Numerical Analysis Previous Qual - August 2018.

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and office hours related to our course MAT614 and additional references.

1 Problem August 2018 6 - REDACTED cision is less than or equal to 2n-1, and then that it is no more than the same.

Suppose inner product with weight is defined by:

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x)w(x)dx.$$

Consider quadrature formula:

$$I(f) = \int_a^b f(x)w(x)dx \approx Q(f) = \sum_{j=1}^n w_j f(x_j).$$

We have that:

$$w_j = \int_a^b l_j(x)w(x)dx.$$

And

$$l_j(x) = \prod_{i=1,2,3,\dots,n---i \neq j} \frac{(x-x_j)}{(x_i - x_j)}.$$

1.1 Solution, proof:

Degree of precision is defined as the highest order polynomial that the quadrature will return an exact answer for. Study note - for Simpsons rule this is three, for trapezoid rule this is one.

The key idea of this proof is division of the polynomial f. We define polynomials such that:

$$\frac{f(x)}{p_n(x)} - \frac{r(x)}{p_n(x)} = q(x) \implies f(x) = p_n(x)q(x) + r(x).$$

Where rational expression is shorthand for polynomial division. We construct this with the degrees of f, p, q, r being $\leq 2n - 1, n, n - 1, n - 1$ and by construction and the interpolation of I(f), \star we have that r(x) is exact and there is no further remainder.

 $\star \implies$ ASIDE note to the group - I went to Prof. Hamfeldt's office hour to talk about this problem, she mentioned this claim in italics is not clear or obvious. I asked her how I could formulate my argument better, she suggested 'expressing the remainder function r(x) in terms of basis functions for the problem, and it should follow.' Still puzzling over this.

END ASIDE.

We have that $p_n x$ is orthogonal to all polynomials of degree $\leq n - 1$, thus we have that:

$$I(f) = I(qp_n + r) = \int_a^b q(x)p_n(x) + r(x)dx + \int_a^b r(x)w(x)dx = 0 + \int_a^b r(x)w(x)dx = Q(r).$$

Thus we find that:

$$I(f) = Q(r) = \sum w_j r(x_j) = \sum w_j (p_n(x_j)r(x_j) + r(x_j)) = \sum 0 + w_j r(x_j) = Q(f).$$

Need to show the remainder polynomials are exact.

Thus, we have that the precision of this method (Gaussian quadrature) is $\leq 2n - 1$.

1.2 Show that the precision is no greater than 2n-1.

We assume the same construction as in the previous argument, except for the degrees of the polynomials:

$$\frac{f(x)}{p_n(x)} - \frac{r(x)}{p_n(x)} = q(x) \implies f(x) = p_n(x)q(x) + r(x).$$

Where rational expression is shorthand for polynomial division. We construct this with the degrees of f, p, q, r being $\leq 2n, n, n, n - 1$ and by construction and the interpolation of I(f), we have that r(x) is still exact and there is no further remainder.

We have that $p_n x$ is orthogonal to all polynomials of degree $\leq n-1$ but not orthogonal to all polynomials of degree n, thus we have that:

$$I(f) = I(qp_n + r) = \int_a^b q(x)p_n(x) + r(x)dx + \int_a^b r(x)w(x)dx = 0 + \int_a^b r(x)w(x)dx = Q(r) + \langle q, p_n \rangle = 0$$

Thus, $\langle q, p_n \rangle \neq 0$.

We still have the same zeros of our p_n , so thus we find that:

$$Q(f) = \sum w_j r(x_j) = Q(qp_n + r) \sum w_j (p_n(x_j)r(x_j) + r(x_j)) = \sum 0 + r(x_j) = Q(r).$$

Thus,

 $Q(f) \neq Q(r)$

Thus, for all polynomials f of degree 2n or higher, the quadrature formula is not precise.

2 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, for reading this work, for her instruction, lectures and future office hours efforts. I look forward to any feedback and learning more of the material in this course.

References

