Laboratory Exercise 1: Oscilloscope Operation and Basic Measurements

Basic Operation of an Oscilloscope

An oscilloscope is simply a small television set except that the user has control of what is being displayed. An oscilloscope displays a voltage waveform versus time and has the following components:

1) a screen to display a waveform,
2) input jacks for connecting the signal to be displayed, and
3) dials to control how the signal will be displayed.

The Screen

The screen is cathode ray tube found in most television sets where the face of the screen is divided up into a 2 dimensional grid (or axes or scale); say a 10x10 grid. In this example, the vertical grid is divided up into 10 (major) divisions and the horizontal grid is divided into 10 major divisions. To improve the precision, each of these divisions is further broken up into 5 minor divisions.

The horizontal axis (X-axis) represents time and the vertical axis (Y-axis) represents voltage. The scope displays (also called a signal trace or trace) the input signal voltage along the vertical (or Y-axis) while an internally generated signal (called the horizontal sweep or sweep signal) is simultaneously produced along the X-axis creating a 2-dimensional time trace of the input signal.

So if the scope is set to 1 volt/major vertical division and 0.5 seconds/major horizontal division, then a point situated at the 2-dimensional coordinates of 2 major vertical divisions plus 2 minor vertical division and at 3 major horizontal divisions plus 4 minor horizontal divisions would represent a 2.4 volts (or 1 volts/major vertical division times 2 major vertical division plus 1 volts/major vertical division times 2/5 major divisions [which is equal to 2 minor vertical divisions]) at a position of time of 1.9 seconds (or 0.5 seconds/major horizontal division times 3 major horizontal divisions plus 0.5 seconds/major horizontal division times 4/5 major divisions [which is equal to 4 minor horizontal divisions]) from the start of the waveform.

OR

Voltage on the vertical scale is 1 volts/division × 2.4 divisions = 2.4 volts
Time on the horizontal scale is 0.5 sec/division × 3.8 divisions = 1.9 sec
Signal Inputs

They are at least one set of connections on each oscilloscope for connecting the external signal to be displayed. Modern scopes can display two or more signals at a time and, therefore, would have a set of jacks for each signal to be displayed. Since our scope is a dual trace scope there are two. These are sometimes called Y-Inputs.

Sometimes there are other jacks to connect signals which are used as references but may not be used to display. These inputs are called Trigger Inputs. (Certain scopes also support X-Inputs, which override the internal sweep signal, and, thereby, Lissajous patterns are displayed. Finally, there may be a Z-Input which is directly connected to the gun of the cathode ray tube and is used to modulate the intensity of the beam. These latter two inputs are just mentioned for completeness.)

As part of the Y-Input jacks there may be a switch to directly connect (DC) or capacitively connect (AC) the signal to the scope. For our scope this is a software switch. The latter passes any DC component of the signal while the latter filters out the DC. The latter may be used if the scope is “loading” down the circuit.

There may also be a calibration (CAL) setting on this switch to adjust the oscilloscope parameters.

Controls

There are several controls on the scope. They include: the vertical grid (or scale) control (Volts/Div), vertical position control, the horizontal scale control (Timebase), intensity control, Trigger Level, Trigger Source, etc. There are vertical controls for each Y-Input supported by the scope.

The intensity control controls the brightness of the trace and the vertical position control is used to set the zero voltage value of the signal along the Y-axis (e.g., at the center of the grid).

The basic scope controls are the vertical (Volts/Div) and horizontal (Timebase) controls.
Volts/Div

The vertical scale control is used to set how one reads the voltage values from scope’s Y-axis grid. This is called the **Volts/Div**. The figure following shows a sine wave with amplitude of 1 volt and the **Volts/Div** is set to 0.5 volts/division. (I am using a 4x10 grid for the display.)

![Sine Wave with Volts/Div 0.5](image)

In the following figure, the same sine wave is displayed; however, the **Volts/Div** is set to 1 volt/division.

![Sine Wave with Volts/Div 1](image)
If you set the Volts/Div too low, you’ll clip the signal. This figure shows the same sine wave with a Volts/Div of 250 millivolts/division.

Likewise, setting it too high, and you’ll won’t find the signal. This figure shows the same sine wave with a Volts/Div of 50 volts/division.

Therefore, knowing the approximate voltage maximums and minimums of the input signal should be the guiding factor for choosing an appropriate value for the Volts/Div.
Timebase

(Assume that Volts/Div is set to 500 millivolts/division = .5 volts/division.) The Timebase controls how the horizontal (X-axis) is read. In the following figure, a sine wave with frequency 1 Hz is displayed. In this case, the frequency is 1 Hz and its period is 1 complete cycle in 1 second (recall Hz = cycles per second). Since the Timebase is set to 0.1 seconds (or 100 milliseconds/division) and there are 10 divisions on the horizontal axis, a second of time spans the full X-axis and, therefore, a full cycle will be displayed.

Setting the Timebase to 200 milliseconds/division X 10 divisions = 2 seconds will yield a display of 2 cycles.
Therefore, increasing the **Timebase** will display more cycles of a periodic signal. Increasing too much will clutter the display. Conversely, reducing the **Timebase**, fewer cycles will be displayed. In the following figure, the **Timebase** is set to 50 milliseconds/division and one half of a cycle is displayed. Reducing is too much may display a useless fragment of a cycle.

![Graph](image1.png)

Now, what happens when the frequency changes? For a sine wave with frequency of 2 Hz has a period of 0.5 second (or 500 milliseconds). Therefore, with the **Timebase** set at 100 milliseconds/division, our 10-division scope will display 2 cycles.

![Graph](image2.png)
and with a **Timebase** set at 200 milliseconds/division, 4 cycles will be displayed.

![Graph of a sine wave](image)

As stated previously, increasing the **Timebase** further will display more cycles. However, to display one cycle of the 2 Hz sine wave, the **Timebase** needs to be reduced to 50 milliseconds/division (since the inverse of the frequency 2 Hz = 0.5 seconds is the signal’s period and since our scope has 10 divisions, we have 50 milliseconds).

![Graph of a sine wave](image)

Therefore, reducing the **Timebase** will support higher frequency periodic signals.
The above discussion is true whether the signal is a sine wave, square wave, or other type of periodic signal.

The following figure shows the trace of a square wave with a frequency of 4 Hz.

Therefore, knowing the approximate maximum frequency of the input signal is the guiding factor for choosing an appropriate value for the **Timebase**. Recall that the inverse of the maximum frequency of a periodic signal will yield the (time) **period** of 1 cycle. Therefore, the **Timebase** should be calculated by taking the **period** of the signal and dividing it by the number of horizontal X-axis divisions times the desired number of cycles to be displayed.

How to adjust the Timebase and Volts/Div

When an unknown signal (both in voltage and frequency), one may have to adjust both the **Timebase** and **Volts/Div** in a sequential manner until a clear signal is discerned. For example, if the unknown signal races (moves slowly) across the screen, lower (raise) the **Timebase** until a stationary signal is seen. If the amplitude is low (high), raise (lower) the **Volts/Div**. This may have to be iteratively performed until an acceptable signal is obtained.
Trigger Level and Trigger Source

The trigger is used to determine where (in time) to start of the displayed signal. This feature is used to view the displayed in relation to a secondary signal and is used for timing purposes. For example, one may want to know the relationship of the input signal to the output signal.

First, the **Trigger Source** selects which signal is to be used as the trigger. Typically, the INT is used to select the displayed signal for the trigger (self-trigger), LINE is used to select the 60 Hz line voltage (provided by the electric power company), and EXT is used to select an external signal.

The **Trigger Level** is used to adjust the voltage level of the trigger signal. This is also useful for synchronizing a signal whose frequency is not an exact multiple of the **Timebase**.
OSCILLOSCOPE OPERATION:
OBJECTIVE:
To familiarize oneself with the use of the Agilent S4622A Oscilloscope in conjunction with the BK 4040 Function Generator

1. Set the BK 4040 to generate a sine wave, set the frequency to 50 Hz, and using a voltmeter set the output voltage to 1 volt peak.
2. Connect the output of the BK 4040 to one of the inputs of the Agilent Oscilloscope.
3. Set the Oscilloscope to a Timebase of 10 ms and vertical scale to 0.5 volts/division.
4. How many cycles of the sine wave appear? How many peak-to-peak divisions does the sine wave fill? Are you seeing a 1 volt peak 50 Hz sine wave? If so, continue. If not, check your function generator and oscilloscope settings and repeat this step until you obtain the proper signal display.
5. Change the Timebase to 1 ms. What happens?
6. Change the vertical scale to .1 volts/division. What happens?
7. Describe what happens as one decreases and increases the Timebase.
8. Describe what happens as one decreases and increases the vertical scale.
9. Repeat steps 1-8 using a square wave and triangular generated by the Function Generator.
10. When satisfied turn off both the function generator and the oscilloscope.

BASIC MEASUREMENTS

1. Using the voltmeter, measure the output voltage, V_{out}, vs input voltage, V_{in}, (use the 9 volt batteries for V_{in}) for the following values of R_1 and R_2:

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10k</td>
<td>10k</td>
</tr>
<tr>
<td>1k</td>
<td>1k</td>
</tr>
<tr>
<td>10k</td>
<td>1k</td>
</tr>
<tr>
<td>1k</td>
<td>10k</td>
</tr>
<tr>
<td>10k</td>
<td>4.7k</td>
</tr>
<tr>
<td>4.7k</td>
<td>10k</td>
</tr>
</tbody>
</table>

![Circuit Diagram]

Where V_{in} is the input voltage, R_1 and R_2 are resistors, and V_{out} is the output voltage.
2. For the following circuits using the oscilloscope, determine the transfer function for frequencies of 0 to 800Hz in steps of 50 Hz.

3. Find the 3db point. Check this value by comparing it to a calculation.

4. Apply a square wave of 100Hz to these circuits. Describe what happens.

5. For the following circuits using the oscilloscope, determine the transfer function for frequencies of 0 to 800Hz in steps of 50 Hz.

6. Find the 3db point. Check this value by comparing it to a calculation.