Some Review

Lesson 17
Review of Where Stand

• Signals
 – Continuous vs Discrete Time
 \[x(t) = e^{st}, \quad x(n) = z^n \]
 – Periodic vs Aperiodic
 \[x(t+T) = x(t) \quad \text{for all } t \]
 – Bounded vs Unbounded
 – Symmetries
 Even vs Odd
 – Complex functions

• Unit Impulse And Unit Step Functions
 – Unit Impulse Function
 \[d(t) = 0 \text{ for } t \neq 0; \]
 \[= \text{undefined for } t = 0 \]
 \[\int_{-\infty}^{\infty} f(t)\delta(t-\tau)dt = f(\tau) \]
Review Continues

– Unit Step Function

\[u(t) = 1 \text{ for } t \geq 0; \]
\[= 0 \text{ for } t < 0 \]

Linear Time Invariant Systems

\[u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \]

• Linear Time Invariant Systems
 – Linearity and superposition

\[\sum_k a_k x_k(t) \rightarrow \sum_k a_k y_k(t) \]

– Causality

– Time Invariant

\[x_k(t-t_0) \rightarrow y_k(t-t_0) \]
Review #3

- Differential and Difference Equations
 - 1st and 2nd Order Linear Ordinary Differential Equations
 - Response Components of the Solution to ODEs
 - Source Free Response
 - Characteristic and Homogenous Equation
 - Eigenfunctions with its Eigenvalues are solutions to these equations
 - Examples of the solution to the 2nd Order ODE (overdamped, underdamped & critically damped)
 - Source Response
 - Network response function
 \[y(t) = \frac{B(p)}{A(p)} x(t) = H(p)x(t) \]
 - Poles and Zeroes
Review #4

• Sinusoidal Steady State Response
 – Replacing p with $j\omega$ in the Network Response Function yielded the $H(j\omega)$ in phasor form
 – Bode Plots

• Difference Equations

• Convolution
 – System Response of a system due to a Unit Impulse Function, $h(t)$
 – Response of a system due to other sources
 \[y(t) = \int_{\tau} x(\tau)h(t - \tau)\,d\tau \]
Review #5

• Stability of Systems
 – The poles of $H(p)$ must lie in the left hand complex plane for continuous systems
 – The poles of $h(n)$ must lie in the unit circle for discrete systems

• Signal Analysis
 – Fourier Series
 – Using Orthogonal Functions
 – Periodic Functions
Review #6

– Continuous & Periodic in the Time Domain
– Infinite & Discrete in the Frequency Domain

\[a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-\frac{j2\pi kt}{T}} \, dt \]

\[f(t) = A_0 + \sum_{k=1}^{\infty} \left[a_k e^{\frac{j2\pi kt}{T}} + a_k^* e^{-\frac{j2\pi kt}{T}} \right] + = A_0 + \sum_{k=1}^{\infty} 2|a_k| \cos\left(\frac{j2\pi kt}{T} + \psi_k\right) \]

– Quadratic Content
– Sampling Function
Review #7

• Fourier Transform
 – Infinite Period
 – Continuous in the Frequency Domain
 – Spectral Density

\[\mathcal{F}[f(t)] = F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt \]

\[\mathcal{F}^{-1}[F(j\omega)] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} \, d\omega \]

 – Properties and Dualities of the FT
 – FTs for discrete functions
Review #8

- Filters
 - Types of Filters
 - Idealized Filters
- Modulation
 - Amplitude and Angle
 - Frequency Spectrum
 - PAM
- Sampling Theorem
 - Nyquist Sampling Rate
 - TDM
- Pulse Code Modulation
 - Quantization Error
 - Amplitude and Angle Modulation