## Wein Bridge Lab

- You are to build a Wein Bridge Oscillator.
- Design the circuit to yield of frequency of oscillation of ~340Hz.
- Choose values all resistors from your kit. Once you calculate its value, the capacitors will be supplied.
- Build the circuit in 3 stages:
  - 1. First, build the non-inverting amplifier to provide a gain that varies somewhere between 2.5 and 3.5.
  - 2. Use a potentiometer to vary the gain in place of  $R_2$  such that the ratio of  $R_2/R_1$  is somewhere between 1.5 and 2.5. Show that it attains the proper value of gain using the function generator and the oscilloscope.
  - 3. Once the gain is verified, build the feedback network, such that the 2 resistors are the same and the 2 capacitors are the same.
  - 4. Do not connect the feedback network to the circuit and how that its transfer function meet the needs of the circuit; that is it has a peak at the oscillation frequency.
  - 5. Connect the feedback network to the amplifier and show the following cases:
    - a) Gain is too low
    - b) Gain is adequate
    - c) Gain is too high





*C R* Feedback Barkhausen Criterion:  $\frac{A_v \omega CR}{j[(\omega RC)^2 - 1] + 3\omega CR} = 1$  $3\omega CR - A_{\omega}\omega CR + j[(\omega RC)^2 - 1] = 0$ 

## Wien Bridge Oscillator

• A non-inverting Amplifier with gain determined by  $R_1$  and  $R_2$  and the RC feedback network



For the non - inverting amplifier

$$v_{in} = v_f = \frac{R_1}{R_1 + R_2} v_o$$
  

$$\therefore A_{noninverting} = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$
  

$$A_{vmin} = 3 = 1 + \frac{R_2}{R_1}$$

 $R_2 \ge 2R_1$  for Oscillations

If  $R_2 > 2R_1$  then the amplitude of the oscillations will increase and clipping will occur.



