Numerical Analysis Previous Qual - August 2018.

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and office hours related to our course MAT614 and additional references.

1 Problem August 20186 - REDACTED
 cision is less than or equal to $2 n-1$, and then that it is no more than the same.

Suppose inner product with weight is defined by:

$$
<f, g>=\int_{a}^{b} f(x) g(x) w(x) d x
$$

Consider quadrature formula:

$$
I(f)=\int_{a}^{b} f(x) w(x) d x \approx Q(f)=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right) .
$$

We have that:

$$
w_{j}=\int_{a}^{b} l_{j}(x) w(x) d x
$$

And

$$
l_{j}(x)=\prod_{i=1,2,3, \ldots, n---i \neq j} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} .
$$

1.1 Solution, proof:

Degree of precision is defined as the highest order polynomial that the quadrature will return an exact answer for. Study note - for Simpsons rule this is three, for trapezoid rule this is one.

The key idea of this proof is division of the polynomial f. We define polynomials such that:

$$
\frac{f(x)}{p_{n}(x)}-\frac{r(x)}{p_{n}(x)}=q(x) \Longrightarrow f(x)=p_{n}(x) q(x)+r(x) .
$$

Where rational expression is shorthand for polynomial division. We construct this with the degrees of f, p, q, r being $\leq 2 n-1, n, n-1, n-1$ and by construction and the interpolation of $\mathrm{I}(\mathrm{f})$, \star we have that $r(x)$ is exact and there is no further remainder.
$\star \Longrightarrow$ ASIDE note to the group - I went to Prof. Hamfeldt's office hour to talk about this problem, she mentioned this claim in italics is not clear or obvious. I asked her how I could formulate my argument better, she suggested 'expressing the remainder function $r(x)$ in terms of basis functions for the problem, and it should follow.' Still puzzling over this.

END ASIDE.
We have that $p_{n} x$ is orthogonal to all polynomials of degree $\leq n-1$, thus we have that:

$$
I(f)=I\left(q p_{n}+r\right)=\int_{a}^{b} q(x) p_{n}(x)+r(x) d x+\int_{a}^{b} r(x) w(x) d x=0+\int_{a}^{b} r(x) w(x) d x=Q(r)
$$

Thus we find that:

$$
\left.I(f)=Q(r)=\sum w_{j} r\left(x_{j}\right)=\sum w_{j}\left(p_{n}\left(x_{j}\right) r\left(x_{j}\right)+r\left(x_{j}\right)\right)=\sum 0+w_{j} r\left(x_{j}\right)\right)=Q(f) .
$$

Need to show the remainder polynomials are exact.
Thus, we have that the precision of this method (Gaussian quadrature) is $\leq 2 n-1$.

1.2 Show that the precision is no greater than $2 n-1$.

We assume the same construction as in the previous argument, except for the degrees of the polynomials:

$$
\frac{f(x)}{p_{n}(x)}-\frac{r(x)}{p_{n}(x)}=q(x) \Longrightarrow f(x)=p_{n}(x) q(x)+r(x)
$$

Where rational expression is shorthand for polynomial division. We construct this with the degrees of f, p, q, r being $\leq 2 n, n, n, n-1$ and by construction and the interpolation of $\mathrm{I}(\mathrm{f})$, we have that $r(x)$ is still exact and there is no further remainder.

We have that $p_{n} x$ is orthogonal to all polynomials of degree $\leq n-1$ but not orthogonal to all polynomials of degree n, thus we have that:
$I(f)=I\left(q p_{n}+r\right)=\int_{a}^{b} q(x) p_{n}(x)+r(x) d x+\int_{a}^{b} r(x) w(x) d x=0+\int_{a}^{b} r(x) w(x) d x=Q(r)+<q, p_{n}>$.

Thus, $<q, p_{n}>\neq 0$.
We still have the same zeros of our p_{n}, so thus we find that:
$\left.Q(f)=\sum w_{j} r\left(x_{j}\right)=Q\left(q p_{n}+r\right) \sum w_{j}\left(p_{n}\left(x_{j}\right) r\left(x_{j}\right)+r\left(x_{j}\right)\right)=\sum 0+r\left(x_{j}\right)\right)=Q(r)$.
Thus,

$$
Q(f) \neq Q(r)
$$

Thus, for all polynomials f of degree 2 n or higher, the quadrature formula is not precise.

2 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, for reading this work, for her instruction, lectures and future office hours efforts. I look forward to any feedback and learning more of the material in this course.

References

[1] Kendall E Atkinson. An introduction to numerical analysis. John wiley \& sons, 2008.

