Feedback and Oscillators

Lesson #14
Impedances
Section 9.3-5
Types of Feedback

• Type of feedback (the output entity fed back):
 – Voltage Feedback vs. Current Feedback
 – βv_o vs. βi_o

• How it is achieved (the means to fed back the output to the input):
 – Series (input voltage) Feedback vs. Parallel (input current) Feedback
 – $v_i = v_s - v_f$ vs. $i_i = i_s - i_f$
Types of Feedback (Continued)

• Four Combinations
 – Series Voltage: where amplifier input and output are voltages and, therefore, the gain parameter is a voltage gain, A_v and the feedback is a voltage, βv_o, which is proportional to the output voltage
 – Series Current: where amplifier input is a voltage and its output is a current and, therefore, the gain parameter is a transconductance, G_m, and the feedback is a voltage βi_o, which is proportional to the output current
 – Parallel Voltage: where amplifier input is a current and its output is a voltage and, therefore, the gain parameter is a transresistance gain, R_m and the feedback is a current, βv_o, which is proportional to the output voltage
 – Parallel current: where amplifier input and output are currents and, therefore, the gain parameter is a current gain, A_i and the feedback is a current, βi_o, which is proportional to the output current.
Types of Feedback Circuits

Series Voltage

\[A = A_v \]

Series Current

\[A = G_m \]

Parallel Voltage

\[A = R_m \]

Parallel Current

\[A = A_i \]
Feedback Relations for the 4 Types

- Since we derived the feedback gain independent of whether the a current or voltage is fed back, then for each type:

 - Series Voltage: \(A_{vf} = \frac{v_o}{v_s} = \frac{A_v}{1 + A_v \beta} \)

 - Series Current: \(G_{mf} = \frac{i_o}{v_s} = \frac{G_m}{1 + G_m \beta} \)

 - Parallel Voltage: \(R_{mf} = \frac{v_o}{i_s} = \frac{R_m}{1 + R_m \beta} \)

 - Parallel Current: \(A_{ij} = \frac{i_o}{i_s} = \frac{A_i}{1 + A_i \beta} \)
Input Impedance

Series

\[R_f = \frac{v_s}{i_s} \]
\[v_s = R_i i_s + v_f = R_i i_s + \beta x_o \]
\[x_o = A v_i \]
\[v_i = R_i i_s \]
\[\therefore x_o = A R_i i_s \]
\[v_s = R_i i_s + \beta A R_i i_s \]
\[R_f = \frac{v_s}{i_s} = R_i (1 + \beta A) \]

Parallel

\[R_f = \frac{v_s}{i_s} \]
\[i_f = \beta x_o \]
\[i_i = i_s - i_f = i_s - \beta x_o \]
\[x_o = A i_i \]
\[\therefore i_i = i_s - \beta A i_i \]
\[v_s = \frac{R_i}{1 + \beta A} i_s \]
\[\therefore R_f = \frac{v_s}{i_s} = \frac{R_i}{1 + A \beta} \]
Output Impedance

\[R_{of} = \frac{v_{test}}{i_{test}} \]

\[v_{test} = R_{o} i_{test} + A_{oc} x_{i} \]

\[x_{i} = x_{s} - x_{f} = x_{s} - \beta v_{test} \]

\[x_{s} = 0 \]

\[x_{i} = -\beta v_{test} \]

\[v_{test} = R_{o} i_{test} - A_{oc} \beta v_{test} \]

\[R_{of} = \frac{v_{test}}{i_{test}} = \frac{R_{o}}{1 + \beta A_{oc}} \]

BME 373 Electronics II – J. Schesser
Identifying Negative Feedback

• Determine the type of feedback: Voltage vs Current
• Determine how the feedback is applied: Series or Parallel
• Determine if the feedback is in opposition to how the input is applied.
 – See if the feedback is applied to the inverting (subtractive) input of the amplifier.
Identifying Negative Feedback
See the column on page 571

• Output
 – In voltage feedback, the input terminals of the feedback network are in parallel with the load
 – In current feedback, the input terminals of the feedback network are in series with the load

• Input
 – If the feedback signal vanishes for a open circuit load, then current feedback
 – If the feedback signal vanishes for a short circuit load, then voltage feedback
Identifying Negative Feedback (Continued)

\[v_f = \frac{R_2}{R_1 + R_2} v_o \]

\[\beta = \frac{R_2}{R_1 + R_2} \]

\[v_f = R_f i_o \]

\[\beta = R_f \]
Identifying Negative Feedback (Continued)

\[i_f = \frac{v_o}{R_f} \]

\[\beta = \frac{1}{R_f} \]

\[i_f = -i_o \frac{R_l}{R_f + R_l} \; \text{; since } v_i \approx 0 \]

\[\beta = -\frac{R_l}{R_f + R_l} \]

BME 373 Electronics II – J.Schesser 75
Design of Feedback Amplifiers

• Determine what type of feedback is required and the value of β
• Select a circuit design
• Calculate the appropriate values of the circuit elements (i.e., resistors in the feedback network)
Design Example

- Design a feedback circuit which provides a voltage equal to 10 times the input source. Assume that the source has a resistance of $2 \, k\Omega$ and the differential amplifier has an open circuit gain of 10^4 with an input resistance of $5 \, k\Omega$ and an output resistance of $R_o = 100 \, \Omega$

\[A_{vf} = A_f \approx \frac{1}{\beta} = 10 \]

\[\beta = 0.1 \]

\[A = A_{vo} = 10^4 \]

\[A\beta = 10^4 \times 0.1 = 1000 \]

\[\beta = \frac{R_2}{R_1 + R_2} = .1 \]

\[R_1/R_2 = 9 \]

Choose $R_1 + R_2 > R_o$ to reduce any loss of gain due to loading.
Homework

• Impedances

• Practical Networks
 – Problems: 9.38