## **Operational Amplifiers**

Lecture 4

#### Ideal Amplifiers

#### • Parameters:

$$\frac{v_o}{v_s} = \frac{R_i}{R_i + R_s} A_{vo} \frac{R_L}{R_L + R_O}$$

This states the gain of the amplifier depends on the external components.

This is BAD!!!!!

However, if 
$$R_i \to \infty$$
 and  $R_O \to 0$ ; then  $\frac{R_i}{R_i + R_s} \to 1$  and  $\frac{R_L}{R_L + R_O} \to 1$ .

Therefore,  $\frac{v_o}{v_s} \to A_{vo}$  and the gain of the amplifier is independent of the external components.



#### Operational Amplifiers

- An operational Amplifier is an ideal differential with the following characteristics:
  - Infinite input impedance
  - Infinite gain for the differential signal
  - Zero gain for the common-mode signal
  - Zero output impedance
  - Infinite Bandwidth



#### Operational Amplifier Feedback

- Operational Amplifiers are used with negative feedback
- Feedback is a way to return a portion of the output of an amplifier to the input
  - Negative Feedback: returned output opposes the source signal
  - Positive Feedback: returned output aids the source signal
- For Negative Feedback
  - In an Op-amp, the negative feedback returns a fraction of the output to the inverting input terminal forcing the differential input to zero.
  - Since the Op-amp is ideal and has infinite gain, the differential input will exactly be zero. This is called a virtual short circuit
  - Since the input impedance is infinite the current flowing into the input is also zero.
  - These latter two points are called the summing-point constraint.

# Operational Amplifier Analysis Using the Summing Point Constraint

- In order to analyze Op-amps, the following steps should be followed:
  - 1. Verify that negative feedback is present
  - 2. Assume that the voltage and current at the input of the Op-amp are both zero (Summing-point Constraint
  - 3. Apply standard circuit analyses techniques such as Kirchhoff's Laws, Nodal or Mesh Analysis to solve for the quantities of interest.

#### Example: Inverting Amplifier



- . Verify Negative Feedback: Note that a portion of  $v_o$  is fed back via  $R_2$  to the inverting input. So if  $v_i$  increases and, therefore, increases  $v_o$ , the portion of  $v_o$  fed back will then have the affect of reducing  $v_i$  (i.e., negative feedback).
- 2. Use the summing point constraint.
- 3. Use KVL at the inverting input node for both the branch connected to the source and the branch connected to the output

 $v_{in} = i_1 R_1 + 0$  since  $v_i$  is zero due to the summing - point constraint  $i_1 = i_2$  due to the summing - point constraint  $V_{in} = i_2 R_2 + 0$  since  $v_i$  is zero  $V_{in} = i_2 R_2 + 0$  since  $v_i$  is zero

=  $-\frac{R_2}{R_1}v_{in}$  which is independent of  $R_L$  (note that the output is opposite to the input: inverted)

#### Op-amp

- Because we assumed that the Op-amp was ideal, we found that with negative feedback we can achieve a gain which is:
  - Independent of the load
  - 2. Dependent only on values of the circuit parameter
  - 3. We can choose the gain of our amplifier by proper selection of resistors.

## Non-inverting Amp

- 1. First check: negative feedback?
- 2. Next apply, summing point constraint
- 3. Use circuit analysis

$$v_{in} = v_i + v_f = 0 + v_f = v_f$$

$$v_f = \frac{R_1}{R_1 + R_2} v_o = v_{in};$$

$$A_v = \frac{v_o}{v_{in}} = \frac{R_2 + R_1}{R_1} = 1 + \frac{R_2}{R_1}$$

Since 
$$i_{in} = 0$$
;  $Z_{in} = \frac{v_{in}}{i_{in}} = \infty$ 



Note:

- 1. The gain is always greater than one
- 2. The output has the same sign as the input

### Non-inverting Amp Special Case

What happens if  $R_2 = 0$ ?

$$v_{in} = v_{i} + v_{f} = 0 + v_{f} = v_{f}$$

$$v_{f} = \frac{R_{1}}{R_{1} + 0} v_{o} = v_{o} = v_{in};$$

$$Av = \frac{v_{o}}{v_{in}} = \frac{0 + R_{1}}{R_{1}} = 1$$
Since  $i_{in} = 0; Z_{in} = \frac{v_{in}}{i_{in}} = \infty$ 



This is a unity gain amplifier and is also called a voltage follower.

### Special Amplifiers

- Summer (Homework Problem)
- Instrumentation Amplifier
  - Uses 3 Op-amps
  - One as a differential amplifier
  - Two Non-inverting Amps using for providing gain

Non-inverting Amplifier



Non-inverting Amplifier



Differential Amplifier



$$\frac{v_{2D} - v_x}{R_6} = \frac{v_x - v_o}{R_5}$$

$$\frac{v_{2D}}{R_6} - v_x \left(\frac{1}{R_6} + \frac{1}{R_5}\right) = \frac{-v_o}{R_5}$$

$$\frac{v_{2D}}{R_6} - v_x \left(\frac{R_5 + R_6}{R_6 R_5}\right) = \frac{-v_o}{R_5}$$

$$v_y = \frac{R_4}{R_3 + R_4} v_{1D} = v_x - v_i = v_x$$

$$\frac{v_{2D}}{R_6} - \frac{R_4}{R_3 + R_4} v_{1D} \left(\frac{R_5 + R_6}{R_6 R_5}\right) = \frac{-v_o}{R_5}$$

$$v_o = \frac{R_5}{R_6} \left(v_{1D} \frac{R_5 + R_6}{R_5} \frac{R_4}{R_3 + R_4} - v_{2D}\right)$$

$$Chose \frac{R_5 + R_6}{R_5} \frac{R_4}{R_3 + R_4} = 1$$

$$v_o = \frac{R_5}{R_6} \left(v_{1D} - v_{2D}\right)$$

Non-inverting Amplifier



Non-inverting Amplifier



$$\frac{v_{2D} - v_2}{R_2} = \frac{v_2 - v_A}{R_1}$$

$$v_{2D} = R_2 \left(\frac{1}{R_2} + \frac{1}{R_1}\right) v_2 - \frac{R_2}{R_1} v_A$$

$$v_{2D} = \frac{R_1 + R_2}{R_1} v_2 - \frac{R_2}{R_1} v_A$$

Likewise

$$v_{1D} = \frac{R_1 + R_2}{R_1} v_1 - \frac{R_2}{R_1} v_A$$

Non-inverting Amplifier



### Uses of the Differential Amplifier



#### Integrators and Differentiators



$$i_1(t) = \frac{v_{in}(t)}{R} = i_2(t)$$

$$v_{o} = -\frac{1}{C} \int_{0}^{t} i_{2}(x) dx = -\frac{1}{RC} \int_{0}^{t} v_{in}(x) dx$$

$$v_{in}$$
 $v_{in}$ 
 $v_{in}$ 
 $v_{in}$ 
 $v_{in}$ 
 $v_{in}$ 

$$i_{\scriptscriptstyle 1}(t) = \frac{Cdv_{\scriptscriptstyle in}(t)}{dt} = i_{\scriptscriptstyle 2}(t)$$

$$v_{o} = -i_{2}(t)R = -RC\frac{dv_{in}(t)}{dt}$$

### Frequency Analysis



$$\mathbf{V}_{in}(j\omega) = \mathbf{I}_1(j\omega)\mathbf{Z}_1(j\omega) + 0$$
 since  $v_i$  is (virtually) zero

$$I_1(j\omega) = I_2(j\omega)$$
 due to the summing - point constraint

$$\mathbf{V}_{\mathbf{o}}(j\boldsymbol{\omega}) = -\mathbf{I}_{2}(j\boldsymbol{\omega})\mathbf{Z}_{2} + 0 \text{ since } v_{i} \text{ is (virtually) zero}$$

= 
$$-\frac{\mathbf{Z}_2}{\mathbf{Z}_1}\mathbf{V}_{in}(j\omega)$$
 which is independent of  $\mathbf{Z}_L$ 

$$\frac{\mathbf{V_o}(j\omega)}{\mathbf{V_{in}}(j\omega)} = -\frac{\mathbf{Z}_2}{\mathbf{Z}_1}$$



$$\frac{\mathbf{V_o}(j\omega)}{\mathbf{V_{in}}(j\omega)} = -\frac{\mathbf{Z}_2}{\mathbf{Z}_1} = -\frac{1}{j\omega RC}$$
 an integrator



$$\frac{\mathbf{V_o}(j\omega)}{\mathbf{V_{in}}(j\omega)} = -\frac{\mathbf{Z}_2}{\mathbf{Z}_1} = -\frac{1}{j\omega RC} \text{ an integrator } \frac{\mathbf{V_o}(j\omega)}{\mathbf{V_{in}}(j\omega)} = -\frac{\mathbf{Z}_2}{\mathbf{Z}_1} = -j\omega RC \text{ a differentiator}$$

## Frequency Response







$$\frac{\mathbf{V}_{o}(j\omega)}{\mathbf{V}_{in}(j\omega)} = -\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}} = -\frac{1}{j\omega RC}$$





#### Frequency Response



$$\frac{V_{out}}{V_{in}} = -\frac{Z_2}{Z_1} = -\frac{R_2}{R_1} \frac{1}{(1+j\omega C_2 R_2)} = \frac{R_2}{R_1} \frac{1}{\sqrt{1+(\omega C_2 R_2)^2}} \angle \pi - \tan^{-1}(\omega C_2 R_2)$$







#### R1 51 C1 10mf R2 100k



#### Homework

- Probs 2.2, 2.5, 2.6, 2.10, 2.22, 2.24, 2.25, 2.28
- Calculate and plot the output vs frequency for these circuits.  $R_1$ =1k,  $R_2$ =3k, C=1 $\mu$ f Use Matlab to calculate the Bode plot

