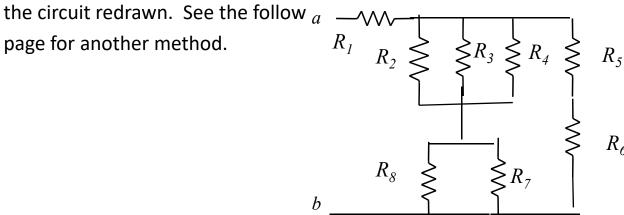
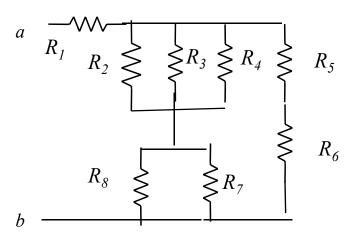

BME 301

4-Simple Circuits


Find the total resistance R_{ab} where

$$\begin{split} R_1 &= 10\Omega, \, R_2 = 15\Omega, \, R_3 = 15\Omega, \\ R_4 &= 15\Omega, \, R_5 = 10\Omega, \, R_6 = 10\Omega, \\ R_7 &= 10\Omega, \, R_8 = 10\Omega \end{split}$$


In this circuit R5 and R6 are in series. In addition, R4, R3, and R2 are in parallel. Finally R7 and R8 are in parallel. These two parallel combinations are in series. This series combination is in series with the series combination of R5 and R6. R1 is in series with this parallel combinations. This is

page for another method.

1. Find the total resistance R_{ab} where

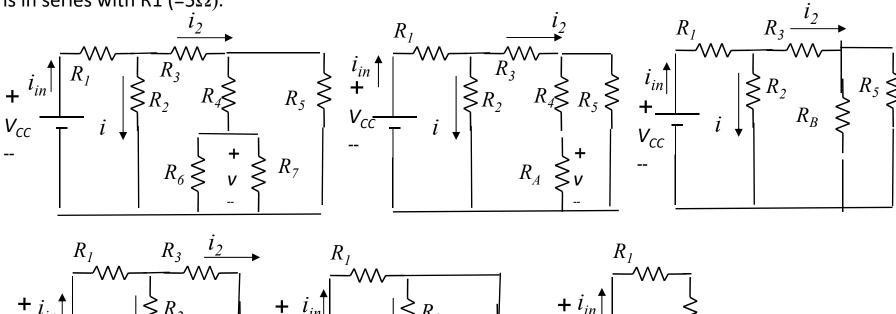
$$\begin{split} R_1 &= 10\Omega, \, R_2 = 15\Omega, \, R_3 = 15\Omega, \\ R_4 &= 15\Omega, \, R_5 = 10\Omega, \, R_6 = 10\Omega, \\ R_7 &= 10\Omega, \, R_8 = 10\Omega \end{split}$$

RA=R5 in series with R6 = $10 + 10 = 20 \Omega$

RB=R4, R3 and R2 in parallel =
$$\frac{1}{\frac{1}{15} + \frac{1}{15} + \frac{1}{15}} = \frac{\frac{1}{3}}{\frac{3}{15}} = \frac{15}{3} = 5\Omega$$

RC=R7 in parallel with R8=
$$\frac{1}{\frac{1}{10} + \frac{1}{10}} = \frac{1}{\frac{2}{10}} = 5\Omega$$

RD=RB in series with RC= $5+5=10\Omega$

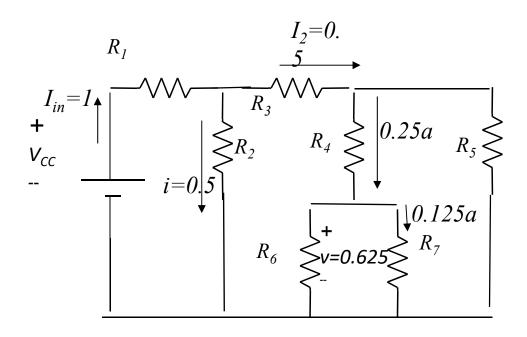

RE=RD in paralled with RA=
$$\frac{1}{\frac{1}{10} + \frac{1}{20}} = \frac{20}{3} = 6.67\Omega$$

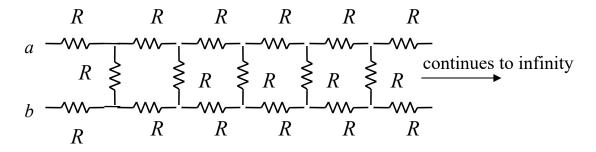
R1 in series with RE= $10 + 6.67 = 16.67\Omega$

2. Calculate the current labeled, i.

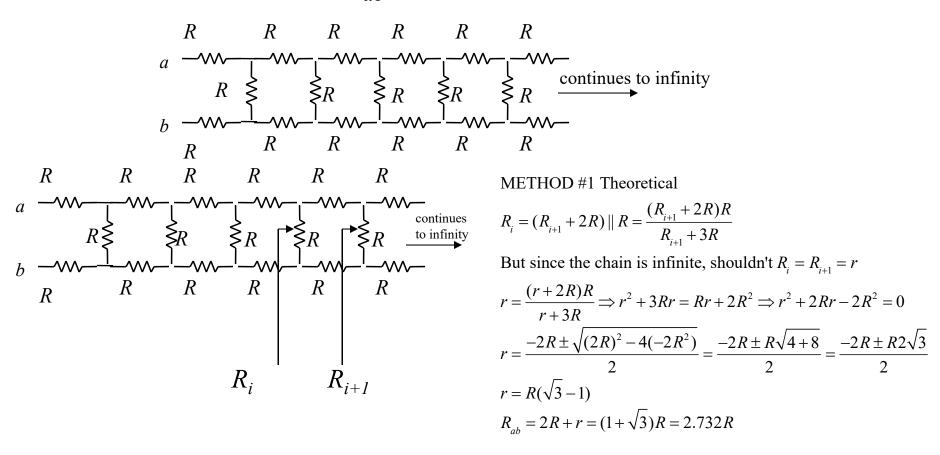
$$R_1 = 2.5\Omega, R_2 = 5\Omega, R_3 = 2.5\Omega, R_4 = 2.5\Omega, R_5 = 5\Omega,$$

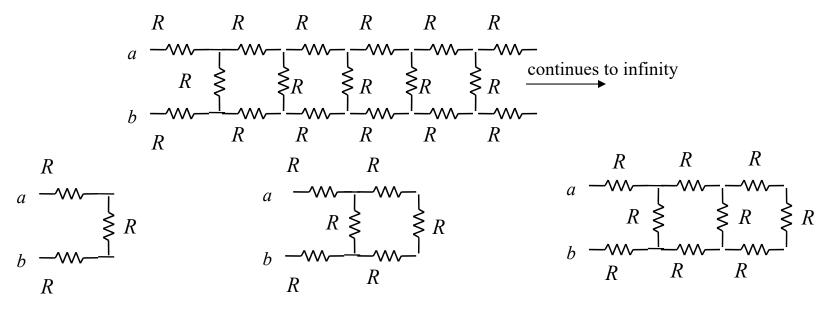
 $R_6 = 5\Omega, R_7 = 5\Omega, V_{cc} = 5$


R6 and R7 are in parallel (Call it RA=2.5 Ω). RA is in series with R4 (call is RB=5 Ω). RB is in parallel with R5 (Call it RC=2.5 Ω). RC is in series with R3 (Call it RD=5 Ω).RD is in parallel with R2 (Call it RE=2.5 Ω). RE is in series with R1 (=5 Ω).


2. Calculate the current labeled, i.

$$\begin{split} R_{I} &= 2.5\Omega, R_{2} = 5\Omega, R_{3} = 2.5\Omega, R_{4} = 2.5\Omega, R_{5} = 5\Omega, \\ R_{6} &= 5\Omega, R_{7} = 5\Omega, V_{cc} = 5 \end{split}$$


Now i_{in} = 5/5=1. Then using current division i= 1/2 =0.5 since RD=R2. And therefore, i_2 =0.5. Then the current flowing into RB=0.25 since RB=R5. Since R6=R7, Then the current R7 = 0.125 and the voltage labeled v=0.125X5=0.625 volt or v=0.5X1.5=0.625.


3. HONORS STUDENTS ADD THE FOLLOWING Find the total resistance R_{ab} for this infinite resistive network.

Find the total resistance R_{ab} for this infinite resistive network

Find the total resistance R_{ab} for this infinite resistive network

METHOD #2

Numerical Iteration

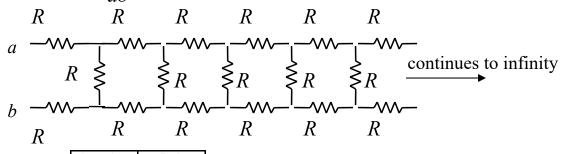
Iteration 1

 $R_{ab}^1 = 3R$

Iteration 2

$$R_{ab}^2 = 2R + R \parallel 3R = 2R + R \parallel R_{ab}^1$$

$$R_{ab}^2 = 2R + \frac{R(3R)}{4R} = 2R + .75R = 2.75R$$

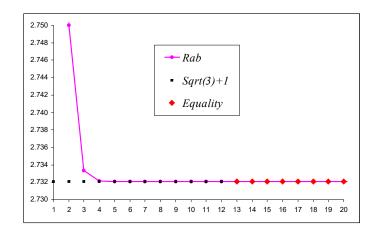

Iteration 3

$$R_{ab}^{3} = 2R + R \parallel (2R + R \parallel 3R) = 2R + R \parallel (R_{ab}^{2})$$

$$R_{ab}^{2} = 2R + \frac{R(3R)}{4R} = 2R + .75R = 2.75R$$

$$R_{ab}^{3} = 2R + \frac{R(2.75R)}{R + (2.75R)} = 2R + \frac{2.75R}{3.75} = 2R + .733R = 2.733R$$

Find the total resistance R_{ab} for this infinite resistive network



Iteration N

$$R_{ab}^{N} = 2R + R || R_{ab}^{N-1}$$

Continuing this way we see that R_{ab} approaches 2.732R where 2.732 is the sqrt(3)+1

Iteration	Rab
1	3
2	2.75
3	2.733333
4	2.732143
5	2.732057
6	2.732051
7	2.732051
8	2.732051
9	2.732051
10	2.732051
11	2.732051
12	2.732051
13	2.732051
14	2.732051
15	2.732051
16	2.732051
17	2.732051
18	2.732051
19	2.732051
20	2.732051

