BME 301

11 - Operational Amplifiers

Basic Amplifier Types

- An amplifier produces an output signal with the same wave shape as the input signal but usually with a larger amplitude.

$$
v_{o}(t)=A_{v} v_{i}(t)
$$

- A_{v} is called the voltage gain and if <0 then the amplifier is inverting; otherwise non-inverting.

Voltage-Amplifier Model

- Circuit Parameters:
- Starting from the left
- v_{s} is the source input voltage and represents a microphone of an audio amplifier or the action potential of a muscle.
- R_{S} is the resistance of the source voltage device
- v_{i} is the voltage to the input of the amplifier
- i_{i} is the current flowing in the input of the amplifier
- $R_{i}=v_{i} / i_{i}$ is the resistance at the input to the amplifier

Voltage-Amplifier Model

- Circuit Parameters:

- Moving to the right side of the model
- We see on the right part of the model a new icon called dependent voltage source.
- It's voltage which depends on a voltage at left side of the model, the input voltage at the amplifier
- In particular, it's the voltage across the input resistor R_{i}.
- And the gain of the amplifier when nothing is connected to it's output
- Open Circuit Voltage Gain $A_{v o}$
- R_{o} is the resistance at output of the amplifier
- V_{o} is the voltage at the output of the ampilier
- i_{0} is the current flowing in the output of the amplifier
- $R_{L}=v_{o} / i_{o}$ represents the device connect to the output of the amplifier.

Voltage-Amplifier Model

- Performance parameters:
- Voltage Gain $A_{v}=v_{o} / v_{i}$ from the input of the amplifier to the output of the circuit
- Voltage Gain $A_{v s}=v_{o} / v_{s}$ from the source of the amplifier model to the output of the circuit
- Current Gain $A_{i}=i_{o} / i_{i}$
- Power Gain $G=P_{o} / P_{i}$ from the input of the amplifier to the output of the circuit
- Power Gain $G_{S}=P_{o} / P_{s}$ from the source of the amplifier model to the output of the circuit

Ideal Amplifiers

- Some calculations:

Starting from the output (right side of the model) and using voltage division:
$v_{o}=\frac{R_{L}}{R_{L}+R_{O}} A_{v o} v_{i}$
Or
$A_{v}=\frac{v_{o}}{v_{i}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v o}$
Now
looking at the left part of the model and using voltage division:
$v_{i}=\frac{R_{i}}{R_{i}+R_{s}} v_{s}$
Combining the two:
$v_{o}=\frac{R_{L}}{R_{L}+R_{o}} A_{v o} \frac{R_{i}}{R_{i}+R_{s}} v_{s}$
Or
$A_{v s}=\frac{v_{o}}{v_{s}}=\frac{R_{i}}{R_{i}+R_{s}} A_{v o} \frac{R_{L}}{R_{L}+R_{O}}$

Ideal Amplifiers

- Some calculations:

Starting from the output (right side of the model) and using voltage division:
$i_{O}=\frac{v_{o}}{R_{L}}=\frac{1}{R_{L}} \frac{R_{L}}{R_{L}+R_{O}} A_{v o} v_{i}=\frac{1}{R_{L}+R_{O}} A_{v o} v_{i}$ substituting for v_{o}
$i_{O}=\frac{1}{R_{L}+R_{O}} A_{v o} v_{i}=\frac{1}{R_{L}+R_{O}} A_{v o} i_{i} R_{i}=\frac{R_{i}}{R_{L}+R_{O}} A_{v o} i_{i}$ substituting for v_{i}
Or
$A_{i}=\frac{i_{o}}{i_{i}}=\frac{R_{i}}{R_{L}+R_{O}} A_{v o}$
Now the power Gain

$$
\begin{aligned}
& G=\frac{v_{o} i_{O}}{v_{i} i_{i}}=\frac{v_{o}}{v_{i}} \frac{i_{O}}{i_{i}}=A_{v} A_{i} \\
& G_{S}=\frac{v_{o} i_{O}}{v_{s} i_{i}}=\frac{v_{o}}{v_{s}} \frac{i_{O}}{i_{i}}=A_{v s} A_{i}
\end{aligned}
$$

Ideal Amplifiers

- Performance Parameters:

Going back to the gain from the source to the output
$\frac{v_{o}}{v_{s}}=\frac{R_{i}}{R_{i}+R_{s}} A_{v o} \frac{R_{L}}{R_{L}+R_{O}}$
This states the gain of the amplifier depends on the external components.

This is BAD!!!!!

However, if $R_{i} \rightarrow \infty$ and $R_{O} \rightarrow 0$; then $\frac{R_{i}}{R_{i}+R_{s}} \rightarrow 1$ and $\frac{R_{L}}{R_{L}+R_{O}} \rightarrow 1$.
Therefore, $\frac{v_{o}}{v_{s}} \rightarrow A_{v o}$ and the gain of the amplifier is independent of the external components.

Another Amplifier The Differential Amplifier

- Output of the amplifier is a function of the difference of the inputs:

$$
v_{o}=A_{d}\left(v_{i l}-v_{i 2}\right)
$$

- However, most real Differential Amplifier are affected by the average of the input and we define the common mode input signal

$$
v_{\mathrm{icm}}=1 / 2\left(v_{i 1}+v_{i 2}\right)
$$

- Therefore, $v_{o}=A_{d}\left(v_{i l}-v_{i 2}\right)+A_{m} v_{\mathrm{icm}}$ and the ratio of A_{d} to A_{m} is called the common mode rejection ratio

Model

Icon

Operational Amplifiers

- An operational Amplifier is an ideal differential amplifier with the following characteristics:
- Infinite input impedance, R_{i} is infinite
- Zero output impedance, R_{o} is zero
- Infinite gain for the differential signal, A_{d} is infinite
- Zero gain for the common-mode signal
- Infinite Bandwidth

Operational Amplifier Feedback

- Operational Amplifiers are used with negative feedback
- Feedback is a way to return a portion of the output of an amplifier to the input
- Negative Feedback: returned output opposes the source signal
- Positive Feedback: returned output aids the source signal
- For Negative Feedback
- In an Op-amp, the negative feedback returns a fraction of the output to the inverting input terminal forcing the differential input to zero.
- Since the Op-amp is ideal and has infinite gain, the differential input will exactly be zero. This is called a virtual short circuit
- Since the input impedance is infinite the current flowing into the input is also zero.
- These latter two points are called the summing-point constraint.

Operational Amplifier Analysis Using

 the Summing Point Constraint- In order to analyze Op-amps, the following steps should be followed:

1. Verify that negative feedback is present
2. Assume that the voltage and current at the input of the Op-amp are both zero (Summing-point Constraint
3. Apply standard circuit analyses techniques such as Kirchhoff's Laws, etc.to solve for the quantities of interest.

Example: Inverting Amplifier

1. Verify Negative Feedback: Note that a portion of v_{o} is fed back via R_{2} to the inverting input. So if v_{i} increases and, therefore, increases v_{o}, the portion of v_{o} fed back will then have the affect of reducing v_{i} (i.e., negative feedback).
2. Use the summing point constraint.
3. Use KVL at the inverting input node for both the branch connected to the source and the branch connected to the output
$v_{i n}=i_{1} R_{1}+0$ since v_{i} is zero due to the summing - point constraint
$i_{1}=i_{2}$ due to the summing - point constraint
$v_{0}=-i_{2} R_{2}+0$ since v_{i} is zero
$=-\frac{R_{2}}{R_{1}} v_{\text {in }}$ which is independent of R_{L} (note that the output is opposite to the input:inverted)

Op-amp

- Because we assumed that the Op-amp was ideal, we found that with negative feedback we can achieve a gain which is:

1. Independent of the load
2. Dependent only on values of the circuit parameter
3. We can choose the gain of our amplifier by proper selection of resistors.

Non-inverting Amp

1. First check: negative feedback?
2. Next apply, summing point constraint
3. Use circuit analysis

$$
\begin{aligned}
& v_{i n}=v_{i}+v_{f}=0+v_{f}=v_{f} \\
& v_{f}=\frac{R_{1}}{R_{1}+R_{2}} v_{o}=v_{i n} ; \\
& A_{v}=\frac{v_{o}}{v_{i n}}=\frac{R_{2}+R_{1}}{R_{1}}=1+\frac{R_{2}}{R_{1}}
\end{aligned}
$$

Note:

1. The gain is always greater than one
2. The output has the same sign as the input

Medical Instrumentation Amplifier

Non-inverting Amplifier

Medical Instrumentation Amplifier

Non-inverting Amplifier

$$
v_{o}=\frac{R_{5}}{R_{6}}\left(1+\frac{R_{2}}{R_{1}}\right)\left(v_{1}-v_{2}\right)
$$

Uses of the Differential Amplifier

Integrators and Differentiators

$$
\begin{aligned}
& i_{1}(t)=\frac{v_{m}(t)}{R}=i_{2}(t) \\
& v_{o}=-\frac{1}{C} \int_{0} i_{2}(x) d x=-\frac{1}{R C} \int_{0} v_{m}(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& i_{1}(t)=\frac{C d v_{i n}(t)}{d t}=i_{2}(t) \\
& v_{o}=-i_{2}(t) R=-R C \frac{d v_{i n}(t)}{d t}
\end{aligned}
$$

Frequency Analysis

$$
\begin{aligned}
\mathbf{V}_{\text {in }}(j \omega) & =\mathbf{I}_{\mathbf{1}}(j \omega) \mathbf{Z}_{\mathbf{1}}(j \omega)+0 \text { since } v_{i} \text { is (virtually) zero } \\
\mathbf{I}_{\mathbf{1}}(j \omega) & =\mathbf{I}_{2}(j \omega) \text { due to the summing-point constraint } \\
\mathbf{V}_{\mathbf{0}}(j \omega) & =-\mathbf{I}_{2}(j \omega) \mathbf{Z}_{2}+0 \text { since } v_{i} \text { is (virtually) zero } \\
& =-\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{\mathbf{1}}} \mathbf{V}_{\text {in }}(j \omega) \text { which is independent of } \mathbf{Z}_{\mathbf{L}}
\end{aligned}
$$

$$
\frac{\mathbf{V}_{\mathbf{0}}(j \omega)}{\mathbf{V}_{\mathbf{i n}}(j \omega)}=-\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{\mathbf{1}}}
$$

$\frac{\mathbf{V}_{\mathbf{0}}(j \omega)}{\mathbf{V}_{\text {in }}(j \omega)}=-\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}}=-\frac{1}{j \omega R C}$ an integrator $\frac{\mathbf{V}_{\mathbf{0}}(j \omega)}{\mathbf{V}_{\text {in }}(j \omega)}=-\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}}=-j \omega R C$ a differeniator

Frequency Response

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{Z_{2}}{Z_{1}}=-\frac{R_{2}}{R_{1}} \frac{1}{\left(1+j \omega C_{2} R_{2}\right)}=\frac{R_{2}}{R_{1}} \frac{1}{\sqrt{1+\left(\omega C_{2} R_{2}\right)^{2}}} \angle \pi-\tan ^{-1}\left(\omega C_{2} R_{2}\right)
$$

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{Z_{2}}{Z_{1}}=-\frac{R_{2}}{R_{1}} \frac{j \omega C_{1} R_{1}}{\left(1+j \omega C_{1} R_{1}\right)} & =\frac{R_{2}}{R_{1}} \frac{\omega C_{1} R_{1}}{\sqrt{1+\left(\omega C_{1} R_{1}\right)^{2}}} \angle-\frac{\pi}{2}-\tan ^{-1}\left(\omega C_{1} R_{1}\right) \\
& \text { R1 } 51 \mathbf{C 1} 10 \mathrm{mf} \mathbf{R 2} \mathbf{1 0 0 k}
\end{aligned}
$$

Connecting the Our OpAmp LM324

Connecting the our OpAmp

Powering the our OpAmp

Homework

1. What is the summing point constraint?
2. Calculate the gain for this amplifier (in terms of R1, R2, and R3.

Homework

3. Calculate and plot the voltage gain of the following circuit as function of frequency, ω.

Homework

4. HONORS STUDENTS ADD THE FOLLOWING

Calculate voltage gain of the following circuit.

Homework

5. HONORS STUDENTS ADD THE FOLLOWING

The criteria for a proper negative feedback opamp circuit is the summing point constraint. What would it be for a proper positive feedback circuit?

Homework

6. HONORS STUDENTS ADD THE FOLLOWING Calculate and plot the gain of this circuit. What type of filter is this?

