x € [0, 1], g(z) €
0, 1]. Furthermore, if ‘ g'(x)‘ < 1, then the fixed point in that interval is unique.

Also, due to a handy corollary to the contraction mapping theorem, we have that
)g/ (a:)‘ <1 = iterations of x,; = g(z,) for a starting zy € [0, 1] will converge.

We have that for Vz € [0,1], 3 < g(z) < 3 = g(z) € [0,1]. Then:

/ 1

In the interval = € [0,1], we have that 5 < ‘g'(x)‘ < i = g'(x)’ < 1, thus,

via the theorems discussed in class the fixed point for this function exists, is unique and

converges to some z* V z € [0,1].



2.2 b- Prove that the function g(z) = @ has a unique fixed point in z* € [0, 1],

describe the convergence of the iteration x,.1 = g(x,),zo = 1. José L. Pabén

We will describe the convergence in more detail, we want to calculate how fast

|z, — x*| converges to zero. We have that:

Tpy1 = g(xn)
= g(z").

We consider the absolute value of the difference of these two equations:

<} | = Jon — 27| < ()0 — o
_4:17n_1:v :rnzv_4x0$.

|2 — 2| = |g(2n_1) — g(z*)

Thus,

— L a2 < Oy
—— |z, — 2| < (=)
|zg — | 4

Thus the convergence is linear and will converge as expected.

2.2.1 The shortest, most succinct proof:

In the interest of preparing for the limited time nature of our qualifying doctoral exams,
we wonder if this proof could be as short as:
Via theorems from class, since Vz € [0,1], 5 < g(z) < 3 = g(z) € [0,1],, and:

/ 1
g ()= NCETSTE

such that § < ‘g/ (x)’ <3 = )g' (x)‘ < 1, the fixed point is unique and will converge
with:

1

= ()"
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New stuff above here.
Old stuff below here.

2.3 Solution:

We have that Newton’s method algorithm is of the form :

Tpy1 = Tp — ﬁf(mn)

We insert our g(z):

1 2

1 1
Tyl = Ty — m(a:n) =z, — §(xn) = §(xn)

Thus, the iterations of Newton’s method would yield for us that:

1
Tnt1 = (5)”330

Quadratic convergence would imply that:

1
m(an — Oé) S k.
1 1

Given our root is a = 0, we have that:

()2

We note that we do have linear convergence:

2.4 4b - f(x) € C? q has degree less than or equal to two inter-

polating [ at xg,x1,2s,. Let h = max (x; — xg), (z2 —

r1), K be

the max over the x’s in the interval of ‘f”/(m)‘. Show that:

max f@-ﬁ@ﬂ:mﬂ

z€[z0,72]

2.5 Solution proof:

Our general Newton’s polynomial of second degree for the given points is:
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N(z) = f(xo) + [f(z0), f(z1)](x — 20) + [f(20), f(21), f(22)](T — T0) (7 — 71).

We have that:

Lf (o), f(x1)] = (f(z1 = f(20))-

(21— 20)

and:

1 1
[f($0)7 f(x1)7 f(f[fg)] = (f(l’g)—f(fﬁl))— (271 . l’o)(!lfg _ 170)

(22 — 1)(22 — 20)

(f (1) = f(x0))-

We put everything together to get our form for ¢(x):

1

(21 — o)

q(x) = f(xo) + (f (1) = f (o)) (2 — o)

+{ L (f(xQ)_f(xl))_ (ml — 1‘0)1(372 - :EO)

(29 — 1) (2 — 7o)

(f(21) = f(20)) } (& —20) (2 —1).

We compute the second derivative of g(x):

1 1
(33'2 —1’1)($2 —Z'o)(f(xZ) - f(xl)) - (5131 —$0)<l‘2 —.CIZ'0>

¢ () = 2( (f(@1) = f(20)))-

We follow the provided hint and consider the integral:
/ f/// (§)d§ _ f// (x) . f// (,r]>.
n

3 Problem 5 - Consider the scheme:

1 ! ! 1 " "
Yn+1 = Yn + §h(yn+1 + yn) + EhQ(yn o yn—l—l)

3.1 Find the order of the scheme.

We use Taylor expansions:

! 1 " 1 " 1 1"
Yn+1 = Yn + hyn + §h2yn + 6h3yn + ﬂh4yn + O(h5)
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! ! 1" 1 " 1 "
Yns1 = Yp + hy, + §h2yn + ghsyn + O(h*)

1" 1" " 1 n
yn-i—l = yn + hyn + §h2yn + O(h3)

We plug this into our scheme:

" "

1 / , 1
Yn+1 = Yn + §h(yn+l +9,) + Eh2(yn — Ypi1) =

" "

1 1 " 1 ! ! 1
h4yn +O<h5> = yn+ §h<yn+1 +yn) + EhQ(yn _yn—i-l)

/ 1 " nr
nth —h? —h? —
We group and simplify:
1 / ! 1 / / " 1 2 nr 1 3 " 4
We group and simplify:
ih2<y// . y// ) _ ihQ(y// - y// > hy/// . 1h2y//// . O(hg))
12 n n+1 12 n n n 2 n

We group like terms:

g1 —1) =0
Yn(h —h) =0
" 1

2 —_ — =

1 1 1 "
) =y, h*(0)

mnr
n B

2% 12 ™
At this point we realize that we haven’t expanded far enough so we need to Taylor

expand farther. Incoming;:
We use Taylor expansions:

! 1 1" 1 1"’ 1 " 1
il = Un + h —h? —h —pt —h%yY +O(h’
Yo+t = Yo+ Ry + SIS BY Wy sy (h°)

! ! 1" ]. " 1 " 1
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1" " " 1 1" 1
Yni1 = Yn + 0 + 502y, + Sy + O(RY)
We plug this into our scheme:

" "

1 / , 1
Yn+1 = Yn + §h(yn+1 +y,) + Eh2<yn — Ypt1) =

1" ]_ " 1 " 1 ]. / ! ]_ 1" 1
Ry, +=h’y, +ﬁh4yn +—hy +0(h°) = yn+—h(yn+1+yn)+ﬁh2(yn—yn+1)

1
6 120 2

— yn+hy;+2

We group and simplify:

1 1 !/ 1 ! 1 1" 1 " 1 " 1
51+ Yn) = Sh(Yn + Y+ by + §h2yn + ghgyn + ﬂh"‘ynv + O(h?))

We group and simplify:
ihQ (y// _ yl/ ) _ ih’Q (y// _ y// _ hy/// _ thy//// _ lhsyv _l_ O(h4)))
12 n n+1 12 n n n 2 n 6 n

We group like terms:

yu(1—1) =0

Yu(h—h) =0

yl? (5 = 5) =0
(s~ ) = (O

11 1 o

///Ih4(_ o

11 1 1
Vst L Ay (VS
(55~ 8 T 7) = (7p)¥m

We have that 48 = 2%(3),72 = 23(3%),120 = 23(3)(5), the least common multiple for
the denominators in the fractions involved is 720 = 2%(32)5.

Thus the computed coefficient is:

6 15 10 1

720 720 720~ 720"

Thus, the lowest term of nonzero coefficients are (=)y, h®, i.e. of order O(h®) in our
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computation of y,,1 — y,. Now our local truncation error is:

1 I v.5

1
Tn+1 = E(yn—l-l - yn) == Tpt1 = E(m)yn h

Thus, the method is of fourth order O(h*).

3.2 5b - Show that the region of absolute stability contains the

entire negative real axis of the h\ plane.

We define 3y = Ay, y(0) = 4o, and we consider the method applied to this function. We

will use notation of f, = f™, which will not denote the nth derivative. We have that:

- df(ﬂ;; Yn) f(a:n,yn)df(il’; Yn)
" = Ayn.
f2 =Xy (@a) = A" = Ny,
fy = A
We examine the method within this framework:
h. / h:
Yt = Y+ S+ Yna] T 5000 — Y-

h h?
Yntl = Yn T E[fn+fn+1] + E[f;_’_fnf; - f;+1 +f”+1f;+1]‘

2

h h
Ynt1 = Yo+ 5 AU+ Agnia] + E[)‘2yn + XY — N Yns1 — N Ynpa].

h2\?

hA
Ynt+1 = Yn + _[yn + yn—i-l] + [yn - yn+1]'

2 6

1.1 11
— (1—§h)\+6h2)\2)yn+1 = (1+§h)\+6h2>\2)yn = (6—=3RA+A’A?) Y1 = (64+3hAFH2A)y,.

Thus we have our relation:

(6 + 3hA + h%A?)
(6 — 3hA + h2)\2)

We verify the stability of the method for this function by studying:

B ((6 + 3hA + h%A?)
I =6 = 3k + 122

)nyo-
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By definition and convention, we have step size of h > 0 and we define A < 0 —
hA < 0. For the method to be stable, we find we need the condition:

(6 + 3R\ + h?\?) 1
(6 — 3hA 4+ h2\?) '
hA <0 = (6 —3hA+h%)\?) >0
So we have that
h + h2\?
—-1< (6+3hA+ ) < 1.

(6 — 3hA + h2A2%)

—1(6 — 3hA + h®)\?) < (6 + 3hA + h?A?) < (6 — 3R\ + h*\?).

We examine these inequalities and have that:

—1(6 — 3R\ + h*X\?) < (6 + 3hA + h?N?) = —6 < (6 +2h*)\?).v

This inequality holds for all values of h, A. For the second set of inequalities we find that:

(6 + 3R\ + B2A%) < (6 — 3hA + h2A%) = 3hA < —3hA.v

This inequality holds for hX\ < 0.

Thus

(6 + 3hX + h?\?) _
(6 — 3R\ + h2)?)

When h > 0, A <0 = h)\ < 0 giving us our region of stability.
.. The region of absolute stability contains the entire negative real axis of the A\

plane.

4 Problem 6

4.1 a - Show that T},(f) = (T (f) + Mi(f)).

4.2 b - Given T},(f) = I(f) + koh? + k4h* + O(hY), find similar rule
for M;(f).

From part a we know that 27, (f) = (Th(f) + Ma(f)) = Mi(f) = 2T1,(f) — Tu(f).
We are given:

Tu(f) = I(f) + koh® + ksh* + O(R5).

We compute:

10
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T, (f) = I(f) + /@ih? - m%h"‘ + O(h").

2

2T, (f) = Tw(f) = 21(f) + Qk;%h? + 2k41—16h4 + O(h8) — I(f) — koh® — ksh* — O(R®)
22T, (f) = Tu(f) = 1(f) - kQ%hQ - k4gh4 + O(h®) = My.v
4.3 c -

5 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, for reading this work, for her instruction,
lectures and future office hours efforts. I look forward to any feedback and learning more

of the material in this course.
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