Wein Bridge Lab

- You are to build a Wein Bridge Oscillator.
- Design the circuit to yield of frequency of oscillation of $\sim 340 \mathrm{~Hz}$.
- Choose values all resistors from your kit. Once you calculate its value, the capacitors will be supplied.
- Build the circuit in 3 stages:

1. First, build the non-inverting amplifier to provide a gain that varies somewhere between 2.5 and 3.5.
2. Use a potentiometer to vary the gain in place of R_{2} such that the ratio of R_{2} / R_{1} is somewhere between 1.5 and 2.5 . Show that it attains the proper value of gain using the function generator and the oscilloscope.
3. Once the gain is verified, build the feedback network, such that the 2 resistors are the same and the 2 capacitors are the same.
4. Do not connect the feedback network to the circuit and how that its transfer function meet the needs of the circuit; that is it has a peak at the oscillation frequency.
5. Connect the feedback network to the amplifier and show the following cases:
a) Gain is too low
b) Gain is adequate
c) Gain is too high
Analysis of an Oscillator

$$
\begin{aligned}
& \beta=\frac{(R \| C)_{\text {perallel }}}{(R \| C)_{\text {perarlele }}+(R+C)_{\text {series }}} \\
& (R \| C)_{\text {pearalel }}=\frac{1}{\frac{1}{R}+j \omega C}=\frac{R}{1+j \omega R C} \\
& \begin{aligned}
&(R+C)_{\text {series }}=R+\frac{1}{j \omega C}=\frac{j \omega R C+1}{j \omega C} \\
& \begin{aligned}
j(j \omega) & =\frac{\frac{R}{1+j \omega R C}}{\frac{R}{1+j \omega R C}+\frac{j \omega R C+1}{j \omega C}} \\
& =\frac{\frac{R}{1+j \omega R C}}{(1+j \omega R C) j \omega C}+\frac{(j \omega R C+1)^{2}}{(1+j \omega R C) j \omega C}
\end{aligned} \\
& \quad=\frac{j \omega C R}{1-(\omega R C)^{2}+3 j \omega C R} \\
& \quad=\frac{\omega C R}{j\left[(\omega R C)^{2}-1\right]+3 \omega C R}
\end{aligned}
\end{aligned}
$$

Barkhausen Criterion:

$$
\begin{aligned}
& A_{v} \beta(j \omega)=1 \\
& \frac{A_{v} \omega C R}{j\left[(\omega R C)^{2}-1\right]+3 \omega C R}=1
\end{aligned}
$$

$$
3 \omega C R-A_{v} \omega C R+j\left[(\omega R C)^{2}-1\right]=0
$$

This yields:

$$
\begin{aligned}
& A_{v \min }=3 \\
& f=\frac{1}{2 \pi R C}
\end{aligned}
$$

Wien Bridge Oscillator

- A non-inverting Amplifier with gain determined by R_{1} and R_{2} and the RC feedback network

For the non - inverting amplifier
$v_{m \text { m }}=v_{f}=\frac{R_{1}}{R_{1}+R_{2}} v_{0}$
$\therefore A_{\text {mamimame }}=\frac{R_{1}+R_{2}}{R_{1}}=1+\frac{R_{2}}{R_{1}}$
$A_{v \text { vin }}=3=1+\frac{R_{2}}{R_{1}}$
$R_{2} \geq 2 R_{1}$ for Oscillations
If $R_{2}>2 R_{1}$ then the amplitude of the oscillations will increase and clipping will occur.

Frequency Response

$$
\begin{aligned}
& \frac{v_{f}}{v_{o}}=\frac{j \omega C R}{1-(\omega R C)^{2}+3 j \omega C R}=\frac{\omega C R}{\sqrt{\left[1-(\omega R C)^{2}\right]^{2}+(3 \omega C R)^{2}}} \angle \frac{\pi}{2}-\tan ^{-1}\left(\frac{3 \omega C R}{1-(\omega R C)^{2}}\right. \\
& \left.\frac{v_{f}}{v_{o}}\right|_{\omega=0}=0 \angle \frac{\pi}{2} ;\left.\frac{v_{f}}{v_{o}}\right|_{\omega \rightarrow \infty} \rightarrow \frac{j \omega C R}{-(\omega R C)^{2}}=0 \angle-\frac{\pi}{2} ;\left.\frac{v_{f}}{v_{o}}\right|_{\omega=\frac{1}{R C}}=\frac{j 1}{+3 j 1}=\frac{1}{3} \angle 0
\end{aligned}
$$

