
BME	301	

7-Arduino	

1	

Arduino	Basics	

2	

Overview	

•  Learn	how	to	use	a	microprocessor	system/
platform	development	board	

•  Arduino	UNO	
•  Hardware	
•  Software	
•  Projects	

3	

Computers	
•  What	is	a	computer		

o Fast	Nitwit		
q Perform	instructions	very	quickly		
q Needs	to	be	told	what	to	do.	

•  Computer	types	
o Mainframes	
o Minicomputers	
o Personal	Computers	
o Microprocessors	

•  All	have	similar	hardware	and	need	software	or	
programs	to	operate	them	

4	

Computer	Hardware	
•  Main	Components	Circuits	

o  Central	Processing	Unit(s)	–	CPU	
q  	This	is	where	the	instructions	are	performed	

o  Memory	–	Random	Access	Memory	and	Read	Only	Memory	
q  This	is	where	the	data	and	program	that	is	running	is	stored	

o  Timer/Clock	
q  	This	is	the	hardware	that	coordinates	the	computer	operations	

o  Data	and	control	buses	
q  This	is	the	digital	highways	where	data	and	control	messages	transfer	within	the	

computer	
o  Input	and	Output	interfaces	–	I/O	ports	

q  This	is	the	digital	highways	and	connections	to	enter	data	and	display	results	
•  Peripheral	Equipment	

o  Keyboards	
o  Monitors	
o  Disk	Drives		

5	

General	Purpose	Computers	Vs	Special	
Purpose	Computers	Vs	Microprocessors	

•  General	purpose	computers	are	designed	to	
handle	a	variety	of	tasks.	

•  Special	purpose	computers	which	can	be	
programmed	to	perform	a	desired	task.	

•  In	general,	a	microprocessor	falls	into	the	Special	
Purpose	Computer	class.	

•  Various	Microprocessors	
o  Intel	8088	
o Zilog	Z80	
o Motorola	6800	
o Etc.	

6	

Microprocessor	Systems	or	Platforms	

•  Microprocessors	contain	components	to	
afford	development	of	computer	based	
systems.	

•  Various	types	
o Arduino	
o Raspberry	Pi	
o Etc.	

7	

Arduino	
•  Arduino	is	an	open-source	
hardware	and	software	company1	

•  Builds		single	board	
microcontrollers	and	microcontroller	kits1	

•  Arduino	board	designs	use	a	variety	
of	microprocessor	chips	and	controllers.1		
o Uno	
o Mega	similar	to	the	Uno	but	bigger	with	more	I/O	port		
o  Lilypad	used	for	wearable	projects	
o Nano	smaller	than	the	Uno	
o Etc.	
1	wikipedia.org/wiki/Arduino	

8	

Arduino	Board	Hardware	

9	

Arduino	Board	

10	

Arduino	Board	
•  Microprocess

or:						
ATmega328P	

	
•  USB	Port:	

Connect	to	
Computer	

	

11	

Arduino	Board	
•  Reset	Button:						

Resets	the	
program	but	
does	not	
remove	the	
program	
from	memory	

	
•  DC	Power:	

Connect	to	
external	DC	
Power	
Source	

	

12	

Arduino	Board	
•  Digital	Pins:	Can	be	

used	as	an	input	or	
output	and	can	take	
on	one	of	two	values:	
0	or	5	volts.	Note	that	
Pins	0	and	1	can	be	
used	for	serial	
communications.	

	
•  Analog	In	Pins:	Used	

as	an	Analog	input	
and	can	take	on	any	
value	from	0	to	5	
volts.	

•  Power	Pins:	Provides	
5	volts,	3.3	volts	and	
Ground	Reference	

13	

Arduino	Board	
•  ON	LED:	When	

illuminated	indicates	
that	the	Arduino	is	
operating	

	
•  RX	and	TX	LEDs:	

Indicates	that	the	
Arduino	is	receiving/
transmitting	Data	(e.g.	
when	the	program	is	
downloaded	from	the	
computer	

•  L	LED:	Programmable	
LED	via	Digial	pin	13	

14	

Pulse	Width	Modulation		

•  Some	of	the	digital	pins	(~3,	~5,	~6,	~9,	~10,	
~11)	with	tildes	can	output	a	PWM	signal	

15	

Pulse	Width	Modulation		
•  50%		Duty	Cycle	
	
	
•  25%	Duty	Cycle	

	
•  75%	Duty	Cycle	

•  100%	Duty	Cycle	
	

…	

…	

…	

16	

•  PWM	is	a	
(approximately)	490	
Hz	square	wave	
where	a	portion	
(percentage)	of	the	
signal	is	high	while	
the	remainder	of	
the	signal	is	low.		

	
•  The	percentage	of	

the	high	portion	is	
called	the	Duty	
Cycle.	

Arduino	S/W	

17	

Arduino	S/W	
•  Arduino	provides	a	open-source	development	interface	

know	as	the	Integrated	Development	Environment	(IDE).	
•  IDE	supports	program	facility	for	program	development,	

verification,	and	downloading	to	the	Arduino	board.	
•  IDE	support	a	serial	monitor	and	serial	plotter	to	allow	

users	to	interface	with	the	program	running	on	the	Arduino	
board.	

•  IDE	provides	some	basic	programs	for	the	user	to	learn	how	
to	program	the	Arduino	board.	

•  The	IDE	runs	on	PCs	and	Macs	and	can	be	downloaded	at	
www.arduino.cc/en/main/software.	

•  An	Arduino	program	is	called	a	Sketch	and	is	written	in	C/
C++.	

18	

Arduino	IDE	

19	

Sketch/
Text	
Editor	

Console	

Message	
Area	

Verify	

Upload	

New	

Open	

Save	

Toolbar	

Serial	Monitor	

Tab	

•  Editor:	Where	sketches	
are	written	

•  Verify:	Tests	whether	
the	sketch	mets	the	C/
C++	syntax	rules	

•  Upload:	When	the	
verify	shows	no	errors,	
send	the	sketch	to	the	
Arduino		board	

•  Message	Area	and	
Console:	Where	
messages	are	output	
when	verifying	and	
uploading	

First	steps	for	running	a	sketch	

1.  Connect	the	Arduino	
board	to	a	USB	port	
on	your	computer.	

2.  On	the	Toolbar,	
select	Tools>Board	
and	click	on	your	
Arduino	board	

3.  On	the	Toolbar,	
select	Tools>Port	
and	click	on	the	port	
your	Arduino	is	
connected.		(com1,	
com2	or	com3	for	
PCs	or	/dev/
cu.usbmodem-XXXX	
for	Mac.	

20	

Where	Example	Sketches	are	found	

21	

On	the	toolbar,	select	
File>Examples	and	chose	
the	desired	sketch.	

Arduino	Sketch	Structure	
•  Sketch	executable	statements	end	with	the	character	;		

•  Comments	are	used	to	document	the	sketch	
q  	Multiple	line	comments	begin	with	the	characters	/*	and	end	with	the	

characters	*/	
q  Single	line	comments	begin	with	the	characters	//	and	can	be	placed	in	a	

line	by	itself	or	within	the	same	line	as	an	executable	statement.	

•  Declare	global	variables	area	(not	needed	always)	is	a	place	to	define	
variable	names	used	in	the	sketch	and	their	values.		This	appears	as	the	
first	executable	statements	(i.e.,	before	the	Setup	and	Loop	areas).	

•  Setup	area	(always	needed)	is	where	statements	are	kept	that	only	run	
once	in	the	sketch.	

•  Loop	area	(always	needed)	is	where	statements	are		which	are	
continuously	executed	in	loop	or	repetitive	manner.	

22	

An	Example	Sketch	

23	

Sketch	Areas	

24	

Preliminary	
Comments	

Sketch	Areas	

25	

Declare	Global	
variables		

Sketch	Areas	

26	

Setup		

Sketch	Areas	

27	

Loop		

Setup	and	Loop	Statements/Functions	
•  Setup	and	loop	are	C/C++	functions	and	follow	the	C/C++	

syntax	for	functions.	
•  Note	that	both	the	setup	and	loop	statements	begin	with	

the	word	void.	
q This	tells	the	C/C++	complier	that	the	setup	and	loop	do	not	

produce	any	results	to	be	used	by	other	parts	of	the	program.	

	

28	

void	setup()	{	
		//	declare	pin	9	to	be	an	
output:	
		pinMode(led,	OUTPUT);	
}	

void	loop()	{	
		//	set	the	brightness	of	pin	9:	
//	statements	were	removed	for	
convenience	
		analogWrite(led,	brightness);	
delay(30);	
}	

Setup	and	Loop	Statements/Functions	
Cont’d	

•  Note	that	the	word	setup	and	loop	there	are	left	and	right	
parentheses	with	nothing	between	them.	
q This	tells	the	C/C++	complier	that	the	setup	and	loop	do	not	have	

any	special	inputs	to	run	them.	

•  Note	that	the	statements	within	the	setup	and	loop	areas	
begin	with	the	character	{	and	end	with	the	character	}.		

29	

void	setup()	{	
		//	declare	pin	9	to	be	an	
output:	
		pinMode(led,	OUTPUT);	
}	

void	loop()	{	
		//	set	the	brightness	of	pin	9:	
//	statements	were	removed	for	
convenience	
		analogWrite(led,	brightness);	
delay(30);	
}	

Declare	Variables	Area	

•  In	the	Declare	Variable	area,	variables	may	be	
defined	with	their	value.		

	int		led	=	0;	//assign	the	value	of	zero	to	an	integer	variable	named	led.	

•  These	variables	may	be	used	throughout	the	
sketch	by	both	the	setup	and	loop	functions	and	
are	called	global	variables.		

•  Note	variables	may	also	be	define	within	
functions	like	setup()	and	loop().		They	can	only	
be	used	within	the	function	there	are	declared	
and	are	call	local	variables.	

30	

Serial	Monitor	

•  To	access	the	Serial	
Monitor	click	on	
Tools>Serial	
Monitor.	

•  The	Serial	Monitor	
supports	writing/
reading	data	to/
from	the	Arduino	
board.	

31	

Serial	Plotter	

•  To	access	the	
Serial	Plotter	click	
on	Tools>Serial	
Monitor.	

•  The	Serial	Plotter		
supports	plotting	
waveforms	in	real	
time.	

32	

Functions	

Int	myFunction(int	x)
{	
	int	result;	
result=x*x;	
return	result	
}	

33	

void	setup(){	
				Serial.begin(9600);	
}	
void	loop(){	
	int	i=2;	
k=myFunction(i);	
	Serial.println(k);	
delay(500)	
}	

Arduino	Board	Syntax1,2	

	
	
	

1.  M.	Banzi	&	M.	Shiloh,	Getting	Started	with	Arduino,	3rd	Edition,	MakerMedia,	
2014	

2.  https://www.arduino.cc/reference/en/	

34	

Basic	Structure	
•  Declare	Variables	

	

int	led	=	9;				//Declares	the	variable	led	as	one	that	stores	integers	
and	is	set	to	the	value	13	
	

•  Setup	where	code	will	only	be	executed	once.	
void	setup()	{	
/*	Add	statements	to	set	up	sketch	operation	*/	
}	
	

•  Loop	where	code	will	be	repeatedly	executed	until	the	
board	power	is	turned	off.	

void	loop()	{	
/*	Add	statements	to	perform	sketch	operation	*/	
}	

35	

Special	Symbols	
•  Semicolon	-	;	

Every	line	of	code	must	end	with	a	semicolon.		
	
delay	(1000);		//delay	the	sketch	by	1	second	
	

•  Parenthesis	-	(),	square	brackets	-	[]	and	Curly	brackets	–	{}	
Data	is	passed/received	to/from	a	function	which	is	placed	between	parenthesis.	()	
Arrays	are	defined	using	square	brackets.	[]	
Blocks	of	code	appear	between	curly	brackets.{}	
	
int	array1[4]={1,	3,	4,	7};	
	
void	loop()	{	

Serial.println(“ciao”);		//The	word	ciao	is	sent	to	the	serial	monitor	
}	
	

•  Comments	
	
Single	line	comments	have	the	characters	//	at	the	start	of	the	comments	
	
Multi-line	comments	appear	between	the	two	sets	of	characters	/*	and	*/	

36	

Constants	
•  The	Arduino	supports	key	word	constants.		Here	are	ones	used	often.		

See	https://www.arduino.cc/reference/en/	for	more.	
	
HIGH	|	LOW		Used	for	pin	states:		

1.  if	the	pin	is	used	as	an	input	then	it’s	a	HIGH	when	a	voltage	of	3.3	volts	or	
greater	appears	at	the	pin	or	it’s	a	LOW	when	a	voltage	of	1.5	volts	or	less	
appears	at	the	pin.	

2.  if	the	pin	is	used	as	an	output	then	the	board	places	a	voltage	of	5	volts	when	the	
pin	is	declared	HIGH	and	places	a	voltage	of	0	volts	when	the	pin	is	declared	LOW.	

INPUT	|	OUTPUT	Used	to	set	a	pin	to	either	an	input	or	output	port.	
	
true	|	false	Used	to	test	a	comparison.	
	
LED_BUILTIN	Set	to	13	for	the	on-board	LED	that	is	connected	to	pin	13.	

		

37	

Data	Types	
•  The	Arduino	supports	various	types	of	data	types.		Here	are	ones	used	

often.		See	https://www.arduino.cc/reference/en/	for	more.	

1.  Integer	data	type	

int	–	Uses	2	bytes	and	declares	a	variable	as	an	integer	of	value	-32,768	to	32,768.	
	
unsigned	int	–	Uses	2	bytes	and	declares	a	variable	as	an	integer	of	value	0	to	
65,535.	
	
long	–	Uses	4	bytes	and	declares	a	variable	as	an	integer	of	value	-2,147,483,648	to	
2,147,483,648		
	
unsigned	long–	Uses	4	bytes	and	declares	a	variable	as	an	integer	of	value	0	to	
4,294,967,295.		
	
	

38	

Data	Types	(cont’d)	
2.  Floating	point	data	types	

float		–	Uses	4	bytes	(1	bit	for	sign,	8	bits	for	the	exponent,	and	23	for	the	value)	and	declares	
a	variable	as	floating	point	number	of	value	-3.4028235E38	to	3.4028235E38.	
	
double	-	Uses	8	bytes	(1	bit	for	sign,	11	bits	for	the	exponent,	and	52	for	the	value)	and	
declares	a	variable	as	floating	point	number	of	value	-1.79766931348623157E308	to	
1.79766931348623157E308.	
	
2.  3.	Array	data	types	
	
array	–	Arrays	are	defined	using	square	brackets,	curly	brackets,	and	the	following	
format.	
	

int	load[5]={1,	2,	3,	4,	5};	
	
	
	

39	

Data	Types	(cont’d)	
4.  Character	data	types		

	
Characters	use	1	byte	per	character	and	are	defined	formats	similar	to	
arrays.	

char		–	Uses	1	byte	per	character	
	

char	string1[3]=“BME”;	
	

String	–	similar	to	char	
	

String	string1[3]=“BME”;	
	

	
	
	
	

40	

Data	Types	(cont’d)	
5.  Conversion	of	values	to	a	data	type	

	
float(x)	-	converts	the	value	of	x	into	a	floating	point	data	
type	
(float)x	– alternative	form	

Using	this	syntax,	conversion	of	a	value	to	a	data	
type	can	be	used	for	the	other	data	types:	int,	
unsigned,	long,	unsigned	long,	double,	etc.	

	

	
	
	
	

41	

Arithmetic	Operators	

Arithmetic		
Operator	 Test	 Example	

+	 Addition	

-	 Subtraction	

*	 Multiplication	

/	 Division	

=	 Assignment	

%	 Remainder	 r=7%5;	//
r=2	
	

Compound	Operators	

Symbol	 Function	 Example	

++	 Increment	 y=x++;	//	
y=x+1	

--	 Decrement	 y=x--;	//	y=x-1	
	

42	

Other	Operators	and	Symbols		

Relationship	and	equality	operators	
used	for	number	and	strings	

Operator	 Test	 Example	

==	 Equal	to		 If(val	==	HIGH){	

!=	 Not	equal	to	 If(val	!=	HIGH){	

>	 Greater	than	 If(val	>	HIGH){	

<	 Less	than	 If(val	<	HIGH){	

>=	 Greater	than	or	
equal	to	

If(val	>=	HIGH){	
	

<=	 Less	than	or	equal	
to	

If(val	<=	HIGH){	
	

43	

Other	Operators	and	Symbols		

Logical	Operators	

Symbol	 Function	

&&	 Logical	And	

||	 Logical	Or	

!	 Not	

44	

Bit	Operators	

Operator	 Test	

&	 Bitwise	And	

|	 Bitwise	Or	

^	 Bitwise	Exclusive	Or	

~	 Bitwise	Negation	

Control	Statements	

1.  IF	Statement:	if	condition	is	true,	take	action	and	continue.				
	IF	Statement:	if	condition	is	true,	take	action.		Otherwise	take	
another	action.	

45	

if	(condition){	
//If	true	take	
action	
val=10;	

}	
	

if	(condition){	
//If	true	take	
action	

}	
else	{	

//If	false	take	
another	action	
val=20;	

}	
	

Control	Statements	Continued	
2.  For	Statement:	defines	a	loop	with	a	counter	initialization,	condition	for	looping,	

counter	increment	
	

Initialization	occurs	once	
	
Condition:	each	time	the	loop	is	executed	the	condition	is	tested.		
	
If	true	looping	continues.	If	false	looping	ends	and	execution	proceeds	to	the	statement	
following	the	For	Statement	
	
Increment:	each	time	the	through	the	loop,	the	counter	is	incremented	and	the	condition	is	
retested.	

	
for	(initialization;	condition;	increment)	{		
	
	
	
	

for	(int	i	=	0;	i	<=	100;	i++)	{							//	for	i	starting	at	0,	is	it	<=	100,	run	loop	and	increment	I	
	

delay	(1000);																					//delay	a	second	
	 	 	 															//	when	i	>	100	end	loop																											

	}		

46	

Control	Statements	Continued	
3.  While	Statement:	defines	a	loop	with	a	

condition	for	running	the	loop.		When	the	
condition	becomes	false	the	loop	ends.	

						while	(condition)	{		
	
while	(var	<=	100)	{					//	while	a	variable	named	var	less	than	or	equal	to	100,	run	loop	

delay	(500);																					//delay	1/2	second	
																																																				//	when	var	>	100	end	loop																											

						}	

47	

Control	Statements	Continued	
4.  Switch	Case	Statement:	defines	a	switch	and	a	series	of	case	statements.		

When	there	is	a	case	statement	matching	the	switch,	the	statements	
following	the	case	statements	are	executed.	The	default	case	is	executed	
if	no	match	is	found.	
	
switch	(var)	{		

case	label1;	
//statements	
break;	
case	label2;	
//statements	
break;	
default;	
//statements	
break;	

}	
	
	
	

	
48	

			

switch	(var)	{		
case	1;	
delay	(1000);				//delay	1	second	
break;	
case	2;	
delay	(500);				//delay	1/2	second	
break;	
default;	
delay	(2000);				//delay	2	seconds	
break;	

}	

	

Mathematical	Operations	
1.  Absolute	value:	finds	the	absolute	value	of	a	number,	x.		

	abs(x)	
y=abs(-3);	//y=3	

2.  Map:	maps	a	value	from	range	of	numbers	to	another	range.		
map(value,	fromlow,	fromhigh,	tolow,	tohigh)	
y=map	(20,	1,	50,	1,	100);	//y=40	

3.  Minimum/Maximum:	finds	the	minimum/maximum	of	2	
values.	

min(val1,	val2)	max(val1,val2)	
y=min(3,4);	//y=3	
y=max(3,4);	//y=4	

49	

Mathematical	Operations	Continued	

4.  Power:	calculates	the	value	of	a	number	raised	to	a	power.		
pow(base,	exponent)	
y=pow(3,	2);	//y=9	

5.  Square	root:	calculates	the	square	root	of	a	number.		
y=sqrt(value)	
Y=sqrt(64);	//y=8	

6.  Trigonometric	operations:	calculates	the	sine,	cosine	and	tangent	
of	a	number	in	radians		

sin(x)	cos(x)	tan(x)	
y=sin(3.14);	//y=0	
y=cos(1.57);	//y=0	
y=tan(0.78);	//y=1	
	
	 50	

Input	and	Output	Functions	
		Digital	Pins	

1.  Configuring	a	digital	pin	as	an	input	or	output	
pinmode(pin,mode);	
pinmode(13,OUTPUT);	//Turns	pin	13	into	an	output	
	

2.  Turns	a	digital	pin	HIGH	or	LOW	
digitalWrite(pin,value);	
digitalWrite(13,LOW);	//Turns	pin	13	LOW	
	

3.  Controls	the	PWM	signal	at	certain	digital	pins;	a	value	of	0	turns	the	pin	
off	and	a	values	of	255	turns	pin	fully	on.	

analogWrite(pin,value);	
analogWrite(13,	127);	//Turns	on	a	PWM	with	50%	duty	cycle	
	

4.  Reads	the	state	of	an	input	digital	pin	and	returns	HIGH	or	LOW	
digitalRead(pin);	
val=digitalRead(13);	//Reads	pin	13	and	returns	the	value	into	variable	
named	val	
	 51	

Input	and	Output	Functions	
Analog	Pins	

	
1.  Reads	the	state	of	an	input	Analog	pin	and	return	a	

number	from	0	to	1023	which	corresponds	to	a	
voltage	between	0	and	5	volts.	

analogRead(pin);	
val=analogRead(0);	//Reads	analog	pin	0	and	
returns	the	value	into	variable	named	val	

2.  You	can	not	write	to	an	analog	pin	
	

52	

Time	Functions	
1.  Returns	the	number	of	milliseconds	(microseconds)	that	have	passed	since	the	sketch	

started	
millis();	
duration=millis()-lasttime;	//computes	time	since	lasttime	in	milli-seconds	
	
micros();	
duration=micros()-lasttime;	//computes	time	since	lasttime	in	micro-seconds	
	

2.  Pauses	sketch	for	the	number	of	milliseconds	specified	

delay(ms);	
delay(500);	//delay	for	½	second	
	

3.  Pauses	sketch	for	the	number	of	microseconds	specified	

delayMicroseconds(μs);	
delayMicroseconds(500);	//delay	for	½	millisecond	
	
	

53	

Serial	Monitor	
1.  Prepares	the	Arduino	to	send/receive	data.	

Serial.begin(speed);	
Serial.begin(9600);	//	Typical	setting	for	the	Arduino	

2.  Sends	data	to	the	serial	port.	
Serial.print(data);					//prints	data	
Serial.println(data);	//prints	data	with	line	feed	
	
Serial.print(75);	//Prints	the	characters	“75”	
Serial.print(75,HEX);	//Prints	“4B”	(75	in	hexadecimal)	
Serial.print(75,BIN);	//Prints	1001011	(75	in	binary)	
Serial.println(75);//Prints”75”	with	a	carriage	return	and	linefeed	i.e.,	
“75\r\n”	

3.  Reads	1	byte	of	incoming	serial	data	
Serial.read();	
data=Serial.read();	//Put	a	byte	of	data	into	the	variable	data	

54	

Serial	Plotter	
1.  Same	operation	at	the	serial	monitor	example	when	serial	port	is	

selected	a	waveform	plot	of	the	data	is	produced.	
2.  Prepares	the	Arduino	to	send/receive	data.	

Serial.begin(speed);	
Serial.begin(9600);	//	Typical	setting	for	the	Arduino	

3.  Sends	data	to	the	serial	port.	
Serial.print(data);	

55	

Libraries	
1.  In	order	to	extend	the	Arduino,	libraries	may	uses.		

Libraries	contain	functions	which	aid	the	extension	of	
the	Arduino.	

2.  To	use	a	library,	it	must	be	importing	or	included	into	
the	sketch.		
#include	<library.h>	

3.  Examples	
a.  LiquidCrystal	– setCursor(),	blink(),	scrollDisplayLeft(),	

scrollDisplayRight()	
b.  Servo	–	attach(pin),	servo.write(angle),	servo.read()	
c.  Stepper	– setSpeed(rpms),	step(steps)	
d.  WiFi	– WiFi.config(ip),	WiFi.status()	
	

56	

Homework	
1.  Describe	the	difference	between	and	the	functions	of	

Digital	Pins	and	Analog	Pins	on	the	Arduino.	
2.  What	is	the	purpose	of	the	IDE?	
3.  What	is	the	purpose	of	the	serial	monitor	and	serial	

plotter?	
4.  Describe	the	structure	of	a	Sketch.	
5.  What	is	the	computer	language	used	for	the	Arudino?	
6.  HONORS	STUDENTS	ADD	THE	FOLLOWING	

	Can	you	develop	a	Sketch	to	read	a	negative	voltage?	
	If	so,	how?	If	not,	what	would	you	do	to	read	this	
	voltage?	

57	

