Sinusoids

Lecture #2 Chapter 2

What Is this Course All About ?

- To Gain an Appreciation of the Various Types of Signals and Systems
- To Analyze The Various Types of Systems
- To Learn the Skills and Tools needed to Perform These Analyses.
- To Understand How Computers Process Signals and Systems

Sinusoidal Signal

- Sinusoidal Signals are <u>periodic</u> functions which are based on the sine or cosine function from trigonometry.
- The general form of a Sinusoidal Signal

 $x(t) = A \cos(\omega_o t + \phi)$ Or $x(t) = A \cos(2\pi f_o t + \phi)$

- where $\cos(\cdot)$ represent the cosine function
 - We can also use $sin(\cdot)$, the sine function
- $\omega_o t + \phi$ or $2\pi f_o t + \phi$ is angle (in radians) of the cosine function
 - Since the angle depends on time, it makes x(t) a signal
- $-\omega_o$ is the radian frequency of the sinusoidal signal
 - f_o is called the cyclical frequency of the sinusoidal signal
- $-\phi$ is the phase shift or phase angle
- -A is the amplitude of the signal

Example $x(t)=10\cos(2\pi(440)t-0.4\pi)$

One cycle takes 1/440 = .00227 seconds This is called the period, T, of the sinusoid and is equal to the inverse of the frequency, f

Sine and Cosine Functions

- Depending upon the quadrant of θ the sine and cosine function changes
 - As the θ increases from 0 to $\pi/2$, the cosine decreases from 1 to 0 and the sine increases from 0 to 1
 - As the θ increases beyond $\pi/2$ to π , the cosine decreases from 0 to -1 and the sine decreases from 1 to 0
 - As the θ increases beyond π to $3\pi/2$, the cosine increases from -1 to 0 and the sine decreases from 0 to -1
 - As the θ increases beyond $3\pi/2$ to 2π , the cosine increases from 0 to 1 and the sine increases from -1 to 0

Properties of Sinusoids

Property	Equation		
Equivalence	$\sin \theta = \cos (\theta - \pi/2)$ or $\cos \theta = \sin (\theta + \pi/2)$		
Periodicity	$\cos(\theta + 2\pi k) = \cos \theta$ or $\sin(\theta + 2\pi k) = \sin \theta$ where k is an integer		
Evenness of cosine	$\cos\theta = \cos\left(-\theta\right)$		
Oddness of sine	$\sin \theta = -\sin (-\theta)$		
Zeros of sine	$\sin \pi k = 0$, when k is an integer		
Zeros of cosine	$\cos [\pi (k+1)/2] = 0$, when k is an even integer; odd multiples of $\pi/2$		
Ones of the cosine	$\cos 2\pi k = 1$, when k is an integer; even multiples of π		
Ones of the sine	sin $[\pi(k+1/2)] = 1$, when k is an even integer; alternate odd multiples of $\pi/2$		
Negative ones of the cosine	$\cos [2\pi (k+1)/2] = -1$, when k is an integer; odd multiples of π		
Negative ones of the sine	sin $[\pi(k+1/2)]$ = -1, when k is an odd integer; alternate odd multiples of $3\pi/2$		

BME 310 Biomedical Computing -

Properties of Sinusoids

K	(K+1)/2	X pi()	cosine	K	K+1/2	X pi()	sine
0	0.5	1.571	0	0	0.5	1.571	1
1	1	3.142	-1	1	1.5	4.712	-1
2	1.5	4.712	0	2	2.5	7.854	1
3	2	6.283	1	3	3.5	10.996	-1
4	2.5	7.854	0	4	4.5	14.137	1
5	3	9.425	-1	5	5.5	17.279	-1
6	3.5	10.996	0	6	6.5	20.420	1
7	4	12.566	1	7	7.5	23.562	-1
8	4.5	14.137	0	8	8.5	26.704	1

Identities and Derivatives

Number	Equation		
1	$\sin^2\theta + \cos^2\theta = 1$		
2	$\cos 2\theta = \cos^2\theta - \sin^2\theta$		
3	$\sin 2\theta = 2\sin\theta\cos\theta$		
4	$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$		
5	$\cos (a \pm b) = \cos a \cos b \mp \sin a \sin b$		
6	$\cos a \cos b = [\cos (a+b) + \cos (a-b)]/2$		
7	$\sin a \sin b = [\cos (a - b) - \cos (a + b)]/2$		
8	$\cos^2\theta = [1 + \cos 2\theta]/2$		
9	$\sin^2\theta = [1 - \cos 2\theta]/2$		
10	$d\sin\theta / d\theta = \cos\theta$		
11	$d\cos\theta / d\theta = -\sin\theta$		

Sinusoidal Signal

• The general form of a Sinusoidal Signal

 $x(t) = A \cos(\omega_o t + \theta) = A \cos(2\pi f_o t + \theta)$

- $\omega_o = 2\pi f_o$ is the radian frequency of the sinusoidal signal
 - Since $\omega_o t$ has units of radians which is dimensionless, ω_o has units of rad/sec
- $-f_o$ is called the cyclical frequency of the sinusoidal signal
 - Has units of sec⁻¹ or Hz (formerly, cycles per second)
- θ is the phase shift or phase angle
 - Has units of radians
- A is the amplitude of the signal and is the scaling factor that determines how large the signal will be.
 - Since the cosine function varies from -1 to +1 then our signal will vary from -A to +A.
 - *A* is sometimes called the peak of the signal and 2*A* is called the peak-to-peak value

Relation of Period to Frequency

- Period of a sinusoid, T_o , is the length of one cycle and $T_o = 1/f_o$
- The following relationship must be true for all Signals which are periodic (not just sinusoids) $x(t + T_o) = x(t)$
- So

$$A \cos(\omega_o(t+T_o) + \theta) = A \cos(\omega_o t + \theta)$$
$$A \cos(\omega_o t + \omega_o T_o + \theta) = A \cos(\omega_o t + \theta)$$

Relation of Period to Frequency Continued

• Since a sinusoid is periodic in 2π , this means:

since
$$T_o = 1/f_o$$

Then $\omega_o T_o = 2\pi f_o T_o$
 $\omega_o T_o = 2\pi$
therefore, $T_o = 2\pi/\omega_o$
 $A\cos(\omega_o t + \omega_o T_o + \theta) = A\cos(\omega_o t + \theta)$
 $A\cos(\omega_o t + 2\pi + \theta) = A\cos(\omega_o t + \theta)$

- The period is in units of seconds
- The frequency is in units of sec⁻¹ or Hz (formerly, cycles per second)

Frequencies

Phase Shift and Time Shift

- The phase shift parameter θ (with frequency) determines the time locations of the maxima and minima of the sinusoid.
- When $\theta = 0$, then for positive peak at t = 0.
- When $\theta \neq 0$, then the phase shift determines how much the maximum is shifted from t = 0.
- However, delaying a signal by t_1 seconds, also shifts its waveform.

Time Shifting

• Look at the following waveform:

Time Shifting Continued

• Now let's time shifted it by 2 seconds (delay),

x(t) = s(t - 2)

Time Shifting Continued

• Now let's time shifted it by -1 seconds (advance),

Time Shifting

Phase shift and Time Shift

 $x(t) = \cos(2\pi 40t - \frac{\pi}{2})$ f = 40Hz; $T = \frac{1}{40} = 0.025 \text{ sec}$ phase shift: $\theta = -\frac{\pi}{2}$ time shift: $t_s = -\frac{-\frac{\pi}{2}}{2\pi 40} = \frac{1}{160} = 0.00625 \text{ sec}$ $x(t) = \cos(2\pi 40(t - 0.00625))$

Phase and Time Shift

$$x(t-t_{1}) = A \cos(\omega_{o}(t-t_{1})) = A \cos(\omega_{o}t + \theta)$$

$$A \cos(\omega_{o}t-\omega_{o}t_{1}) = A \cos(\omega_{o}t + \theta)$$

$$\omega_{o}t-\omega_{o}t_{1} = \omega_{o}t + \phi$$

$$-\omega_{o}t_{1} = \theta$$

$$t_{1} = -\theta / \omega_{o} = -\phi / 2\pi f_{o}$$

$$\theta = -2\pi f_{o}t_{1} = -2\pi (t_{1} / T_{o})$$

- Note that a positive (negative) value of *t*₁ equates to a delay (advance)
- And a a positive (negative) value of θ equates to an advance (delay)

Phase and Time Shift

- Note that a positive (negative) value of t_1 equates to a delay (advance)
- And a a positive (negative) value of θ equates to an advance (delay)

$$x(t) = 5 \cos(2\pi \ 50t + \theta)$$

$$\theta = \pi / 2; -\pi / 2$$

$$t_1 = -\pi / 2 / (2\pi \ 50) = -.005 \text{ sec}; +.005 \text{ sec}$$

Time shifting

Shift = **0.0**5secondds

Periodicity of Sinusoids

What happens when $\theta = 2\pi$?

- When $\theta = 2 \pi$, then the sinusoidal waveform does not change since sinusoids are periodic in 2π
- Therefore, adding or subtracting multiple of 2π does not change the waveform
- This is called modulo 2π

Plotting Sinusoid Signals Case #1: Delay

 $x(t) = 20\cos(2\pi(40)t - 0.4\pi) \quad A = 20, f_o = 40Hz, \theta = -0.4\pi$ Basic Calculations

1)Amplitude is 20 2) Frequency = 40*Hz* Calculation of the Period $T_o = \frac{1}{f_o} = \frac{1}{40}$ = 0.025 sec = 25*m* sec

3) Phase angle/shift = $-0.4\pi = -1.25664$ radians Calculation of the time shift = $2\pi ft_s + \theta = 0$ $2\pi (40)t_s - 0.4\pi = 0$

$$t_{s} = \frac{.4\pi}{2\pi(40)} = 0.005 \operatorname{sec} = 5m \operatorname{sec} \operatorname{delay}$$

Note that $\frac{t_{s}}{T_{o}} = \frac{|5|m \operatorname{sec}}{25m \operatorname{sec}} = 0.2$
which also equals $\frac{|\text{phase angle}|}{2\pi} = \frac{|-0.4\pi|}{2\pi} = 0.2$

41

Plotting Sinusoid Signals

t	$2\pi ft + \theta$	$20 \cos (2 \pi ft + \theta)$
-0.0250	-7.54	6.18
-0.0225	-6.91	16.18
-0.0200	-6.28	20.00
-0.0175	-5.65	16.18
-0.0150	-5.03	6.18
-0.0125	-4.40	-6.18
-0.0100	-3.77 \	-16.18
-0.0075	-3.14	-20.00
-0.0050	-2.51	
-0.0025	-1.88	∖ -6.18
0.0000	-1.26	∖6.18
0.0025	-0.63	1`6.18
0.0050	0.00	20.00
0.0075	0.63	16.18
0.0100	1.26	6.18
0.0125	1.88	-6.18
0.0150	2.51	-16.18
0.0175	3.14	-20.00
0.0200	3.77	-16.18
0.0225	4.40	-6.18
0.0250	5.03	6.18
0.0275	5.65	16.18
0.0300	6.28	20.00
0.0325	6.91	16.18
0.0350	7.54	6.18
0.0375	8.17	-6.18
0.0400	8.80	-16.18
0.0425	9.42	-20.00
0.0450	10.05	-16.18
0.0475	10.68	-6.18
0.0500	11.31	6.18

Since the period is 0.025, chose to plot the graph with 10 points per cycle or a Δt of 0.0025 seconds.

BME 310 Biomedical Computing -

Plotting Sinusoid Signals Case #1: No Delay

 $x(t) = 20\cos(2\pi(40)t) \quad A = 20, f_o = 40Hz, \theta = 0$ Basic Calculations

1)Amplitude is 20 2) Frequency = 40HzCalculation of the Period $T_o = \frac{1}{f_o} = \frac{1}{40}$

 $= 0.025 \sec = 25m \sec$

3) Phase angle/shift = 0 radians Calculation of the time shift = $2\pi f t_s + \theta = 0$ $2\pi (40)t_s - 0 = 0$ $t_s = \frac{0}{2\pi (40)} = 0 \sec$

Plotting Sinusoid Signals

t	$2\pi ft + \theta$	$20 \cos (2 \pi ft + \theta)$	
-0.0250	-6.28	20.00	
-0.0225	< -5.65	16.18	
-0.0200	\$5.03	6.18	
-0.0175	-4,40	-6.18	
-0.0150	-3.77	-16.18	
-0.0125	-3.14	-20.00	
-0.0100	-2.51	-16.18	
-0.0075	-1.88	∖ -6.18	
-0.0050	-1.26	6.18	
-0.0025	-0.63	\16.18	
0.0000	0.00	20.00	
0.0025	0.63	16,18	
0.0050	1.26	6.18	
0.0075	1.88	-6.18	
0.0100	2.51	-16.18 🔪	
0.0125	3.14	-20.00	
0.0150	3.77	-16.18	
0.0175	4.40	-6.18	\setminus
0.0200	5.03	6.18	
0.0225	5.65	16.18	
0.0250	6.28	20.00	
0.0275	6.91	16.18	
0.0300	7.54	6.18	
0.0325	8.17	-6.18	
0.0350	8.80	-16.18	
0.0375	9.42	-20.00	
0.0400	10.05	-16.18	
0.0425	10.68	-6.18	
0.0450	11.31	6.18	
0.0475	11.94	16.18	
0.0500	12.57	20.00	

Phase shift of $\theta = 0$

Since the period is 0.025, chose to plot the graph with 10 points per cycle or a Δt of 0.0025 seconds.

Plotting Sinusoid Signals Case #1: Advance

 $x(t) = 20\cos(2\pi(40)t + 0.6\pi)$ $A = 20, f_o = 40Hz, \theta = 0.6\pi$ Basic Calculations

Amplitude is 20
 Frequency = 40*Hz* Calculation of the Period

 $= 0.025 \sec = 25m \sec$

 $T_o = \frac{1}{f_o} = \frac{1}{40}$

3) Phase angle/shift = $+0.6\pi = 1.885 radians$ Calculation of the time shift = $2\pi ft_s + \theta = 0$ $2\pi (40)t_s + 0.6\pi = 0$ $t_s = -\frac{.6\pi}{2\pi (40)} = -0.0075 \sec = -7.5m \sec$ advance Note that $\frac{t_s}{T_o} = \frac{\left|-7.5\right|m \sec}{25m \sec} = 0.3$ which also equals $\frac{\left|\text{phase angle}\right|}{2\pi} = \frac{\left|+0.6\pi\right|}{2\pi} = 0.3$

Plotting Sinusoid Signals

t	$2\pi ft + \theta$	$20 \cos (2 \pi ft + \theta)$
-0.0250	-4.40	-6.18
-0.0225	-3.77	-16.18
-0.0200	∖-3.14	-20.00
-0.0175	-2.51	-16.18
-0.0150	-1.88	-6.18
-0.0125	-1.26	6.18
-0.0100	-0.63 🔪	16.18
-0.0075	0.00	20.00
-0.0050	0.63	\ 16.18
-0.0025	1.26	6.18
0.0000	1.88	∖-6.18
0.0025	2.51	-16.18
0.0050	3.14	-20.00
0.0075	3.77	-16.1&
0.0100	4.40	-6.18 🔪
0.0125	5.03	6.18
0.0150	5.65	16.18 🔪
0.0175	6.28	20.00
0.0200	6.91	16.18
0.0225	7.54	6.18
0.0250	8.17	-6.18
0.0275	8.80	-16.18
0.0300	9.42	-20.00
0.0325	10.05	-16.18
0.0350	10.68	-6.18
0.0375	11.31	6.18
0.0400	11.94	16.18
0.0425	12.57	20.00
0.0450	13.19	16.18
0.0475	13.82	6.18
0.0500	14.45	-6.18

Since the period is 0.025, chose to plot the graph with 10 points per cycle or a Δt of 0.0025 seconds.

Matlab Program to Plot Sinusoids

```
function cosineplotphase(Frequency,Amplitude,Phase,Points,Timestart,Timeend);
omega=2*pi*Frequency;
Period=1/Frequency;
phase=Phase;
Timedelta=Period/Points;
time = (Timestart:Timedelta:Timeend);
y=Amplitude*cos(omega*time+phase);
plot(time,y,'r');
title('Sinusoidal Plot');
xlabel('Seconds');
axis([Timestart Timeend -1.1*Amplitude +1.1*Amplitude]);
```

What's so important about Sinusoids and periodic signals?

- Are signals is nature periodic?
- Name some:
 - Vibrations
 - Voice
 - Electromagnetic
 - Biomedical
- So are signals is nature periodic?
 - Not always but we may be able to model them with period signals
- Biomedical Research Summer Institute Examples:
 - Measure blood viscosity
 - Measure cell mass

Complex Numbers

- Complex numbers: What are they?
- What is the solution to this equation?

 $ax^2+bx+c=0$

• This is a second order equation whose solution is:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

What is the solution to?

1. $x^2 + 4x + 3 = 0$

$$x_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \times 3}}{2} = \frac{-4 \pm \sqrt{16 - 12}}{2}$$
$$= \frac{-4 \pm \sqrt{4}}{2} = \frac{-4 \pm 2}{2} = -1, -3$$

What is the solution to?

2. $x^2 + 4x + 5 = 0$

$$x_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \times 5}}{2} = \frac{-4 \pm \sqrt{16 - 20}}{2}$$
$$= \frac{-4 \pm \sqrt{-4}}{2} ?????$$

What is the Square Root of a Negative Number?

- We define the square root of a negative number as an imaginary number
- We define

 $\sqrt{-1} \Rightarrow j$ for engineers (*i* for mathematicans)

• Then our solution becomes:

$$x_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \times 5}}{2} = \frac{-4 \pm \sqrt{16 - 20}}{2}$$
$$= \frac{-4 \pm \sqrt{-4}}{2} = \frac{-4 \pm j\sqrt{4}}{2} = \frac{-4 \pm j2}{2} = -2 + j1, -2 - j1$$
BME 310 Biomedical Computing-
J.Schesser

The Complex Plane

• z = x + jy is a complex number where:

 $x = \operatorname{Re}\{z\}$ is the real part of z

 $y = Im\{z\}$ is the imaginary part of z

• We can define the complex plane and we can define 2 representations for a complex number:

Rectangular Form

• Rectangular (or cartesian) form of a complex number is given as

z = x + jy $x = \operatorname{Re}\{z\}$ is the real part of z $y = Im\{z\}$ is the imaginary part of z z = x + jy $\operatorname{Im}\{z\}$ \bullet (x, y) х $\operatorname{Re}\{z\}$ **Rectangular or Cartesian**

Polar Form

- $z = r e^{j\theta} = r \angle \theta$ is a complex number where:
- *r* is the magnitude of *z*
- θ is the angle or argument of z (arg z)

Relationships between the Polar and Rectangular Forms $z = x + jy = r e^{j\theta}$

• Relationship of Polar to the Rectangular Form:

$$x = \operatorname{R}e\{z\} = r\cos\theta$$
$$y = \operatorname{I}m\{z\} = r\sin\theta$$

• Relationship of Rectangular to Polar Form:

$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \arctan(\frac{y}{x})$

Addition of 2 complex numbers

- When two complex numbers are added, it is best to use the rectangular form.
- The real part of the sum is the sum of the real parts and imaginary part of the sum is the sum of the imaginary parts.

57

Multiplication of 2 complex numbers

• When two complex numbers are multiplied, it is best to use the polar form:

• Example:
$$z_3 = z_1 \times z_2$$
 $z_1 = r_1 e^{j(\theta_1)}; z_2 = r_2 e^{j(\theta_2)}$
 $z_3 = z_1 \times z_2 = r_1 e^{j(\theta_1)} \times r_2 e^{j(\theta_2)}$
 $= r_1 r_2 e^{j(\theta_1)} e^{j(\theta_2)} = r_1 r_2 e^{j(\theta_1 + \theta_2)}$

• We multiply the magnitudes and add the phase angles

$$= 3.536 + j8.536$$

= $\sqrt{3.536^2 + 8.536^2} e^{j^{\tan^{-1}}(\frac{8.536}{3.536})} = \sqrt{12.5 + 72.86} e^{j^{\tan^{-1}}(2.41)}$
= $\sqrt{84.367} e^{j^{\tan^{-1}2.41}} = 9.24 e^{j^{1.18}}$

BME 310 Biomedical Computing -J.Schesser 60

Some examples

$$5e^{j\frac{\pi}{4}} + 5e^{j\frac{\pi}{2}} = 5\cos(\frac{\pi}{4}) + j5\sin(\frac{\pi}{4}) + 5\cos(\frac{\pi}{2}) + j5\sin(\frac{\pi}{2})$$
$$= \frac{5}{\sqrt{2}} + 0 + j\frac{5}{\sqrt{2}} + j5$$
$$= \frac{5}{\sqrt{2}} + j5 \times 1.707 = 5 \times 0.707 + j5 \times 1.707$$
$$OR$$

$$= 5 \times \sqrt{0.707^{2} + 1.707^{2}} e^{j^{\tan^{-1}(\frac{1.707}{.707})}} = 5 \times \sqrt{0.5 + 2.91} e^{j^{\tan^{-1}(2.41)}}$$
$$= 5 \times \sqrt{3.41} e^{j^{1.18}} = 5 \times 1.85 e^{j^{1.18}} = 9.24 e^{j^{1.18}}$$

Some examples

Euler's Formula

 $e^{j\theta} = \cos\theta + j\sin\theta$

• We can use Euler's Formula to define complex numbers

$$z = r e^{j\theta} = r \cos \theta + j r \sin \theta$$
$$= x + j y$$

Complex Exponential Signals

• A complex exponential <u>signal</u> is define as:

$$z(t) = A e^{j(\omega_o t + \theta)}$$

- Note that it is defined in polar form where
 - the magnitude of z(t) is |z(t)| = A
 - the angle (or argument, $\arg z(t)$) of $z(t) = (\omega_o t + \theta)$
 - Where ω_o is called the radian frequency and θ is the phase angle (phase shift)

Complex Exponential Signals

• Note that by using Euler's formula, we can rewrite the complex exponential signal in rectangular form as:

$$z(t) = Ae^{j(\omega_o t + \theta)}$$
$$= A\cos(\omega_o t + \theta) + jA\sin(\omega_o t + \theta)$$

• Therefore real part is the cosine signal and imaginary part is a sine signal both of radial frequency ω_0 and phase angle of θ

Plotting the waveform of a complex exponential signal

- For an complex signal, we plot the real part and the imaginary part separately.
- Example:

$$z(t) = 20e^{j(2\pi(40)t-0.4\pi)} = 20e^{j(80\pi t-0.4\pi)}$$

 $= 20 \cos(80\pi t - 0.4\pi) + j20 \sin(80\pi t - 0.4\pi)$

NOTE!!!!

• The reason why we prefer the complex exponential representation of the real cosine signal:

$$x(t) = \Re e\{z(t)\} = \Re e\{Ae^{j(\omega_o t + \theta)}\}$$
$$= A\cos(\omega_o t + \theta)$$

• In solving equations and making other calculations, it easier to use the complex exponential form and then take the Real Part.

Homework

• Exercises:

-2.1-2.5

• Problems:

-2.1 Instead plot
$$x(t) = 5\cos(\frac{2\pi}{25}t - \frac{\pi}{10})$$
 for $-25 \le t \le 50$

Plot x(t) using Matlab; as part of your answer provide your code - 2.2

- 2.3a, 2.3b *ω*=0.4*π*,

Plot these functions using Matlab; as part of your answer provide your code - 2.4