Numerical Analysis Previous Qual

José L. Pabón

Spring 2020

This work is based on the course textbook [1], the material discussed in lectures and office hours related to our course MAT614 and additional references. This is for the May 2018 qualifying exam.

1 Problem August 2015 Problem 6

We compute stuff and find that:

$$
(1-h \lambda \theta) r^{n+1}-\left(1+((h \lambda)(1-\theta)) r^{n}=0 .\right.
$$

Which implies:

$$
\left(r^{n}\right)[(1-h \lambda \theta) r-(1+((h \lambda)(1-\theta))]=0 .
$$

We discard trivial solutions and have that:

$$
\begin{gathered}
(1-h \lambda \theta) r-(1+((h \lambda)(1-\theta))=0 \Longrightarrow(1-h \lambda \theta) r=(1+((h \lambda)(1-\theta)) \\
r=\frac{1}{(1-h \lambda \theta)}(1+((h \lambda)(1-\theta))
\end{gathered}
$$

2 Older stuff down here.

2.1 1a

Let A be a real symmetric 3×3 matrix with eigenvalues $0,3,5$ and corresponding eigenvectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
2.1.1 Find a basis for the nullspace of A and a basis for the column space of A.

By definition, the nullspace of A is spanned by $c \mathbf{u}, c$ any arbitrary scalar. Similarly, the column space is spanned by $d \mathbf{v}, e \mathbf{w} d, e$ any arbitrary scalars.

2.1.2 If possible find solution for $A x=u$

Given that u spans the nullspace, there is no solution for $A x=u$.

2.1.3 Is A Invertible?

Given that A is rank deficient, since it has one eigenvalue of $0, A$ is singular and not invertible, it is not full rank.

2.2 1b - A and B are similar matrices.

2.2.1 Show they have the same determinant

We have that:

$$
\begin{gathered}
A=S B S^{-1} . \\
A S=S B . \\
\operatorname{det}(A S)=\operatorname{det}(S B) . \\
\operatorname{det}(A) \operatorname{det}(S)=\operatorname{det}(S) \operatorname{det}(B) . \\
\operatorname{det}(A)=\operatorname{det}(B) .
\end{gathered}
$$

2.2.2 Show they have the same characteristic polynomial and eigenvalues. We have that:

$$
\begin{gathered}
A=S B S^{-1} \\
A-\lambda I=S B S^{-1}-\lambda I . \\
A S-\lambda I S=S B-\lambda I S .
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{det}((A-\lambda I) S) & =\operatorname{det}(S(B-\lambda I)) . \\
\operatorname{det}(A-\lambda I) \operatorname{det}(S) & =\operatorname{det}(S) \operatorname{det}(B-\lambda I)) . \\
\operatorname{det}(A-\lambda I) & =\operatorname{det}(B-\lambda I)) .
\end{aligned}
$$

Thus, the characteristic polynomial of $\mathrm{A}, \operatorname{det}(A-\lambda I)=0$ is the same as $\operatorname{det}(B-\lambda I)=$ 0.

3 Problem May 2018 4:

3.1 REDACTED

function with $n+1$ continuous derivatives. Let $P_{n}(x)$ be the lagrange polynomial of degree n that interpolates as $P_{n}\left(x_{i}\right)=f\left(x_{i}\right)$.

We are asked to show that:
$\forall x \in$ domain of $\mathrm{f} \exists \xi \in \mathbf{R} \left\lvert\, f(x)-P_{n}(x)=\frac{1}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) f^{(n+1)}(\xi)\right.$.
We notice the right hand side term looks suspiciously like a Taylor Remainder / end of a Taylor expansion.

We calculate the Taylor expansion around x_{0}, i.e., for some $\xi \in\left[x, x_{0}\right]$:
$f(x)=f\left(x_{0}\right)+\frac{1}{1!}\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2!}\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right)+\ldots+\frac{1}{(n+1)!}\left(x-x_{0}\right)^{(n+1)} f^{(n+1)}(\xi)$.
Similarly, we calculate the Taylor expansion around x_{1}, i.e., for some $\xi \in\left[x, x_{1}\right]$:
$f(x)=f\left(x_{1}\right)+\frac{1}{1!}\left(x-x_{1}\right) f^{\prime}\left(x_{1}\right)+\frac{1}{2!}\left(x-x_{1}\right)^{2} f^{\prime \prime}\left(x_{1}\right)+\ldots+\frac{1}{(n+1)!}\left(x-x_{1}\right)^{(n+1)} f^{(n+1)}(\xi)$.
And so on; finally we calculate the Taylor expansion around x_{n}, i.e., for some $\xi \in$ $\left[x, x_{n}\right]$:
$f(x)=f\left(x_{n}\right)+\frac{1}{1!}\left(x-x_{n}\right) f^{\prime}\left(x_{n}\right)+\frac{1}{2!}\left(x-x_{n}\right)^{2} f^{\prime \prime}\left(x_{n}\right)+\ldots+\frac{1}{(n+1)!}\left(x-x_{n}\right)^{(n+1)} f^{(n+1)}(\xi)$.
It is at this point I realize that I cannot bootstrap or formulate a proof in this direction. Checking our lecture notes, I found a correct argument:
3.2 - Prove that the function $g(x)=\frac{1}{(2+x)}$ has a unique fixed point in $x^{*} \in[0,1]$, describe the convergence of the iteration $x_{n+1}=g\left(x_{n}\right), x_{0}=1$.

Sketch of proof:

- Construct a function $\phi(x)$ which is the collection of products of $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots(x-$ x_{n}).
- Formulate the error function $E(x)=f(x)-P_{n}(x)$
- Construct another function G in the form of $G(x)=E(x)-\frac{1}{\phi(t)} \phi(x) E(t)$.
- Show that $G(x)$ has $n+2$ zeroes, and has $n+1$ derivatives.
- Invoke higher order mean value theorem to arrive at precise result requested.

3.2 REDACTED

$$
x_{n+1}=g\left(x_{n}\right), x_{0}=1
$$

REMEMBER HAVE TO HAVE $G(X)$ CONTINUOUS.
Via theorems from class, existence of fixed points occur when for any $x \in[0,1], g(x) \in$ $[0,1]$. Furthermore, if $\left|g^{\prime}(x)\right|<1$, then the fixed point in that interval is unique.

Also, due to a handy corollary to the contraction mapping theorem, we have that $\left|g^{\prime}(x)\right|<1 \Longrightarrow$ iterations of $x_{n+1}=g\left(x_{n}\right)$ for a starting $x_{0} \in[0,1]$ will converge.

We have that for $\forall x \in[0,1], \frac{1}{3}<g(x)<\frac{1}{2} \Longrightarrow g(x) \in[0,1]$. Then:

$$
g^{\prime}(x)=-\frac{1}{(2+x)^{2}}
$$

In the interval $x \in[0,1]$, we have that $\frac{1}{9}<\left|g^{\prime}(x)\right|<\frac{1}{4} \Longrightarrow\left|g^{\prime}(x)\right|<1$, thus, via the theorems discussed in class the fixed point for this function exists, is unique and converges to some $x^{*} \forall x \in[0,1]$.

We will describe the convergence in more detail, we want to calculate how fast $\left|x_{n}-x^{*}\right|$ converges to zero. We have that:

$$
\begin{gathered}
x_{n+1}=g\left(x_{n}\right) . \\
x^{*}=g\left(x^{*}\right) .
\end{gathered}
$$

We consider the absolute value of the difference of these two equations:

$$
\left|x_{n}-x^{*}\right|=\left|g\left(x_{n-1}\right)-g\left(x^{*}\right)\right| \leq \frac{1}{4}\left|x_{n-1}-x^{*}\right| \Longrightarrow\left|x_{n}-x^{*}\right| \leq\left(\frac{1}{4}\right)^{n}\left|x_{0}-x^{*}\right| .
$$

Thus,

$$
\Longrightarrow \frac{1}{\left|x_{0}-x^{*}\right|}\left|x_{n}-x^{*}\right| \leq\left(\frac{1}{4}\right)^{n} .
$$

3.2 b- Prove that the function $g(x)=\frac{1}{(2+x)}$ has a unique fixed point in $x^{*} \in[0,1]$, describe the convergence of the iteration $x_{n+1}=g\left(x_{n}\right), x_{0}=1$.

José L. Pabón

Thus the convergence is linear and will converge as expected.

3.2.1 The shortest, most succinct proof:

In the interest of preparing for the limited time nature of our qualifying doctoral exams, we wonder if this proof could be as short as:

Via theorems from class, since $\forall x \in[0,1], \frac{1}{3}<g(x)<\frac{1}{2} \Longrightarrow g(x) \in[0,1]$, and:

$$
g^{\prime}(x)=-\frac{1}{(2+x)^{2}}
$$

such that $\frac{1}{9}<\left|g^{\prime}(x)\right|<\frac{1}{4} \Longrightarrow\left|g^{\prime}(x)\right|<1$, the fixed point is unique and will converge with:

$$
\left|x_{n}-x^{*}\right| \approx\left(\frac{1}{4}\right)^{n} .
$$

New stuff above here.
Old stuff below here.

3.3 Solution:

We have that Newton's method algorithm is of the form :

$$
x_{n+1}=x_{n}-\frac{1}{f^{\prime}\left(x_{n}\right)} f\left(x_{n}\right)
$$

We insert our $g(x)$:

$$
x_{n+1}=x_{n}-\frac{1}{2\left(x_{n}\right)}\left(x_{n}^{2}\right)=x_{n}-\frac{1}{2}\left(x_{n}\right)=\frac{1}{2}\left(x_{n}\right)
$$

Thus, the iterations of Newton's method would yield for us that:

$$
x_{n+1}=\left(\frac{1}{2}\right)^{n} x_{0}
$$

Quadratic convergence would imply that:

$$
\begin{gathered}
\frac{1}{\left(x_{n}-\alpha\right)^{2}}\left(x_{n+1}-\alpha\right) \leq k \\
\Longrightarrow \\
\frac{1}{\left(x_{n}-\alpha\right)^{2}}\left(\frac{1}{2}\left(x_{n}\right)-\alpha\right) \leq k .
\end{gathered}
$$

Given our root is $\alpha=0$, we have that:

$$
\frac{1}{\left(x_{n}\right)^{2}}\left(\frac{1}{2}\left(x_{n}\right)\right) \leq k \Longrightarrow \frac{1}{\left(x_{n}\right)}\left(\frac{1}{2}\right) \leq k
$$

We note that we do have linear convergence:

$$
\frac{1}{\left(x_{n}\right)}\left(\frac{1}{2}\left(x_{n}\right)\right) \leq 1 \Longrightarrow\left(\frac{1}{2}\right) \leq 1
$$

3.4 REDACTED-

polating f at x_{0}, x_{1}, x_{2}. Let $h=\max \left(x_{1}-x_{0}\right),\left(x_{2}-x_{1}\right), K$ be the max over the x's in the interval of $\left|f^{\prime \prime \prime}(x)\right|$. Show that:

$$
\max _{x \in\left[x_{0}, x_{2}\right]}\left|f^{\prime \prime}(x)-q^{\prime \prime}(x)\right|=C h^{\alpha}
$$

3.5 Solution proof:

Our general Newton's polynomial of second degree for the given points is:

$$
N(x)=f\left(x_{0}\right)+\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]\left(x-x_{0}\right)+\left[f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)\right]\left(x-x_{0}\right)\left(x-x_{1}\right) .
$$

We have that:

$$
\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]=\frac{1}{\left(x_{1}-x_{0}\right)}\left(f\left(x_{1}-f\left(x_{0}\right)\right) .\right.
$$

and:

$$
\left[f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)\right]=\frac{1}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right)}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)-\frac{1}{\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)}\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right) .
$$

We put everything together to get our form for $q(x)$:

$$
\begin{gathered}
q(x)=f\left(x_{0}\right)+\frac{1}{\left(x_{1}-x_{0}\right)}\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)\left(x-x_{0}\right) \\
+\left\{\frac{1}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right)}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)-\frac{1}{\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)}\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)\right\}\left(x-x_{0}\right)\left(x-x_{1}\right) .
\end{gathered}
$$

We compute the second derivative of $q(x)$:

$$
q^{\prime \prime}(x)=2\left(\frac{1}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right)}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)-\frac{1}{\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)}\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)\right) .
$$

We follow the provided hint and consider the integral:

$$
\int_{\eta}^{x} f^{\prime \prime \prime}(\xi) d \xi=f^{\prime \prime}(x)-f^{\prime \prime}(\eta)
$$

4 REDACTED:

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)+\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right)
$$

4.1 REDACTED.

We use Taylor expansions:

$$
y_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime}+\frac{1}{24} h^{4} y_{n}^{\prime \prime \prime \prime}+O\left(h^{5}\right)
$$

$$
\begin{gathered}
y_{n+1}^{\prime}=y_{n}^{\prime}+h y_{n}^{\prime \prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime \prime}+O\left(h^{4}\right) \\
y_{n+1}^{\prime \prime}=y_{n}^{\prime \prime}+h y_{n}^{\prime \prime \prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime \prime}+O\left(h^{3}\right)
\end{gathered}
$$

We plug this into our scheme:

$$
\begin{gathered}
y_{n+1}=y_{n}+\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)+\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right) \Longrightarrow \\
\Longrightarrow y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime}+\frac{1}{24} h^{4} y_{n}^{\prime \prime \prime \prime}+O\left(h^{5}\right)=y_{n}+\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)+\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right)
\end{gathered}
$$

We group and simplify:

$$
\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)=\frac{1}{2} h\left(y_{n}^{\prime}+y_{n}^{\prime}+h y_{n}^{\prime \prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime \prime}+O\left(h^{4}\right)\right)
$$

We group and simplify:

$$
\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right)=\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n}^{\prime \prime}-h y_{n}^{\prime \prime \prime}-\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime \prime}-O\left(h^{3}\right)\right)
$$

We group like terms:

$$
\begin{gathered}
y_{n}(1-1)=0 \\
y_{n}^{\prime}(h-h)=0 \\
y_{n}^{\prime \prime} h^{2}\left(\frac{1}{2}-\frac{1}{2}\right)=0 \\
y_{n}^{\prime \prime \prime} h^{3}\left(\frac{1}{6}-\frac{1}{4}+\frac{1}{12}\right)=y_{n}^{\prime \prime \prime} h^{3}(0) \\
y_{n}^{\prime \prime \prime \prime} h^{4}\left(\frac{1}{24}-\frac{1}{12}+\frac{1}{24}\right)=y_{n}^{\prime \prime \prime \prime} h^{4}(0)
\end{gathered}
$$

At this point we realize that we haven't expanded far enough so we need to Taylor expand farther. Incoming:

We use Taylor expansions:

$$
\begin{gathered}
y_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime}+\frac{1}{24} h^{4} y_{n}^{\prime \prime \prime \prime}+\frac{1}{120} h^{5} y_{n}^{V}+O\left(h^{6}\right) \\
y_{n+1}^{\prime}=y_{n}^{\prime}+h y_{n}^{\prime \prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime \prime}+\frac{1}{24} h^{4} y_{n}^{V}+O\left(h^{5}\right)
\end{gathered}
$$

$$
y_{n+1}^{\prime \prime}=y_{n}^{\prime \prime}+h y_{n}^{\prime \prime \prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime \prime}+\frac{1}{6} h^{3} y_{n}^{V}+O\left(h^{4}\right)
$$

We plug this into our scheme:

$$
\begin{gathered}
y_{n+1}=y_{n}+\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)+\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right) \Longrightarrow \\
\Longrightarrow y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime}+\frac{1}{24} h^{4} y_{n}^{\prime \prime \prime \prime}+\frac{1}{120} h^{5} y_{n}^{V}+O\left(h^{6}\right)=y_{n}+\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)+\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right)
\end{gathered}
$$

We group and simplify:

$$
\frac{1}{2} h\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right)=\frac{1}{2} h\left(y_{n}^{\prime}+y_{n}^{\prime}+h y_{n}^{\prime \prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime}+\frac{1}{6} h^{3} y_{n}^{\prime \prime \prime \prime}+\frac{1}{24} h^{4} y_{n}^{V}+O\left(h^{5}\right)\right)
$$

We group and simplify:

$$
\left.\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right)=\frac{1}{12} h^{2}\left(y_{n}^{\prime \prime}-y_{n}^{\prime \prime}-h y_{n}^{\prime \prime \prime}-\frac{1}{2} h^{2} y_{n}^{\prime \prime \prime \prime}-\frac{1}{6} h^{3} y_{n}^{V}+O\left(h^{4}\right)\right)\right)
$$

We group like terms:

$$
\begin{gathered}
y_{n}(1-1)=0 \\
y_{n}^{\prime}(h-h)=0 \\
y_{n}^{\prime \prime} h^{2}\left(\frac{1}{2}-\frac{1}{2}\right)=0 \\
y_{n}^{\prime \prime \prime} h^{3}\left(\frac{1}{6}-\frac{1}{4}+\frac{1}{12}\right)=(0) y_{n}^{\prime \prime \prime} h^{3} \\
y_{n}^{\prime \prime \prime \prime} h^{4}\left(\frac{1}{24}-\frac{1}{12}+\frac{1}{24}\right)=(0) y_{n}^{\prime \prime \prime \prime} h^{4} \\
y_{n}^{V} h^{5}\left(\frac{1}{120}-\frac{1}{48}+\frac{1}{72}\right)=\left(\frac{1}{720}\right) y_{n}^{V} h^{5} .
\end{gathered}
$$

We have that $48=2^{4}(3), 72=2^{3}\left(3^{2}\right), 120=2^{3}(3)(5)$, the least common multiple for the denominators in the fractions involved is $720=2^{4}\left(3^{2}\right) 5$.

Thus the computed coefficient is:

$$
\frac{6}{720}-\frac{15}{720}+\frac{10}{720}=\frac{1}{720} .
$$

Thus, the lowest term of nonzero coefficients are $\left(\frac{1}{720}\right) y_{n}^{V} h^{5}$, i.e. of order $O\left(h^{5}\right)$ in our
computation of $y_{n+1}-y_{n}$. Now our local truncation error is:

$$
\tau_{n+1}=\frac{1}{h}\left(y_{n+1}-y_{n}\right)=\Longrightarrow \tau_{n+1}=\frac{1}{h}\left(\frac{1}{720}\right) y_{n}^{V} h^{5}
$$

Thus, the method is of fourth order $O\left(h^{4}\right)$.

$4.25 b$ - Show that the region of absolute stability contains the entire negative real axis of the $h \lambda$ plane.

We define $y^{\prime}=\lambda y, y(0)=y_{0}$, and we consider the method applied to this function. We will use notation of $f_{n} \equiv f^{n}$, which will not denote the nth derivative. We have that:

$$
\begin{gathered}
y_{n}^{\prime \prime}=\frac{d f\left(x_{n}, y_{n}\right)}{d x}+f\left(x_{n}, y_{n}\right) \frac{d f\left(x_{n}, y_{n}\right)}{d x} . \\
f^{n}=\lambda y_{n} . \\
f_{x}^{n}=\lambda y^{\prime}\left(x_{n}\right)=\lambda f^{n}=\lambda^{2} y_{n} . \\
f_{y}^{n}=\lambda .
\end{gathered}
$$

We examine the method within this framework:

$$
\begin{gathered}
y_{n+1}=y_{n}+\frac{h}{2}\left[y_{n}^{\prime}+y_{n+1}^{\prime}\right]+\frac{h^{2}}{12}\left[y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right] . \\
y_{n+1}=y_{n}+\frac{h}{2}\left[f^{n}+f^{n+1}\right]+\frac{h^{2}}{12}\left[f_{x}^{n}+f^{n} f_{y}^{n}-f_{x}^{n+1}+f^{n+1} f_{y}^{n+1}\right] . \\
y_{n+1}=y_{n}+\frac{h}{2}\left[\lambda y_{n}+\lambda y_{n+1}\right]+\frac{h^{2}}{12}\left[\lambda^{2} y_{n}+\lambda^{2} y_{n}-\lambda^{2} y_{n+1}-\lambda^{2} y_{n+1}\right] . \\
y_{n+1}=y_{n}+\frac{h \lambda}{2}\left[y_{n}+y_{n+1}\right]+\frac{h^{2} \lambda^{2}}{6}\left[y_{n}-y_{n+1}\right] . \\
\Longrightarrow\left(1-\frac{1}{2} h \lambda+\frac{1}{6} h^{2} \lambda^{2}\right) y_{n+1}=\left(1+\frac{1}{2} h \lambda+\frac{1}{6} h^{2} \lambda^{2}\right) y_{n} \Longrightarrow\left(6-3 h \lambda+h^{2} \lambda^{2}\right) y_{n+1}=\left(6+3 h \lambda+h^{2} \lambda^{2}\right) y_{n} .
\end{gathered}
$$

Thus we have our relation:

$$
y_{n+1}=\frac{\left(6+3 h \lambda+h^{2} \lambda^{2}\right)}{\left(6-3 h \lambda+h^{2} \lambda^{2}\right)} y_{n} .
$$

We verify the stability of the method for this function by studying:

$$
y_{n}=\left(\frac{\left(6+3 h \lambda+h^{2} \lambda^{2}\right)}{\left(6-3 h \lambda+h^{2} \lambda^{2}\right)}\right)^{n} y_{0} .
$$

By definition and convention, we have step size of $h>0$ and we define $\lambda<0 \Longrightarrow$ $h \lambda<0$. For the method to be stable, we find we need the condition:

$$
\left|\frac{\left(6+3 h \lambda+h^{2} \lambda^{2}\right)}{\left(6-3 h \lambda+h^{2} \lambda^{2}\right)}\right|<1
$$

$h \lambda<0 \Longrightarrow\left(6-3 h \lambda+h^{2} \lambda^{2}\right)>0$
So we have that

$$
\begin{gathered}
-1<\frac{\left(6+3 h \lambda+h^{2} \lambda^{2}\right)}{\left(6-3 h \lambda+h^{2} \lambda^{2}\right)}<1 . \\
-1\left(6-3 h \lambda+h^{2} \lambda^{2}\right)<\left(6+3 h \lambda+h^{2} \lambda^{2}\right)<\left(6-3 h \lambda+h^{2} \lambda^{2}\right) .
\end{gathered}
$$

We examine these inequalities and have that:

$$
-1\left(6-3 h \lambda+h^{2} \lambda^{2}\right)<\left(6+3 h \lambda+h^{2} \lambda^{2}\right) \Longrightarrow-6<\left(6+2 h^{2} \lambda^{2}\right) \cdot \checkmark
$$

This inequality holds for all values of h, λ. For the second set of inequalities we find that:

$$
\left(6+3 h \lambda+h^{2} \lambda^{2}\right)<\left(6-3 h \lambda+h^{2} \lambda^{2}\right) \Longrightarrow 3 h \lambda<-3 h \lambda \cdot \checkmark
$$

This inequality holds for $h \lambda<0$.
Thus

$$
\left|\frac{\left(6+3 h \lambda+h^{2} \lambda^{2}\right)}{\left(6-3 h \lambda+h^{2} \lambda^{2}\right)}\right|<1
$$

When $h>0, \lambda<0 \Longrightarrow h \lambda<0$ giving us our region of stability.
\therefore The region of absolute stability contains the entire negative real axis of the $h \lambda$ plane.

5 Problem 6

5.1 a - REDACTED $T_{\frac{1}{2} h}(f)=\frac{1}{2}\left(T_{h}(f)+M_{h}(f)\right)$.

$5.2 \quad$ b - Given $T_{h}(f)=I(f)+k_{2} h^{2}+k_{4} h^{4}+O\left(h^{6}\right)$, find similar rule for $M_{h}(f)$.

From part a we know that $2 T_{\frac{1}{2} h}(f)=\left(T_{h}(f)+M_{h}(f)\right) \Longrightarrow M_{h}(f)=2 T_{\frac{1}{2} h}(f)-T_{h}(f)$.
We are given:

$$
T_{h}(f)=I(f)+k_{2} h^{2}+k_{4} h^{4}+O\left(h^{6}\right)
$$

We compute:

$$
\begin{gathered}
T_{\frac{1}{2} h}(f)=I(f)+k_{2} \frac{1}{4} h^{2}+k_{4} \frac{1}{16} h^{4}+O\left(h^{6}\right) \\
2 T_{\frac{1}{2} h}(f)-T_{h}(f)=2 I(f)+2 k_{2} \frac{1}{4} h^{2}+2 k_{4} \frac{1}{16} h^{4}+O\left(h^{6}\right)-I(f)-k_{2} h^{2}-k_{4} h^{4}-O\left(h^{6}\right) \\
\therefore 2 T_{\frac{1}{2} h}(f)-T_{h}(f)=I(f)-k_{2} \frac{1}{2} h^{2}-k_{4} \frac{7}{8} h^{4}+O\left(h^{6}\right)=M_{h} \cdot \checkmark
\end{gathered}
$$

5.3 c -

6 Conclusion

Thank you to Prof. Hamfeldt, neé Froese, for reading this work, for her instruction, lectures and future office hours efforts. I look forward to any feedback and learning more of the material in this course.

References

[1] Kendall E Atkinson. An introduction to numerical analysis. John wiley \& sons, 2008.

