Arduino Board Syntax'-?

Lecture /

1. M. Banzi & M. Shiloh, Getting Started with Arduino, 3" Edition, MakerMedia,
2014

2. https://www.arduino.cc/reference/en/

BME 372 New Schesser 148

Basic Structure

 Declare Variables

intled=9; //Declares the variable led as one that stores integers
and is set to the value 13

e Setup where code will only be executed once.

void setup() {
/* Add statements to set up sketch operation */

}

* Loop where code will be repeatedly executed until the
board power is turned off.

void loop() {
/* Add statements to perform sketch operation */

}

Special Symbols

e Semicolon -;
Every line of code must end with a semicolon.

delay (1000); //delay the sketch by 1 second

e Parenthesis - (), square brackets - [] and Curly brackets — {}
Data is passed/received to/from a function which is placed between parenthesis. ()
Arrays are defined using square brackets. []
Blocks of code appear between curly brackets.{}
int array1[4]={1, 3, 4, 7};

void loop() {
Serial.printIn(“ciao”); //The word ciao is sent to the serial monitor

}
* Comments
Single line comments have the characters // at the start of the comments

Multi-line comments appear between the two sets of characters /* and */

Constants

The Arduino supports key word constants. Here are ones used often.
See https://www.arduino.cc/reference/en/ for more.

HIGH | LOW Used for pin states:

1. if the pin is used as an input then it’s a HIGH when a voltage of 3.3 volts or
greater appears at the pin or it’s a LOW when a voltage of 1.5 volts or less appears
at the pin.

2. if the pin is used as an output then the board places a voltage of 5 volts when the

pin is declared HIGH and places a voltage of 0 volts when the pin is declared LOW.

INPUT | OUTPUT Used to set a pin to either an input or output port.
true | false Used to test a comparison.

LED_BUILTIN Set to 13 for the on-board LED that is connected to pin 13.

Data Types

 The Arduino supports various types of data types. Here are ones used
often. See https://www.arduino.cc/reference/en/ for more.

1. Integer data type

int — Uses 2 bytes and declares a variable as an integer of value -32,768 to 32,768.

unsigned int — Uses 2 bytes and declares a variable as an integer of value 0 to
65,535.

long — Uses 4 bytes and declares a variable as an integer of value -2,147,483,648 to
2,147,483,648

unsigned long— Uses 4 bytes and declares a variable as an integer of value O to
4,294,967,295.

Data Types (cont’d)

2. Floating point data types

float — Uses 4 bytes (1 bit for sign, 8 bits for the exponent, and 23 for the value) and declares
a variable as floating point number of value -3.4028235E38 to 3.4028235E38.

double - Uses 8 bytes (1 bit for sign, 11 bits for the exponent, and 52 for the value) and
declares a variable as floating point number of value -1.79766931348623157E308 to
1.79766931348623157E308.

2. 3. Array data types

array — Arrays are defined using square brackets, curly brackets, and the following
format.

int load[5]={1, 2, 3, 4, 5};

Data Types (cont’d)

4. Character data types

Characters use 1 byte per character and are defined formats similar to
arrays.

char — Uses 1 byte per character
char string1[3]="BME”;
String — similar to char

String string1[3]=“BME”;

Data Types (cont’d)

5. Conversion of values to a data type

float(x) - converts the value of x into a floating point data
type
(float)x — alternative form

Using this syntax, conversion of a value to a data
type can be used for the other data types: int,
unsigned, long, unsigned long, double, etc.

Arithmetic Operators

Arithmetic Compound Operators
m Symbol | Function | Example
Addition Increment y=x++; //
y=x+1

- Subtraction
-- Decrement y=x--; // y=x-1

* Multiplication

/ Division

= Assignment

% Remainder r=7%5;

//r=2

BME 372 New Schesser 156

Other Operators and Symbols

Relationship and equality operators
used for number and strings

" opersor | Test |oample

== Equal to If(val == HIGH){

I= Not equal to If(val != HIGH){

> Greater than If(val > HIGH){

< Less than If(val < HIGH){

>= Greater than or If(val >= HIGH){
equal to

<= Less than or equal If(val <= HIGH){
to

BME 372 New Schesser 157

Other Operators and Symbols

Logical Operators Bit Operators
I
Logical And Bitwise And
| | Logical Or | Bitwise Or
! Not A Bitwise Exclusive Or
~ Bitwise Negation

BME 372 New Schesser 158

Control Statements

1. |IF Statement: if condition is true, take action and continue.

IF Statement: if condition is true, take action. Otherwise take
another action.

if (condition){ if (condition){
//If true take //If true take
action action
val=10; }else {
} //If false take
another action
val=20;

Control Statements Continued

For Statement: defines a loop with a counter initialization, condition for looping,
counter increment

Initialization occurs once
Condition: each time the loop is executed the condition is tested.

If true looping continues. If false looping ends and execution proceeds to the statement
following the For Statement

Increment: each time the through the loop, the counter is incremented and the condition is
retested.

for (initialization; condition; increment) {

for (inti=0;i<=100;i++){ //foristartingatO, is it <= 100, run loop and increment |

delay (1000); //delay a second
// when i > 100 end loop

Control Statements Continued

3. While Statement: defines a loop with a
condition for running the loop. When the
condition becomes false the loop ends.

while (condition) {

while (var <= 100) { // while a variable named var less than or equal to 100, run loop
delay (500); //delay 1/2 second
// when var > 100 end loop

Control Statements Continued

Switch Case Statement: defines a switch and a series of case statements.
When there is a case statement matching the switch, the statements
following the case statements are executed. The default case is executed

if no match is found.

switch (var) {
case labell;
//statements
break;
case label2;
//statements
break;
default;
//statements
break;

switch (var) {

case 1;

delay (1000); //delay 1 second
break;

case 2;

delay (500); //delay 1/2 second
break;

default;

delay (2000); //delay 2 seconds
break;

Mathematical Operations

Absolute value: finds the absolute value of a number, x.
abs(x)
y=abs(-3); //y=3

Map: maps a value from range of numbers to another range.
map(value, fromlow, fromhigh, tolow, tohigh)
y=map (20, 1, 50, 1, 100); //y=40

Minimum/Maximum: finds the minimum/maximum of 2
values.

min(vall, val2) max(vall,val2)
y=min(3,4); //y=3
y=max(3,4); //y=4

Mathematical Operations Continued

4. Power: calculates the value of a number raised to a power.
pow(base, exponent)
y=pow(3, 2); //y=9

5. Square root: calculates the square root of a number.
y=sgrt(value)
Y=sqgrt(64); //y=8

6. Trigonometric operations: calculates the sine, cosine and tangent
of a number in radians

sin(x) cos(x) tan(x)
y=sin(3.14); //y=0
y=cos(1.57); //y=0
y=tan(0.78); //y=1

Input and Output Functions
Digital Pins

1. Configuring a digital pin as an input or output
pinmode(pin,mode);
pinmode(13,0UTPUT); //Turns pin 13 into an output

2. Turns adigital pin HIGH or LOW
digitalWrite(pin,value);
digitalWrite(13,LOW); //Turns pin 13 LOW

3. Controls the PWM signal at certain digital pins; a value of O turns the pin
off and a values of 255 turns pin fully on.

analogwrite(pin,value);
analogwrite(13, 127); //Turns on a PWM with 50% duty cycle

4. Reads the state of an input digital pin and returns HIGH or LOW
digitalRead(pin);

val=digitalRead(13); //Reads pin 13 and returns the value into variable
named val

Input and Output Functions
Analog Pins

1. Reads the state of an input Analog pin and return a
number from 0 to 1023 which corresponds to a
voltage between 0 and 5 volts.

analogRead(pin);

val=analogRead(0); //Reads analog pin 0 and
returns the value into variable named val

2. You can not write to an analog pin

Time Functions

Returns the number of milliseconds (microseconds) that have passed since the sketch
started

millis();
duration=millis()-lasttime; //computes time since lasttime in milli-seconds

micros();
duration=micros()-lasttime; //computes time since lasttime in micro-seconds

Pauses sketch for the number of milliseconds specified

delay(ms);
delay(500); //delay for % second

Pauses sketch for the number of microseconds specified

delayMicroseconds(us);
delayMicroseconds(500); //delay for % millisecond

Serial Monitor

1. Prepares the Arduino to send/receive data.
Serial.begin(speed);
Serial.begin(9600); // Typical setting for the Arduino
2. Sends data to the serial port.
Serial.print(data); //prints data
Serial.printin(data); //prints data with line feed

Serial.print(75); //Prints the characters “75”
Serial.print(75,HEX); //Prints “4B” (75 in hexadecimal)
Serial.print(75,BIN); //Prints 1001011 (75 in binary)
Serial.printIn(75);//Prints”75” with a carriage return and linefeed i.e.,
“75\r\n”

3. Reads 1 byte of incoming serial data
Serial.read();
data=Serial.read(); //Put a byte of data into the variable data

Serial Plotter

Same operation at the serial monitor example when serial monitor is
selected a waveform plot of the data is produced.

Prepares the Arduino to send/receive data.
Serial.begin(speed);
Serial.begin(9600); // Typical setting for the Arduino
Sends data to the serial port.
Serial.print(data);

Libraries

1. In order to extend the Arduino, libraries may uses.
Libraries contain functions which aid the extension of

the Arduino.

2. To use alibrary, it must be importing or included into
the sketch.
#include <library.h>

3. Examples

a. LiquidCrystal — setCursor(), blink(), scrollDisplayLeft(),
scrollDisplayRight()
Servo — attach(pin), servo.write(angle), servo.read()
Stepper — setSpeed(rpms), step(steps)
d. WiFi— WiFi.config(ip), WiFi.status()

O T

