BME 301

11 - Operational Amplifiers

- 1. What is the summing point constraint?
 - Applies to Op amps which is put into a negative feedback arrangement
 - In an Op-amp, the negative feedback returns a fraction of the output to the inverting input terminal forcing the differential input to zero.
 - Since the Op-amp is ideal and has infinite gain, the differential input will exactly be zero. This is called a virtual short circuit
 - Since the input impedance is infinite the current flowing into the input is also zero.
 - These latter two points are called the summing-point constraint.

2. Calculate the gain for this amplifier (in terms of R1, R2, and R3.

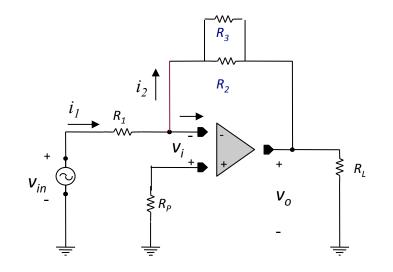
(1) $v_{in} = i_1 R_1 + 0$ since v_i is zero due to the summing-point constraint

(2) $i_1 = i_2$ due to the summing-point constraint $v_0 = -i_2 R_2 || R_3 + 0$ since v_i is zero (3) $v_0 = -i_2 \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} = -i_2 \frac{R_2 \times R_3}{R_2 + R_3} = -i_2 \frac{R_2 R_3}{R_2 + R_3}$

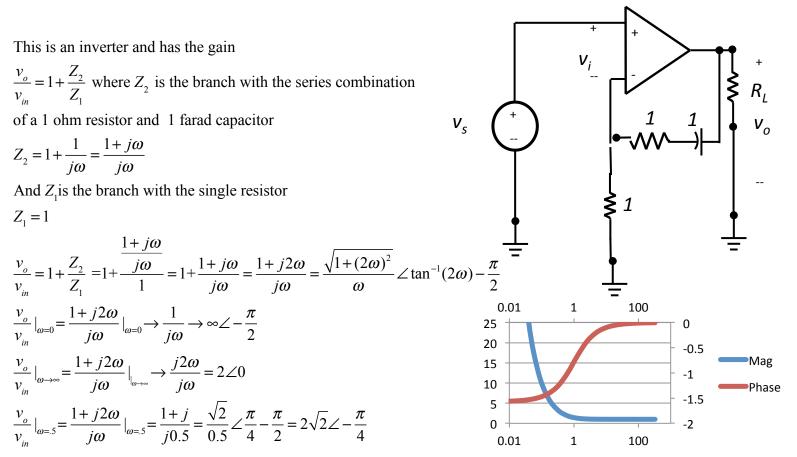
substituting for i_2 from (2) and (1) we get.

$$\frac{v_0}{v_{in}} = -\frac{\frac{R_2 R_3}{R_2 + R_3}}{R_1}$$
 which is independent of R_L

(note that the output is opposite to the input: inverted)

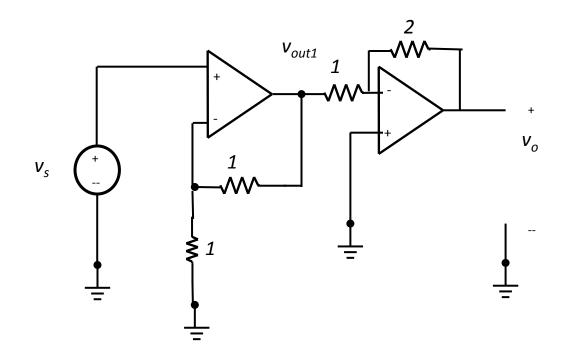


3. Calculate and plot the voltage gain of the following circuit as function of frequency, ω .

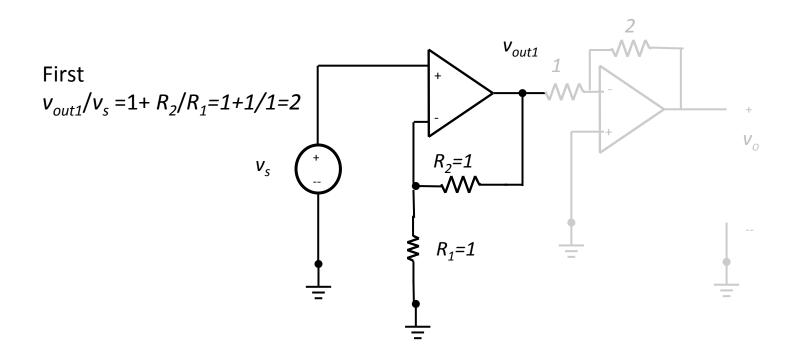


4. HONORS STUDENTS ADD THE FOLLOWING

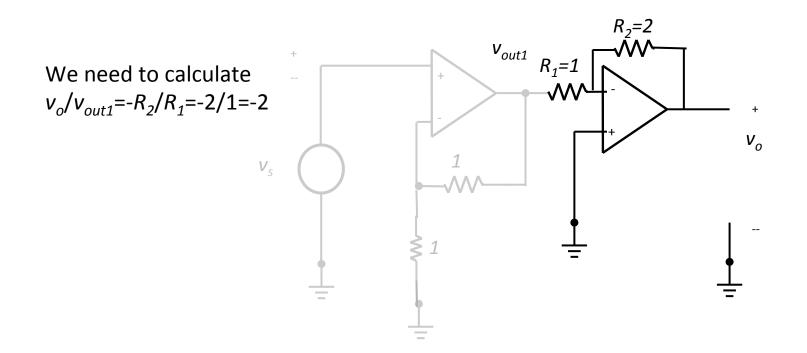
We need to calculate $v_o/v_s = v_{out1}/v_s \times v_o/v_{out1}$ Note that the output of the first stage, v_{out1} is the input to the second stage. This is called cascading.



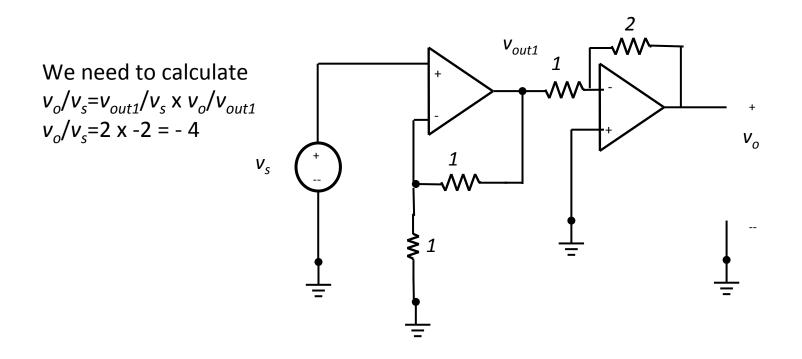
4. HONORS STUDENTS ADD THE FOLLOWING Taking the first stage, calculating its gain.



HONORS STUDENTS ADD THE FOLLOWING Next stage 2



4. HONORS STUDENTS ADD THE FOLLOWING Putting it all together.

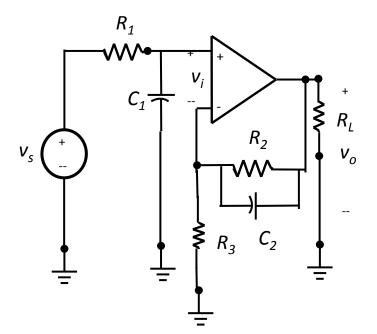


5. HONORS STUDENTS ADD THE FOLLOWING

The criteria for a proper negative feedback opamp circuit is the summing point constraint. What would it be for a proper positive feedback circuit?

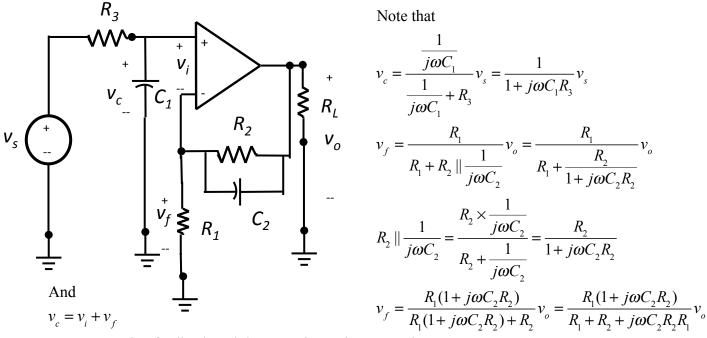
- Infinite input impedance, R_i is infinite
- Zero output impedance, R_o is zero
- Infinite gain for the differential signal, A_d is infinite
- Zero gain for the common-mode signal
- Infinite Bandwidth

6. HONORS STUDENTS ADD THE FOLLOWING Calculate and plot the gain of this circuit. What type of filter is this?



6. HONORS STUDENTS ADD THE FOLLOWING

Calculate and plot the gain of this circuit. What type of filter is this?



Due to negative feedback and the summing point constraint

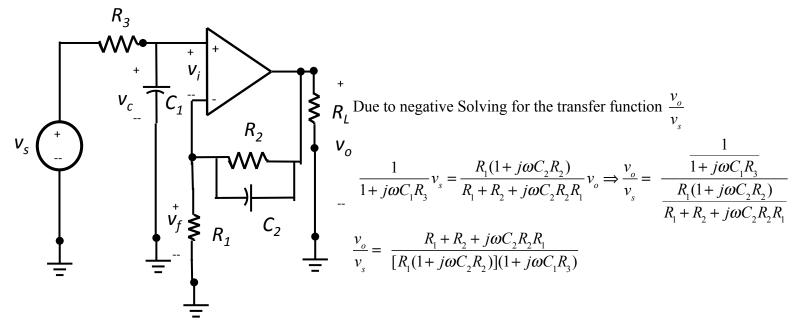
 $v_c = v_f$

Therefore,

$$\frac{1}{1+j\omega C_1 R_3} v_s = \frac{R_1 (1+j\omega C_2 R_2)}{R_1 + R_2 + j\omega C_2 R_2 R_1} v_o$$

6. HONORS STUDENTS ADD THE FOLLOWING

Calculate and plot the gain of this circuit. What type of filter is this?



$$\frac{v_o}{v_s} = \frac{R_1 + R_2 + j\omega C_2 R_2 R_1}{[R_1(1 + j\omega C_2 R_2)](1 + j\omega C_1 R_3)} = \frac{R_1 + R_2(1 + j\omega \frac{C_2 R_2 R_1}{R_1 + R_2})}{R_1[1 - \omega^2 C_2 R_2 C_1 R_3 + j\omega (C_1 R_3 + C_2 R_2)]}$$

$$= \frac{R_1 + R_2}{R_1} \frac{1 + j\omega \frac{C_2 R_2 R_1}{R_1 + R_2}}{1 - \omega^2 C_2 R_2 C_1 R_3 + j\omega (C_1 R_3 + C_2 R_2)} = \frac{R_1 + R_2}{R_1} \times \frac{\sqrt{1 + (\omega \frac{C_2 R_2 R_1}{R_1 + R_2})^2}}{\sqrt{(1 - \omega^2 C_2 R_2 C_1 R_3)^2 + (\omega (C_1 R_3 + C_2 R_2))^2}} \angle [\tan^{-1}(\omega \frac{C_2 R_2 R_1}{R_1 + R_2}) - \tan^{-1}(\frac{\omega (C_1 R_3 + C_2 R_2)}{1 - \omega^2 C_2 R_2 C_1 R_3 + j\omega (C_1 R_3 + C_2 R_2)}]$$

6. HONORS STUDENTS ADD THE FOLLOWING

Calculate and plot the gain of this circuit. What type of filter is this?

