
555 Timers

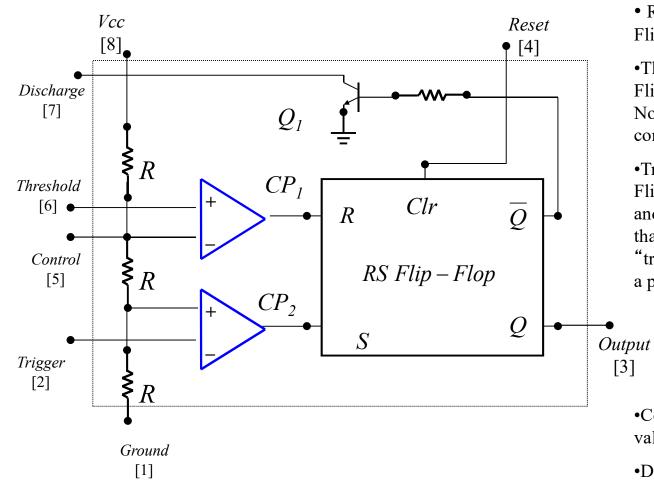
Lecture 13


555 Timer

- An device introduced by Signetics in 1972
- An economical and convenient way to design multivibrator circuits.
- Consists of voltage divider string, two comparators, a RS flip-flop and a switching transistor
- RS flip-flop is a device which can attain one of two states based on the states of its inputs RS.

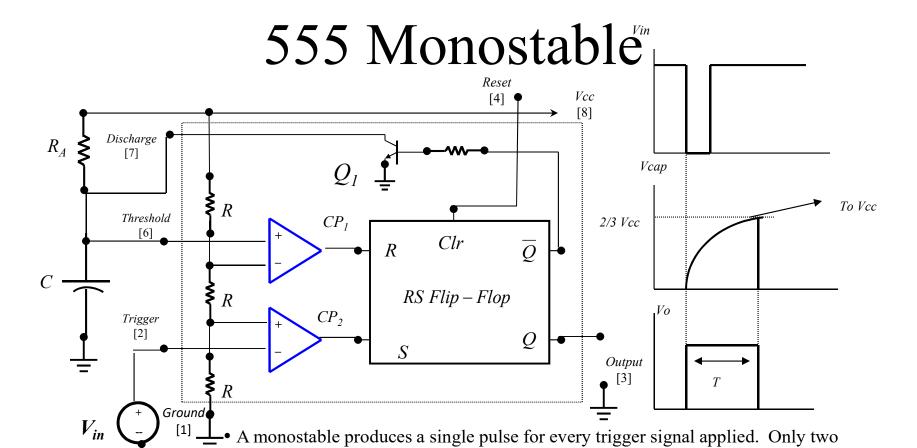
RS Flip-Flop

Clr	R	S	Q
0	Х	Х	0
1	0	0	NC
1	0	1	1
1	1	0	0
1	1	1	?



x - don't care

NC – No Change


? - indeterminate

555 Timer

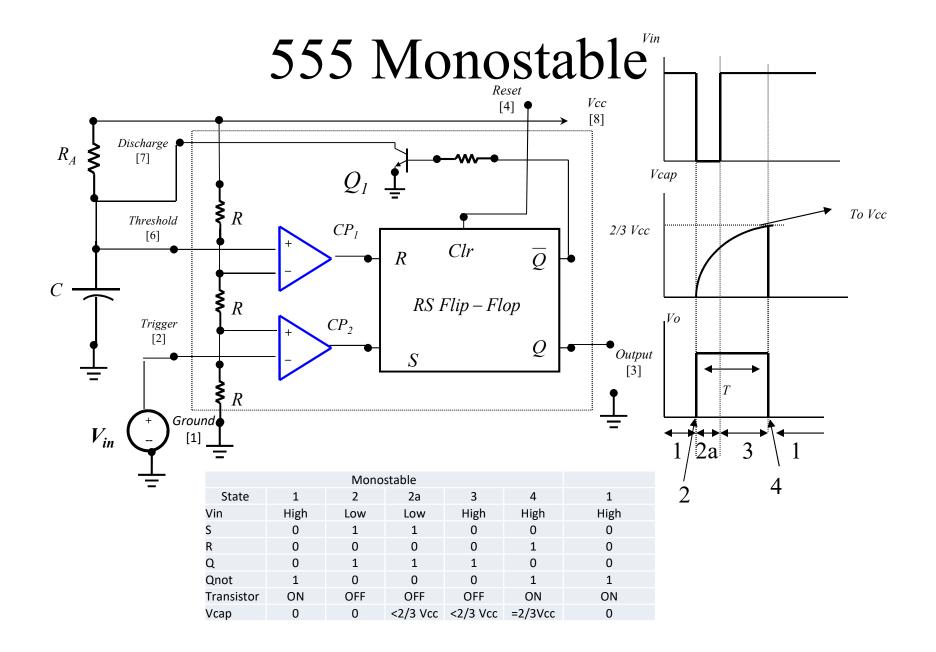
- Reset will always reset the Flip-flop and usually set to Vcc
- •Threshold Value > 2/3 Vcc then Flip-flop is RESET, Q=0 and NotQ =1 and transistor Q₁ conducts
- •Trigger Value < 1/3 Vcc then Flip-flop is SET, Q=1 and NotQ=0 and transistor Q₁ is cutoff. Note that the Flip-flop will be "triggered" on the falling edge of a pulse applied to this input

- •Control probe to test threshold value
- •Discharge is the Q1 output and presents a short to ground when Q1 conducts

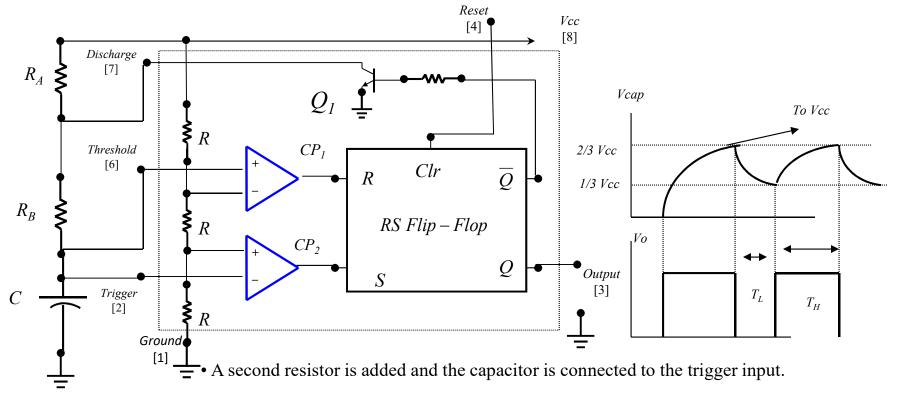
$$v_{c}(t) = K_{1} + K_{2}e^{-t/R_{A}C}$$

$$v_{c}(0) = 0 = K_{1} + K_{2}$$

$$v_{c}(\infty) = +A = K_{1}$$


$$v_{c}(t) = A(1 - e^{-t/R_{A}C})$$

$$v_{c}(T) = \frac{2A}{3} = A(1 - e^{-T/R_{A}C})$$

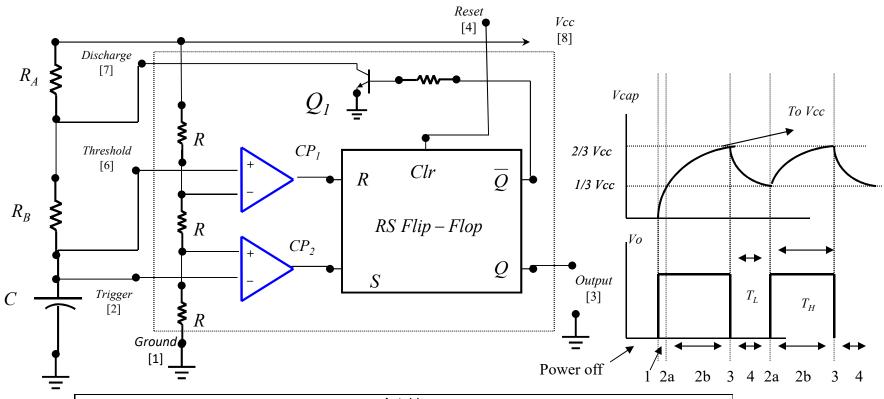

$$\therefore T = R_{A}C \ln(3)$$

- When the trigger drops below 1/3 Vcc, the comparator CP_2 causes the flip-flop to be SET and Q1 opens and C begins to charge through R_A . When the voltage of the capacitor reaches 2/3 Vcc, the comparator CP_1 causes the flip-flop to be RESET and Q1 saturates presents a "zero" resistance to ground for the capacitor to discharge through.
- As a result a single pulse of width $T=R_AC \ln(3)$ is produced.

external components: R_4 and C.

555 Astable

$$T_H = (R_A + R_B)C \ln(2)$$


$$T_L = R_BC \ln(2)$$

$$T = T_H + T_L$$

$$= (R_A + 2R_B)C \ln(2)$$

- At startup the capacitor voltage is less than 1/3 Vcc, the flip-flop is SET (via the trigger comparator), Q1 opens and C begins to charge through R_A and R_B .
- \bullet As the capacitor voltage reaches 2/3 Vcc, the flip-flop is RESET (via the threshold comparator), Q1 saturates, and the capacitor starts to discharge through R_B .
- When the capacitor voltage drops below 1/3 Vcc, the flip-flop is SET again, Q1 reopens, and the process restarts again.

555 Astable

Astable											
State	1	2a	2b	3	4	2a	2b	3	4		
Vcap	<1/3Vcc	=1/3Vcc	<2/3Vcc	=2/3Vcc	<2/3Vcc	=1/3Vcc	<2/3Vcc	=2/3Vcc	<2/3Vcc		
S	1	0	0	0	0	1	0	0	0		
R	0	0	0	1	0	0	0	1	0		
Q	1	1	1	0	0	1	1	0	0		
Qnot	0	0	0	1	1	0	0	1	1		
Transistor	OFF	OFF	OFF	ON	ON	OFF	OFF	ON	ON		
RC	(Ra+Rb)C	(Ra+Rb)C	(Ra+Rb)C		RbC		(Ra+Rb)C		RbC		

Homework

- 555 Timer
 - Problems: 12.18-20

Homework

- 555 Timer
 - Problems: 12.18-20