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model for hvdrodvnamlc | potential flow results.
SW|mmers '

| = Gives us formulas for the
Matches experimental * flow generated by
data well. ' neighbor swimmers.

But does not consider 3D. 1= Scaffolding to determine
- 3D interactions.

Also does not consider
flow generated by
neighbor swimmers.
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» Brief discussion of the following papers:

= ‘Lattices of Hydrodynamically Interacting Flapping Swimmers’ by
Oza, Ristroph, Shelley.

= ‘Axially symmetric potential flow around a slender body’ by
Handelsman and Keller.

» ‘Uniform Asymptotic Solutions for Potential Flow around a thin airfoil
and the Electrostatic Potential about a thin conductor’ by Geer and
Keller. |
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= My family... especially my sister Maria!
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= Share some of my research literature review
- findings.
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= Share some of my research literature review
- findings.

* Give a glimpse of the direction of my future
research.
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= All media and videos are credited to source material from Ananda
Oza and Sophie Ramananarivo and the Applied Mathematics
- Laboratory of the Courant Institute of Mathematical sciences.
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= The work centers around the complex collective dynamics of schools
of fish and flocks of birds and the influence of hydrodynamics on the
- self organization of these. -
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Model system for schooling swimmers

Infinite 1D line of flapping swimmers

N

Video credit: Leif itroph

* Wings interact through their wakes.

* |Imposed flapping motions, but
_assembly ' freely swimming.
Becker, Masoud, Newbolt, Shelley & Ristroph. Nature Comm. (2015)
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Oza et al, Hydrodynamic swimmers.

* Assume fish in first column shed reverse von Karman vortex streets.

* Flapping swimmers extract energy from upstream vortices.
* Claimed that the diamond lattice with the smallest lateral spacing is optimal.
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= Clarifications / definitions:
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= (Clarifications [/ definitions:

= Vortex shedding is an oscillating flow that fluid generates when it
flows past a bluff body at certain velocities, depending on the size
and shape of the body. On a streamlined body, as opposed to bluff
body, the flow would be different.
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= (Clarifications [/ definitions:

= Vortex shedding is an oscillating flow that fluid generates when it
flows past a bluff body at certain velocities, depending on the size
and shape of the body. On a streamlined body, as opposed to bluff
body, the flow would be different.

- AKarman vortex street is the repeating patt'ern of swirling vortices
created by the process of vortex shedding.
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» The work centers around the complex collective dynamics of schools

of fish and flocks of birds and the influence of hydrodynamics on the
~ self organization of these.

* Aniterated map is formulated to describe the hydrodynamic
interactions between the vortices and the downstream swimmers.
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= The work centers around the complex collective dynamics of schools
of fish and flocks of birds and the influence of hydrodynamics on the
- self organization of these. -

* Aniterated map is formulated to describe the hydrodynamic
interactions between the vortices and the downstream swimmers.

- Thanks to the kind folks at C.I.M.S., we have experimental results.
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Experimental results
L
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Schooling number S =1L/ A:
strokes separating neighbors.

o
N
Ul

* Preferred values S =n + 4.

»
N
U1

1. Bistability of states & speedup due
to collective interaction.

schooling number, §

* Numerical simulations are
: expensive (Re = 10%).
:  Albenetal. 2012, Daghooghi &
3 | a Borazjani 2015, Zhu et al. 2014, Peng
flapping frequency, f(Hz) et al. 2018, Dai et al. 2018, ...
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= The work centers around the complex collective dynamics of schools
of fish and flocks of birds and the influence of hydrodynamics on the
- self organization of these. -

* Aniterated map is formulated to describe the hydrodynamic
interactions between the vortices and the downstream swimmers.

- Thanks to the kind folks at C.I.M.S., we have experimental results.

- = The results exhibit good agreement with previously published
experimental data. ~
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Comparison with experiment

fg=0.75cm * stable states

A

:“- - : L‘.—_A%aébﬁ . Sadd|E'nOde

bifurcation

- - === N Hopf bifurcation

fip=1cm
DALMAAAAAAAAAAA

A experiments
Im(z)

MAbbhbid b -
7

lg=2cm

schooling number, S

2

2
flapping frequency, f (Hz)

Three parameters - vortex decay time, vortex strength & drag coefficient -
fit data across all flapping frequencies and amplitudes.
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= The work presents outstanding results.
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= The work presents outstanding results.

= Open questions remain...
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= The work presents outstanding results.
= Open questions remain...

« One open problem question is — what are the hydrodynamics of the
swimmers situation when the flow generated by neighbors is
considered?



Joseph Keller - Professor Emeritus.
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Keller et‘al; Slender body potential flow.
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= The potential due to the body is represented as a superposition of
potentials of point sources distributed along a segment of the axis
~ inside the body.
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» The potential due to the body is represented as a superposition of

~ potentials of point sources distributed along a segment of the axis
~ inside the body.

= The source strength distribution satisfies a linear integral equation.
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» The potential due to the body is represented as a superposition of

potentials of point sources distributed along a segment of the axis
~ inside the body.

= The source strength distribution satisfies a linear integral equation.

= A uniform asymptotic expansion of its solutions is obtained with
respect to the slenderness ratio: the:maximum radius of the body
divided by its length.
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» The potential due to the body is represented as a superposition of
potentials of point sources distributed along a segment of the axis
inside the body.

e The paper defines the potential of an irrotational axis-symmetric flow of an incom-

pressible, inviscid fluid past a slender body of revolution as ®, with ® = &y + P,
®j is the given function for the potential of the incident fow.

d;, is the potential of the incident flow due to the presence of the body which is the

quantity to be determined and vanishes at infinity.

Both ®,, ®; arc harmonic functions in the exterior of the body.

The surface of the body is assumed to be fixed and the normal derivative of ® must

vanish.




Keller et al, Slender body potential flow.
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The paper goes on to frame the situation using cylindrical coordinates (r, @, ) with

the origin at the body’s nose and the z-axis along its symmetry axis.

The axial symmetry of the flow make ¢, and ¢, independent of # and analytic in

2
e, T.

The work formulates equations for the profile curves and the cross sectional areas,

which we do not share out of a concession to the time available for this talk.

The authors represent ®, as a superposition of point source potentials distributed

along a segment of the z-axis inside the body with unknown strength f(z,€)/ unit

length. € is the slenderness ratio, defined to be the maximum radius of the body

rclative to its length.
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The equation derived is:

b, — b {rr“l, €) =

The Stokes stream function W is related to © via

U, = —rd, U, =rd,.

After some calculations, the authors find that:

*B(e) 1
W, '-Lj'_'_.'.l S )= — P ee— r—&)f -!,:1 ) dE.
1

In the above equation, eS(x) = ~A(z) defines A(x) as the cross-sectional area of

the body at .
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» The potential due to the body is represented as a superposition of
potentials of point sources distributed along a segment of the axis
~ inside the body.

= The source strength distribution satisfies a linear integral equation.

= A uniform asymptotic expansion of its solutions is obtained with
respect to the slenderness ratio: the:maximum radius of the body
divided by its length.

* Results include: expansions of the potential, the virtual mass and the
dipole moment are obtained, as well as the flow about the bodly.
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* The potential due to the body is represented as a superposition of
potentials of point sources distributed along a segment of the axis
inside the body.

= The source strength distribution satisfies a linear integral equation.

= A uniform asymptotic expansion of its solutions is obtained with
respect to the slenderness ratio: the maximum radius of the body
divided by its length.

- = Results included: expansions of the potential, the virtual mass and
the dipole moment are obtained, as well as the flow about the body.

» The method of analysis involved a technique for the asymptotic
solution of integral equations.
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= Much more information to be found in the literature... moving on!
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= This work considers the two-dimensional irrotational flow of an
incompressible inviscid fluid past a thin cylindrical airfoil and the two-
- dimensional field in the exterior of a thin cylindrical conductor.
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= This work considers the two-dimensional irrotational flow of an
incompressible inviscid fluid past a thin cylindrical airfoil and the two-
- dimensional field in the exterior of a thin cylindrical conductor.

* Uniform asymptotic expansions of these two potentials are obtained
with respect to the slenderness ratio of the profile curve C of the
cylinder.
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= This work considers the two-dimensional irrotational flow of an
incompressible inviscid fluid past a thin cylindrical airfoil and the two-
- dimensional field in the exterior of a thin cylindrical conductor.

* Uniform asymptotic expansions of these two potentials are obtained
with respect to the slenderness ratio of the profile curve C of the
cylinder.

= A superposition of potentials of point sources distributed along a
~ segment of the axis inside C are used to find the overall potential.
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= This work considers the two-dimensional irrotational flow of an
incompressible inviscid fluid past a thin cylindrical airfoil and the two-
- dimensional field in the exterior of a thin cylindrical conductor.

* Uniform asymptotic expansions of these two potentials are obtained
with respect to the slenderness ratio of the profile curve C of the
cylinder.

= A superposition of potentials of point sources distributed along a
~ segment of the axis inside C are used to find the overall potential.

* The source strength distribution satisfies a linear integral equation. -



Keller et al, Uniform Asymptotic Solutions.

The work defines closed curve C' := y = +¢(S(z))2 for 0 < z << 1,5(0) = S(1) =
0, max S(z) = 1.

Keller et al again define a function ®, with ® = &y + &,.
®, is the given function for the potential of the incident flow.

®,, is the disturbance potential due to the presence of a rigid body bounded by the

closed curve C' and that vanishes at infinity:.
Both @, ®, are harmonic functions in a neighborhood of C.

The authors calculate that:

B(e)

f 1 o
(z,y%,€) = Po(z,y’) — - /{ } log{(z — &)* +y*} f(&, €)d¢.
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= This work considers the two-dimensional irrotational flow of an
incompressible inviscid fluid past a thin cylindrical airfoil and the two-
- dimensional fleld in the exterior of a thin cylindrical conductor.

= Uniform asymptotlc expansions of these two potentials are obtained
with respect to the slenderness ratio of the profile curve C of the
cyhnder

= A superposition of potentials of point sources distributed along a
segment of the axis inside C are used to find the overall potential.

* The source strength distribution satisfies a linear integral equation.

» Complete expansions of the virtual mass, the polarizability, and the '
lift of the cylinder are obtained as results.



Thanks for listening! ’. -l
- Questions / comments are _
warmly welcome.. the work in

progress. ‘ |
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