BME 301

10 - Amplifiers and Feedback

Basic Amplifier Types

• An amplifier produces an output signal with the same wave shape as the input signal but usually with a larger amplitude.

• A_v is called the voltage gain and if <0 then the amplifier is inverting; otherwise non-inverting.

Voltage-Amplifier Model

- Circuit Parameters:
 - Starting from the left
 - v_s is the source input voltage and represents a microphone of an audio amplifier or the action potential of a muscle.
 - R_S is the resistance of the source voltage device
 - v_i is the voltage to the input of the amplifier
 - i_i is the current flowing in the input of the amplifier
 - $R_i = v_i / i_i$ is the resistance at the input to the amplifier

Voltage-Amplifier Model

- Circuit Parameters:
 - Moving to the right side of the model
 - We see on the right part of the model a new icon called dependent voltage source.
 - It's voltage which depends on a voltage at left side of the model, the input voltage at the amplifier
 - In particular, it's the voltage across the input resistor R_i .
 - And the gain of the amplifier when nothing is connected to it's output
 - Open Circuit Voltage Gain A_{vo}
 - R_o is the resistance at output of the amplifier
 - V_o is the voltage at the output of the ampilier
 - i_0 is the current flowing in the output of the amplifier
 - $R_L = v_o / i_o$ represents the device connect to the output of the amplifier.

Voltage-Amplifier Model

- Performance parameters:
 - Voltage Gain $A_v = v_o / v_i$ from the input of the amplifier to the output of the circuit
 - Voltage Gain $A_{vs} = v_o / v_s$ from the source of the amplifier model to the output of the circuit
 - Current Gain $A_i = i_o / i_i$
 - Power Gain $G=P_o/P_i$ from the input of the amplifier to the output of the circuit
 - Power Gain $G_S = P_o/P_s$ from the source of the amplifier model to the output of the circuit

Power Supply Efficiency

• In addition to the DC power, there is power from the source which is delivered to the input of the amplifier, P_i .

• Therefore, the total input power is $P_{DC} + P_i$

• A portion of this power is used to provide the gain and is delivered the output load, P_L

• The remainder of this power is dissipated by the components of the amplifier, P_d

$$P_{DC} + P_i = P_d + P_L$$

• The amount of from the DC source delivered to the load is called the power efficiency, η

$$\eta = P_L / P_{DC}$$

Feedback

- Types of Feedback
 - Positive: aids the input signal
 - Negative: reduces the input signal
- Positive Feedback Benefits
 - Oscillators
- Negative Feedback Benefits
 - Stabilization of Gain
 - Reduction of Nonlinear Distortion
 - Reduction of noise
 - Control of input and output impedances
 - Extension of Bandwidth
- Design of feedback amplifier to avoid unwanted oscillations

Closed-Loop Gain

Use *x* since this will apply equally to voltages and currents

$$x_{i} = x_{s} - x_{f} = x_{s} - \beta x_{o}$$

$$x_{o} = Ax_{i}$$

$$x_{o} = A(x_{s} - \beta x_{o})$$

$$=>$$

$$A_{f} = \frac{x_{o}}{x_{s}} = \frac{A}{1 + A\beta}$$

$$Closed - Loop \ Gain = A_{f}$$

$$Open - Loop \ Gain = A$$

$$Loop \ Gain = A\beta$$

Problems With Positive Feedback

- If $|A\beta| \le 1$ and $A\beta$ is negative:
 - then $1+A\beta \le 1$; and A_f (closed-loop gain) > A (open-loop gain)
 - if $A\beta = -1$, then oscillations occur
 - POSITIVE FEEDBACK
- Example:
 - A = -10, $\beta = 0.0999 \implies A\beta = -0.999$; $1 + A\beta = 0.001$; $A_f = -10^4$
 - Here is a problem using POSITIVE FEEDBACK
 - $A: -10 \rightarrow -9.9 => A\beta = -0.989$; $1 + A\beta = 0.011$; then $A_f: -10^4 \rightarrow -901$
 - For a 1% reduction in A there was a 91% reduction of A_f
 - POOR GAIN STABILITY: worse than the original amplifier

Problems (Continued)

• Another Example:

- As $A\beta \rightarrow -1$, $A_f \rightarrow \infty$ and this implies for a zero input signal an output signal can be generated and a signal will flow around the loop w/o an input => oscillations. This is ok if an oscillator design is desired.
- Clearly, a high gain amplifier can be designed with positive feedback; however, care must be taken because any change in the design (temperature shifts increase the power supply voltages) may cause $A\beta \rightarrow -1$ and oscillations result

Gain Stabilization Using Negative Feedback

- For Negative Feedback Amplifiers are designed with $A\beta >> 1$ and $A_f \approx 1/\beta$
- This is desirable since the value of β can be designed using solely stable passive components (e.g., resistors and capacitors)
 - This occurs for op amps

Gain Stabilization Using Negative Feedback Continued

- Example: $A = 10^4$ and $\beta = 0.01 \Rightarrow A_f = 99$
 - If $A \to 9000$, then $A_f \to 98.9$
 - For a 10% reduction in A there was only a 0.1% reduction of A_f
- Therefore, we can design precision amplifiers using Negative Feedback

$$\frac{dA_f}{dA} = \frac{1 + A\beta - A\beta}{(1 + A\beta)^2} = \frac{1}{(1 + A\beta)^2}$$
$$dA_f = \frac{dA}{A} \frac{A}{(1 + A\beta)^2} = \frac{dA}{A} \frac{A_f}{(1 + A\beta)^2}$$

 $\frac{dA_f}{A_f} = \frac{dA}{A} \frac{1}{1 + A\beta}$

- This states that for small fractional changes of A_f is the fractional change in A divided by $I+\beta$
- Clearly, if the loop gain $A\beta >> 1$ changes of A_f are less than A

Homework

1. For the following circuit, determine the value of R_L to maximize the power gain for this circuit. Provide a proof. Which value of R_L makes the better design and why?

Homework

- 2. What are the benefits of negative feedback?
- 3. What are the problems with positive feedback?
- 4. HONORS STUDENTS ADD THE FOLLOWING Name 3 types of negative feedback applications.