Waveshaping Circuits and Data Converters

Lesson #17
Comparators and Schmitt Triggers
Section 12.1
Waveshaping Circuits and Data Converters

• Comparators and Schmitt Triggers
• Astable Multivibrators and Timers
• Rectifiers, Peak Detectors, Sample-and-Hold
• A/D and D/A Converters
Comparators

- Circuits which compare two input voltages, \(v_1 \) and \(v_2 \), and produces a logic output
 - E.g.
 - High if \(v_1 > v_2 \)
 - Low if \(v_1 < v_2 \)
 - Inputs:
 - Inverted and non-inverted
 - \(v_i = v_1 - v_2 \)
 - Ideal Transfer Characteristics
 - Symmetrical or Unsymmetrical
Real Comparators

- Real Comparators have a gradual transition
- $|v_i| > 0.2\ mV$ to cause a change in state.

- Interface Analog to Digital signals and may have different voltage ranges
 - +15 to −15 V on the analog side
 - +5 to 0 V on the digital side
Schmitt Triggers

- Noise on the input can cause undesirable transitions in the output of a comparator.
 - Example: comparing a noisy signal to a reference voltage.

 ![Schmitt Trigger Diagram](image)

- Through the use of positive feedback to the comparator, this problem can be eliminated - The Schmitt Trigger
Effects of Positive Feedback

- From this circuit: \(v_o = Av_i \) and \(v_i = v_f - v_{in} = \beta v_o - v_{in} \)
- Because of the positive feedback, \(v_i \) is no longer equal to zero (not a virtual ground)
- So as \(v_i \) increases in the positive (negative) direction, increases in the positive (negative) direction.
- Because of the positive feedback, this will increase \(v_i \) in the positive direction (negative) which will further increase \(v_o \) which further increase \(v_i \) and so on.
- When will this stop?

If we had infinite power, then never.
However, we have limited power which is given by the amplifier’s DC voltage supplies: +A, -A.

- If \(v_i \) goes positive, then \(v_o \) “instantaneously” grows to +A volts
- And if \(v_i \) goes negative, then \(v_o \) “instantaneously” grows to -A volts
Hysteresis

- Assume that $\beta = \frac{R_2}{R_1 + R_2} = 0.1$ and v_o levels are $+10$ (for $v_i > 0$) and -10 V (for $v_i < 0$).

- First, note that $v_i = v_f - v_{in}$. Now, let’s assume $v_o = +10$ V and therefore $v_f = 1$ V then as long as v_{in} is less than 1 V, then $v_o = +10$ V (it’s high state) since v_i, the input to the comparator, will be > 0. Once v_{in} surpasses 1, $v_i < 0$, and the output will switch to -10 V.

- At this point, $v_f = -1$ V and as long as the $v_{in} > -1$ V, the output will stay in its low state, -10 V.

- Note that has the characteristic of being a flip-flop. If one pulses it with high (>1), then the output switches to a low and visa versa.

This is characteristic is called hysteresis
Inverter

\[v_{in} + v_i = v_f \]
\[v_i = v_f - v_{in} \]
\[v_f = \beta v_o \]
\[v_i = \beta v_o - v_{in} \]

For \(v_i > 0; v_o = A \)
\[v_i = \beta v_o - v_{in} > 0 \Rightarrow \beta A - v_{in} > 0 \Rightarrow \beta A > v_{in} \]
\[v_{in} < \beta A \]

For \(v_i < 0; v_o = -A \)
\[v_i = \beta v_o - v_{in} < 0 \Rightarrow -\beta A - v_{in} < 0 \Rightarrow -\beta A < v_{in} \]
\[v_{in} > -\beta A \]

Note that \(\pm \beta A \) volts are the thresholds for when the circuit switches states.
Other Forms of Schmitt Triggers

- Non-inverting types

- Specified Thresholds
Specific Thresholds

\[v_i = v_i - v_{in} \]
\[v_i > 0; v_o = +A \]
\[v_i < 0; v_o = -A \]

From node at noninvering input:

\[\frac{v_i + v_o - v_{t}}{R_2} + \frac{v_o - v_{SS}}{R_3} + \frac{v_t}{R_1} = 0 \]

\[v_i = \frac{v_o + \frac{V_{SS}}{R_3}}{\frac{R_3}{R_1}} = \frac{v_o + \frac{V_{SS}}{R_1}}{\frac{G_T}{R_3}} = \frac{v_o + \frac{V_{SS}}{G_T R_1}}{G_T R_3} \]

\[v_i = \frac{v_o}{G_T R_3} + \frac{V_{SS}}{G_T R_1} - v_{in} \]

\[v_i = \frac{A}{G_T R_3} + \frac{V_{SS}}{G_T R_1} - v_{in} > 0; v_{in} < V_{t1} = \frac{A}{G_T R_3} + \frac{V_{SS}}{G_T R_1} \]

\[v_i = -\frac{A}{G_T R_3} + \frac{V_{SS}}{G_T R_1} - v_{in} < 0; v_{in} > V_{t2} = -\frac{A}{G_T R_3} + \frac{V_{SS}}{G_T R_1} \]
An Example

- Choose the 3 resistors to provide thresholds of $5 \pm 0.1 \, V$ for output levels of $\pm 14.6 \, V$.

![Circuit Diagram]

At the non-inverting mode, we have:

$$\frac{V_t}{R_2} + \frac{V_i - V_{SS}}{R_1} + \frac{V_t - v_o}{R_3} = 0$$

Using $15 \, V$ for V_{SS} and $V_t = 5.1$ for $v_o = +14.6$, we have

$$\frac{5.1}{R_2} + \frac{5.1 - 15}{R_1} + \frac{5.1 - 14.6}{R_3} = \frac{5.1}{R_2} + \frac{9.9}{R_1} + \frac{9.5}{R_3} = 0$$

Using $V_t = 4.9$ for $v_o = -14.6$, we have

$$\frac{4.9}{R_2} + \frac{4.9 - 15}{R_1} + \frac{4.9 + 14.6}{R_3} = \frac{4.9}{R_2} + \frac{10.1}{R_1} + \frac{19.5}{R_3} = 0$$

- We need to chose one of the 3 resistors. If we choose $R_3 = 1 \, M$, then $R_1 = 20.55 \, k$ and $R_2 = 10.38 \, k$. If we chose resistors too small then may draw excessive amounts of current from our $15 \, V$ supply and create a large power drain on the circuit.
Example continued

\[v_i = v_t - v_{in} \]

when \(v_i > 0; \) \(v_o = +14.6v \)
therefore,
\[v_i = v_t - v_{in} > 0 \]
\[v_t > v_{in}; \text{ or } v_{in} < 5.1 \]

\[v_i = v_t - v_{in} \]
when \(v_i < 0; \) \(v_o = -14.6v \)
therefore,
\[v_i = v_t - v_{in} < 0 \]
\[v_t < v_{in}; \text{ or } v_{in} > 4.9 \]
Another Example

- What are the transfer characteristics for this circuit if $R_1=1k$ and $R_2=2k$ and the thresholds levels are $\pm10\,V$.

\[
V_{in} = i(R_1 + R_2) + v_o
\]
\[
V_t = iR_1 = \frac{V_{in} - v_o}{R_1 + R_2} R_1
\]
\[
v_i = V_{in} - V_t = V_{in} - \frac{V_{in} - v_o}{R_1 + R_2} R_1
\]
\[
v_i = V_{in} - \frac{V_{in} - v_o}{3} = \frac{2}{3} V_{in} + \frac{v_o}{3}
\]

For $v_o = +10\,V$, $v_i > 0$

\[
v_i = \frac{2}{3} V_{in} + \frac{v_o}{3} > 0; \frac{2}{3} V_{in} < -\frac{v_o}{3}; V_{in} < -5
\]

For $v_o = -10\,V$, $v_i < 0$

\[
v_i = \frac{2}{3} V_{in} + \frac{v_o}{3} < 0; \frac{2}{3} V_{in} < -\frac{v_o}{3}; V_{in} < 5
\]
Homework

• Comparators and Schmitt Trigger Circuits
 – Problems: 12.8-9