Systems

Lecture #3

1.3
Representation of a System

• How do represent a system mathematically?
 – Since a system transforms a signal into another we write an equation:
 \[y(t) = \mathcal{T}\{x(t)\} \]
 – where \(\mathcal{T} \) is an operator to symbolize a system,
 – \(x(t) \) is the signal that goes into the system: input signal (or source)
 – And \(y(t) \) is transformed signal or output signal (or solution of the equation)

• We can also represent it by a flow diagram

\[x(t) \xrightarrow{\mathcal{T}} y(t) \]
Example of a Continuous-Time System

• A squarer system: \(y(t) = \{x(t)\}^2 \)
 - The output equals the square of the input.
 - This is the result of putting the sine wave into the squarer

\[\begin{align*}
\text{Input: } x(t) & \\
\text{Output: } y(t) &= \{x(t)\}^2
\end{align*} \]

• This is an example of a continuous-time system
• We might be able to build this using an electronic circuit
Discrete-Time Systems

• If we put a discrete-time signal into a system the output may be a discrete-time signal
• This is called a Discrete-time system.

\[y[n] = \mathcal{T}\{x[n]\} \]

• Using our squarer example: \(y[n] = \{x[n]\}^2 \)
Mixed Systems

- Continuous-to-Discrete systems
 \[y[n] = \mathcal{T}\{x(t)\} \]
 - Example: a sampler: \[y[n] = x(nt_s) \]
 - This is also called a A-to-D converter
- Discrete-to-Continuous systems
 \[y(t) = \mathcal{T}\{x[n]\} \]
 - Example: An D-to-A converter
 - The opposite of a sampler
 - Takes the samples a recreates the Continuous Signal
An Example

• Example: A music CD

Music \rightarrow Recorder $\Rightarrow x(t)$

A-to-D Converter \rightarrow Optical Disk Writer \rightarrow Optical Disk Reader $\Rightarrow x[n]$

CD $x[n]$ \Rightarrow D-to-A Converter $\Rightarrow x(t)$

Stereo \rightarrow Listener
Some Basic Properties of Linear Systems

• If a system is Linear, or better yet Linear and Time Invariant (LTI), it is easier to analyze and understand than systems that are non-linear and/or vary with time.

• All LTI systems must be
 – Linear and support superposition
 – Causal
 – Time Invariant
Linearity for Continuous Signals

$x_1(t)$

$x_2(t)$

$x_3(t) = a_1x_1(t)$

$x_3(t) = a_1x_1(t) + a_2x_2(t)$

$y_1(t)$

$y_2(t)$

$y_3(t) = a_1y_1(t)$

$y_3(t) = a_1y_1(t) + a_2y_2(t)$

SCALAR

SUPERPOSITION
Shorthand

\[x_k(t) \rightarrow y_k(t) \]

\[\sum_k a_k x_k(t) \rightarrow \sum_k a_k y_k(t) \]
Same for Discrete Signals

\[x_k[n] \rightarrow y_k[n] \]

\[\sum_k a_k x_k[n] \rightarrow \sum_k a_k y_k[n] \]
Causality

• A system is causal if the output at any time depends only on the input values up to that time
• $y(t_o)$ does not depend on $x(t_i)$ that occur at times after t_o, $t_i > t_o$.
• True for all real time physical systems
• Not true for system-processed recorded signals or spatial varying signal
 – Such systems can look ahead or left, right, up & down
 – E.g., a Morphing System
Causality

• Not Causal

\[y(t) \] \(\rightarrow \) \[x(t) \]

\[y(t_0) \] \(\rightarrow \) \[x(t_i) \]
Causality

- Causal

Allowable Values of t_i

$y(t)$

$x(t)$

$y(t_0)$

t_0
Time Invariance

Continuous Signals

\[x_k(t) \rightarrow y_k(t) \]

Delay \(x(t) \) by \(t_0 \) yields same response only later

\[x_k(t-t_0) \rightarrow y_k(t-t_0) \]

Discrete Signals

\[x_k[n] \rightarrow y_k[n] \]

\[x_k[n-n_0] \rightarrow y_k[n-n_0] \]
A Non-LTI System

A multiplier which is a function of time

\[x(t) \quad y(t) = g(t) \cdot x(t) \]

Check Superposition:
\[x_1(t) \text{ yields } y_1(t) = g(t) \cdot x_1(t) \]
\[x_2(t) \text{ yields } y_2(t) = g(t) \cdot x_2(t) \]

let \(x_3(t) = a_1 x_1(t) + a_2 x_2(t) \) then
\[y_3(t) = g(t) \cdot x_3(t) = g(t) \left[a_1 x_1(t) + a_2 x_2(t) \right] \]
\[= a_1 y_1(t) + a_2 y_2(t) \]
OK

Check Time Invariance:
\[x_1(t) = x(t) \text{ yields } y(t) = g(t) \cdot x(t) \]
\[x_2(t) = x(t-t) \text{ yields } y_2(t) = g(t) \cdot x_2(t) \]
\[= g(t)x(t-t) \]

But to be TI
\[x_2(t) = x(t-t) \text{ yields } y_2(t) = y(t-t) \]
\[= g(t-t) \cdot x(t-t) \]
Not OK
Another Non-LTI System

A system with an additive constant

\[y(t) = x(t) + K \]

Check Superposition:

For Superposition to hold, we need to have:

let \(x(t) = a_1 x_1(t) + a_2 x_2(t) \) then \(y(t) = a_1 x_1(t) + a_2 x_2(t) + K \)

But for this system:

\[y(t) = y_1(t) + y_2(t) = a_1 x_1(t) + K + a_2 x_2(t) + K \]

Not OK
How Does One Describe LTI Systems

- For Continuous Systems – By Using Ordinary Differential Equations (ODE)
- For Discrete Systems – By Using Difference Equations
1st Order Linear ODE: Simple Electrical Circuit

\[V_s = i(t)R + L \frac{di(t)}{dt} \]

\[\frac{di}{dt} + \frac{R}{L}i = \frac{V_s}{L} \]

Solve for \(i(t) \) assuming: \(i(t) = K_1 e^{-At} + K_2 \) with the initial condition that \(i(0) = 0 \). The 2 terms are need due to the following: Since the source \(V_s \) is a constant (battery), we assume that the output must a component which is a constant, \(K_2 \). Since the differential equation is requires that the output and its derivative be proportional to each other, we assume that the output must have a component which is proportional to an exponential function, \(K_1 e^{-At} \).
1st Order Linear ODE: Simple Electrical Circuit

\[V_s = i(t)R + L \frac{di(t)}{dt} \]
\[\frac{di}{dt} + \frac{R}{L}i = \frac{V_s}{L} \]

Substituting \(i(t) = K_1e^{-At} + K_2 \) in the equation, we get

\[-AK_1e^{-At} + \frac{R}{L}K_1e^{-At} + \frac{R}{L}K_2 = \frac{V_s}{L} \]

Resorting we have

\[-AK_1e^{-At} + \frac{R}{L}K_1e^{-At} + \frac{R}{L}K_2 = \frac{V_s}{L} \]

This implies

\[-AK_1e^{-At} + \frac{R}{L}K_1e^{-At} = 0 \]

\[\frac{R}{L}K_2 = \frac{V_s}{L} \]

\[-AK_1e^{-At} + \frac{R}{L}K_1e^{-At} = 0 \]
\[-A + \frac{R}{L} = 0; A = \frac{R}{L} \]

\[\frac{R}{L}K_2 = \frac{V_s}{L}; K_2 = \frac{V_s}{R} \]

Therefore,

\[i(t) = K_1e^{-\frac{R}{L}t} + \frac{V_s}{R} \]

But the initial condition states that \(i(0) = 0 \)

\[i(0) = K_1e^{-\frac{R}{L} \cdot 0} + \frac{V_s}{R} = K_1 + \frac{V_s}{R} = 0 \]

\[K_1 = -\frac{V_s}{R} \]

\[i(t) = \frac{V_s}{R} \left(1 - e^{-\frac{R}{L}t}\right) \]
1st Order Linear ODE: Simple Electrical Circuit

\[i(t) = \frac{V_S}{R} \left(1 - e^{-\frac{R}{L}t} \right) = \frac{V_S}{R} \left(1 - e^{-\frac{t}{L/R}} \right) \]

\(\frac{L}{R} \) is called the time constant and we see that within 3 time constants
95% of its final value is reached.
Another 1st Order LODE: Drug Concentration in Blood Being Removed by the Liver

\[\dot{D} + K_L D = \frac{R_D}{V_c} \]

Where \(K_L \) = drug loss rate

\(V_c \) = Volume of circulatory system in liters

\(R_D \) is the rate of drug input (mg/min)

In a similar way as in the RL circuit, we can solve this for

\[D(t) = \frac{R_D}{V_c K_L} \left(1 - e^{-K_L t} \right) \]
2nd Order LODE

\[M \ddot{x} + B \dot{x} + Kx = F(t) \]

- \(M \) = Mass
- \(B \) = Friction
- \(K \) = Spring constant

\[L \dddot{i} + R \dot{i} + \frac{1}{C} i = 0 \]

- \(R \) = Resistance
- \(L \) = Inductance
- \(C \) = Capacitance
Homework

- Linear Systems
 - Is $y(t) = x(t)^2$ a linear system? Prove your point.
 - Is $y(t) = t^2$ a linear system? Prove your point.
 - CT.1.3.1

- ODE
 - Solve and plot the solution to the equation: $dx/dt + 6 \times \quad x = 0; \quad x(0) = 5$; use Matlab to obtain the plot
 - Solve and plot the solution to the equation: $dx/dt + 6 \times \quad x = 6; \quad x(0) = 0$; use Matlab to obtain the plot