Sampling and Aliasing
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What Is this Course All About ?

* To Gain an Appreciation of the
Various Types of Signals and Systems

* To Analyze The Various Types of
Systems

 To Learn the Skills and Tools needed
to Perform These Analyses.

* To Understand How Computers
Process Signals and Systems

BME 310 Biomedical Computing - 153
J.Schesser



Discrete-time Signals and Computers

Up to now we have been studying continuous-time signals (also
called analog signals) such as

x(t)= Acos(w,t +0)

However, digital computers and computer programs can not
process analog signals.

Instead they store discrete-time versions of analog signals

x[n]=x(nT)
This 1s because digital computers can only store discrete
numbers.
— There are computers called analog computers which do process
continuous-time signals
Since the computer only stores numbers, how does one know
what continuous-time signal it represents?
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Sampling

* We can obtain a discrete-time signal by sampling a
continuous-time signal at equally spaced time
instants, t, = nT

x[n]=x(nT,) -oo<n<oo
e The individual values x[n] are called the samples of
the continuous time signal, x(7).

s

* The fixed time interval between samples, T, 1s also
expressed 1n terms of a sampling rate /. (in samples
per second) such that:

f.=1/ T, samples/sec.

BME 310 Biomedical Computing - 155
J.Schesser



Continuous-to-Discrete Conversion

* By using a Continuous-to-Discrete (C-to-D)
converter, we can take continuous-time signals and
form a discrete-time signal.

* There are devices called Analog-to-Digital converters
(A-to-D)

e The books chooses to distinguish an C-to-D converter
from an A-to-D converter by defining a C-to-D as an
ideal device while A-to-D converters are practical
devices where real world problems are evident.

— Problems in sampling the amplitudes accurately
— Problems in sampling at the proper times
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Discrete-Time Signals

* A discrete-time signal 1s
a sequence of numbers
and carry no

information about the ot
time-sequence. oz |

* Looking at the gﬁf;‘
following diagram, +
which (gray or solid)

waveform are these
(red) samples associated
with?
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Discrete-Time Sinusoidal Signals

Since a Fourier series can be written for any continuous-time
signal, let’s concentrate on sinusoids

We define a normalized frequency for the discrete sinusoidal

signal. x[n] = x(nT) = Acos(wnT. +6)
= Acos(wn + 6)
w=ol, = -
A

@ is the normalized or discrete-time frequency

Since we can have different signals with the same @, then
there can be an infinite number of continuous-time signal
which yield the same discrete-time sinusoid!
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Two Problems with Sampling

* Problem 1: How many samples are enough to
have to represent a continuous time signal?

1 - A I((r

1 d

 In this figure, we have a continuous-time signal
sampled every .4 seconds (red samples) and
every 1 second (black samples).
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Discrete-Time Sinusoidal Signals

* Problem 2: Can a set of samples be represent

more that one continuous-time signal
* The discrete-time sinusoid

shown 1n the figure has 17
which can be obtain from, for \

example, either a 1 second / \ /] /(
sampled continuous-time 6 /

sinusoid with f=0.2 Hzor 1.2 i e /1
Hz. /

In the first case, where f= 0. ‘ \

1 d \/

Hz, we have:

w=27(0.2)1)=.4r
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Discrete-Time Sinusoidal Signals

 In the first case, where f= 0.2

Hz, WAG have: //1)\ / \ /
& =27(02)1)=4r \ /] /(

 Since a sinusoid 1s periodic in "1 7, 0 I
2, then for the case where \| l/ \1 V

f=1.2 Hz

1 "/ /

x[n]= Acos(awn+ ) \
0=27r(12)1)=24r=24r-27n=4r

x[n]=Acos(24rnn+68)= Acos(2zn+0.4zn+60) = Acos(0.4zn+6)

BME 310 Biomedical Computing - 161
J.Schesser



Aliasing

e This example
illustrates that two N \ /
sampled sinusoids can \ //| \ /(
produce the same 07 ] 7
discrete-time signal. \| V \l l/

1. cos [27(0.2) 1]
2. cos[2n(1.2) {]

 When this occurs we say that that these signals
are aliases of each other.
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Aliasing

There are more alias signals for this example:
1. x(f)=cos (2m(0.2) t) => x[n] = cos (27(0.2) 1n) = cos (0.4x n)
2. x(t)=cos (2n(1.2) t) => x[n] = cos (2n(1.2) 1n) =cos (2.4x n) =

cos (0.4 n+2mn)=cos (0.4r n)
@ =04r+2xd forl=0,1,23,...

Since cos(2z - @) =cos(f), o, =—0.4x+ 2 forl=0,1,2,3,...
3. x(t) =cos 2n(.8) t) => x[n] = cos (2n(.8) 1n) = cos (1.67 n) =

cos (2 n-0.4mxn)=cos (0.47 n)
In summary, (for / = positive

or negative integer):

N

o, o +2xl, 27l-0,

o

where @, is called the principal alias
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Aliasing

* Let’s look at signals of the form: cos(w?)

cos(wt) = cos(an)

sampled
a/\) 2\ " ~ ~ . . . . . .
where w, =—- =@, f. and @, = @, + 27, @, is the principal alias, and / is an integer.
A A @ + 27
Therefore,w, =, f, = (v, +27) f, and f, = (@, . ).,
7T

since cos(6) = cos(—0) = cos(27 —6), then we can have @, =27 — @, and f, =

QAadtw,)f,
27

orw, =27Mtm and f, =

In our example, @, is 0.4 and f, =1. Then,

o =2m+w, =214+047r=0.4r,1.6x,2.47,3.67,....rad/sec

. Qrdtw,)f, 2xd%04r
= =

27 27

=/+20.2=02,08 12,18, ..... Hz
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Shannon’s Sampling Theorem

 How frequently do we need to sample?

* The solution: Shannon’s Sampling Theorem:
A continuous-time signal x(#) with frequencies
no higher than f_. can be reconstructed

exactly from its samples x[n] = x(nT),), 1 the

samples are taken arate f,=1/ T, thatis

greater than 2 f,

max*
* Note that the minimum sampling rate, 2 f .,
1s called the Nyquist rate.
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Spectrum of the Discrete-time
Signal

24 -1.67 047 |04rx 1.6 24T

* There are an infinite number of frequency
components of discrete-time signal

* They consists of the principal along with the
other aliases (an infinite number of them).
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Nyquist Rate

* Shannon’s theorem tell us that if we have at
least 2 samples per period of a sinusoid, we
have enough information to reconstruct the

sinusoid.

* What happens if we sample at a rate which 1s
less than the Nyquist Rate?

— Aliasing will occur!!!!
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|deal Reconstruction

e The sampling theorem suggests that a process exists
for reconstructing a continuous-time signal from its
samples.

e If we know the sampling rate and know its spectrum
then we can reconstruct the continuous-time signal by
scaling the principal alias of the discrete-time signal
to the frequency of the continuous signal.

* The normalized frequency will always be 1n the range
between 0 ~ r and be the principal alias 1f the
sampling rate 1s greater than the Nyquist rate.
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|deal Reconstruction Continued

» If continuous-time signal has a frequency of w, then the discrete-time
signal will have a principal alias of

~ )

J,

* So we can use this equation to determine the frequency of the
continuous-time signal from the principal alias:

n 0
W=af =—
I
* Note that the normalized frequency must be less than 7 if the Nyquist
rate 1s used
2 2
a) a) T 277‘ #MAX - #MAX

o /. tf(2ﬂm)

* And the reconstructed continuous-time frequency must be

o=2rf=a0f, :>f_a)f Q:L 1
2r 2
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Oversampling

When we sample at a rate which 1s greater than the Nyquist
rate, we say we are oversampling.

If we are sampling a 100 Hz signal, the Nyquist rate 1s 200
samples/second => x(¢)=cos(2z(100)t+r/3)

If we sample at 2.5 times the Nyquist rate, then f, = 500
samples/sec

This will yield a normalized frequency at 2z(100/500) = 0.4=w

WAL
IUARANAL
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Oversampling

» Since we are greater than the Nyquist rate, the normalized
frequency will be <z which means it 1s the principal alias.

* And we get back the original continuous frequency when we

do the reconstruction
« f=0.4nf./2n=0.4n500/27=0.2 (500) = 100 Hz

2.4 -1.6 -0.47 | 0.47 1.6 24r

BME 310 Biomedical Computing - 171

J.Schesser



Undersampling and Aliasing

When we sample at a rate which is less than the Nyquist rate,
we say we are undersampling and aliasing will yield
misleading results.

If we are sampling a 100 Hz signal, the Nyquist rate 1s 200
samples/second => x(¢)=cos(2z(100)t+7/3)

If we sample at .4 times the Nyquist rate, then f, = 80 s/sec
This will yield a normalized frequency at 2z(100/80) = 2.5«

HAARAANS
VTV

J.Schesser

172




Undersampling

Since it 1s >, 2.57 1s NOT the principal alias
The principle alias 1s 2.57 - 27 = 0.57

Using 0.57 as the principal alias and performing a reconstruction we then
have:

f=0.57nf/2r=0.57 80/ 27 =0.5 (40) = 20 Hz and we have
reconstructed the wrong_signal!!!

0.5

257 -1.57 -0.57 | 0.5 1.57 257
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The Alilas Problem due to
Undersampling

H “m
H
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Alilasing and Folding

* Your book treats undersampling in terms of
aliasing and folding

* During reconstruction, both of these
phenomenon will produce erroneous results.

» The difference between aliasing and folding
has to do with which part of the spectrum
created the alias.
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Discrete-to-Continuous Conversion

* An D-to-C converter uses the samples to
reconstruct the continuous-time signal by
interpolation.

* There are various interpolation algorithms
which may be used:

— Zero-Order Hold
— Linear
— Cubic Spline
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Interpolation

Zero-Order Hold Linear

e Oversampling always improves the reconstruction

 Best reconstruction 1s Low Pass Filter or what the text
calls: Ideal Bandlimited Interpolation
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Non-sinusoidal Signals

* Since a Fourier series can be written for any
continuous-time signal, the sampling and
reconstruction processes for any continuous-
time signal 1s the same

— Shannon’s Sampling theorem

— Nyquist Rate /. > 2f to eliminate aliasing

— Oversampling to improve interpolation

— Ideal (low pass filter) Bandlimited interpolation
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Homework

 Exercises:
—4.1-4.5

* Problems:
—4.1,4.2,4.3,
— 4.4, Use Matlab to plot the signal 1n part a.
—45,4.8,4.11,4.19
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