Signal Analysis

Lecture #7
5CT.1-2,4
How to Analyze Different Classes of Signals

• Classes of Signals
 – Periodic vs. Non Periodic
 – Continuous vs. Discrete
 – Bounded vs. Non Bounded
 – Symmetries

• Use Mathematical Transformations
 – such as Fourier Series and Fourier, Laplace, & Z transforms
 – to analyze Signal Properties
 • Frequencies which make up signal: Spectrum
 • Energy Content
 – to analyze and design systems which process these signals
 • Filters
 • etc
Fourier Series

• A method for approximating a signal
• A means to analyze a signal
• Applies to either continuous or discrete signals
• Need to understand/review some background, foundations, and assumptions
Related Sources Theorem

- If we know the response to a source, then the response to the derivative/integral of the source is the derivative/integration of the response to the source.
- An intuitive proof:

\[
x(t) \rightarrow y(t) \quad \frac{dx(t)}{dt} \rightarrow \frac{dy(t)}{dt} \quad A(p)y(t) = B(p)x(t) \quad d[A(p)y(t)] = d[B(p)x(t)]
\]

\[
A(p) \frac{dy(t)}{dt} = B(p) \frac{dx(t)}{dt}
\]

\[
\int x(t) dt \rightarrow \int y(t) dt \quad \int A(p)y(t) dt = \int B(p)x(t) dt \quad A(p) \int y(t) dt = B(p)\int x(t) dt
\]
Taylor Series Approximation of a Signal

• From calculus, if we have a single-valued function that is continuous and has continuous derivatives, it can be approximated as

\[
f(t) \approx f_a(t) = f(t_o) + \frac{df(t)}{dt} \bigg|_{t=t_o} (t - t_o) + \frac{d^2 f(t)}{dt^2} \bigg|_{t=t_o} (t - t_o)^2 + \cdots \\
\cdots + \frac{d^{n-1} f(t)}{dt^{n-1}} \bigg|_{t=t_o} (t - t_o)^{n-1} + R_n(t)
\]

• Assuming that \(f(t) \) is the source function, using the related sources theorem, we know the response to a constant source, then we can get the response to any function \(t^n \) by successful integration and then use superposition to get the full response due to \(f_a(t) \)

• \(R_n(t) \) can be considered to be the error between \(f(t) \) and \(f_a(t) \) and gets smaller as more terms are added
An Example

\[f(t) = \cos \frac{\pi t}{2}; \quad f_a(t) = a_0 + a_1 t + a_2 t^2 \]

- How do we choose the coefficients, the \(a_i\)'s, to get best approximation of \(f(t)\) within the interval \(-1 < t < +1\)?

- Let's choose them that at \(t = -1, 0, +1\),

\[
\begin{align*}
 f_a(-1) &= a_0 - a_1 + a_2 = \cos \frac{-\pi}{2} = 0 \\
 f_a(0) &= a_0 = 1 \\
 f_a(1) &= a_0 + a_1 + a_2 = \cos \frac{\pi}{2} = 0 \\
 a_0 &= 1, a_1 = 0, a_2 = -1 \\
 f_a(t) &= 1 - t^2
\end{align*}
\]
The Error Between $f(t)$ & $f_a(t)$

- Object: Choose the a_i's to minimize the error $\varepsilon(t) = f(t) - f_a(t)$ over the interval of the approximation, but
 - Average error is not a good criterion since we can have large deviations which cancel each other out. Example: $\varepsilon(t) = \sin t$ over the period 0 to 2π.

- Instead try to minimize the average value of
 \[E^2 = \frac{1}{t_1 - t_2} \int_{t_1}^{t_2} \varepsilon^2 dt = \frac{1}{t_1 - t_2} \int (f(t) - f_a(t))^2 dt \]
 which is known as the mean squared error.
An Example

\(\varepsilon(t) = f(t) - (a_0 + a_1 t + a_2 t^2) \) over the interval \(-1 < t < +1\)

\[
E^2 = \frac{1}{2} \int_{-1}^{+1} [f(t)]^2 dt - \int_{-1}^{+1} (a_0 + a_1 t + a_2 t^2) f(t) dt + \frac{1}{2} \int_{-1}^{+1} (a_0 + a_1 t + a_2 t^2)^2 dt
\]

To choose the \(a_k \)'s to minimize the mean squared error, we must have:

\[
\frac{\partial E^2}{\partial a_k} = 0, \quad \frac{\partial^2 E^2}{\partial a_k^2} > 0
\]

Since the second partials are positive we will have a minimum. The minimum is \(E^2 = .017 \). But can we do better?
Can we do better?

• Yes, choose more terms, \(f_a(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 \)

• Or better yet, choose different approximating functions that are orthogonal in the interval, i.e., choose

\[
f_a(t) = A_0 g_0(t) + A_1 g_1(t) + A_2 g_2(t) + \cdots + A_n g_n(t)
\]

such that

\[
\int_{t_1}^{t_2} g_k(t) g_j(t) \, dt = 0 \quad \text{for } k \neq j
\]

and

\[
\int_{t_1}^{t_2} g_k(t) g_j(t) \, dt = G_k \quad \text{for } k = j
\]
Orthogonal Functions

Using \(f_a(t) = A_0 g_0(t) + A_1 g_1(t) + A_2 g_2(t) + \cdots + A_n g_n(t) \) over the interval \(T \) and choose the \(A_n \)'s to minimize \(E^2 \), we have:

\[
E^2 = \frac{1}{T} \int_T [f(t) - f_a(t)]^2 dt
\]

\[
= \frac{1}{T} \left[\int_T f(t)^2 dt - 2 \int_T f_a(t) f(t) dt + \int_T f_a(t)^2 dt \right]
\]

\[
\frac{\partial E^2}{\partial A_k} = \frac{1}{T} \frac{\partial}{\partial A_k} \left[-2 \int_T f_a(t) f(t) dt + \int_T f_a(t)^2 dt \right] = 0
\]

Where \(\frac{\partial E^2}{\partial A_k} \) represents a set \(k+1 \) simultaneous equations

Note: \(\int_T f(t)^2 dt \) is sometimes called the quadratic content or energy associated with \(f(t) \) in interval \(T \)
Coefficients of Orthogonal Functions

It can be shown that the first integral of each set of the \(k+l \) equations is:

\[
\frac{1}{T} \frac{\partial}{\partial A_k} (-2 \int_{T} f_a(t) f(t) \, dt)
\]

\[
= \frac{1}{T} \frac{\partial}{\partial A_k} \left[-2 \int_{T} (A_0 g_0(t) + A_1 g_1(t) + \cdots + A_n g_n(t)) f(t) \, dt \right]
\]

\[
= \frac{-2}{T} \left[\int_{T} g_k(t) f(t) \, dt \right]
\]

And applying the orthogonal property to the second integral, we have:

\[
\frac{1}{T} \frac{\partial}{\partial A_k} \int_{T} f_a(t)^2 \, dt = \frac{1}{T} \frac{\partial}{\partial A_k} \left(A_0 g_0(t) + A_1 g_1(t) + \cdots + A_n g_n(t) \right)^2 \, dt
\]

\[
= \frac{1}{T} 2 \int_{T} (A_0 g_0(t) + A_1 g_1(t) + \cdots + A_n g_n(t)) g_k(t) \, dt = A_k \frac{1}{T} 2 \int_{T} g_k(t)^2 \, dt = A_k \frac{2}{T} G_k
\]
Coefficients of Orthogonal Functions

\[
\frac{1}{T} \frac{\partial}{\partial A_k} \left[-2 \int_{T} f_a(t) f(t) \, dt + \int_{T} f_a(t)^2 \, dt \right]
\]

\[
= \frac{-2}{T} \left[\int_{T} g_k(t) f(t) \, dt \right] + A_k \frac{1}{T} 2 \int_{T} g_k(t)^2 \, dt
\]

\[
= \frac{-2}{T} \left[\int_{T} g_k(t) f(t) \, dt \right] + A_k \frac{2}{T} G_k = 0
\]

And, at last we have:

\[
A_k = \frac{\int_{T} g_k(t) f(t) \, dt}{\int_{T} [g_k(t)]^2 \, dt} = \frac{\int_{T} g_k(t) f(t) \, dt}{G_k}
\]
What Functions are Orthogonal

• There is a class of polynomials which form an orthogonal set
• But a better choice are the sinusoidal functions:

\[f_a(t) = C_0 + \sum_{k=1}^{N} [A_k \cos(\frac{2\pi kt}{T}) + B_k \sin(\frac{2\pi kt}{T})] \]

\[= C_0 + \sum_{k=1}^{N} C_k \cos(\frac{2\pi kt}{T} + \psi_k) \]

where \(C_k = \sqrt{A_k^2 + B_k^2} \)

\[\psi_k = \tan^{-1}\left(\frac{-B_k}{A_k}\right) \]
Some Properties of Sinusoids Which Make Things Neater

Recall that $e^{jt} = \cos t + j \sin t$

$$\cos t = \frac{1}{2}(e^{jt} + e^{-jt})$$

$$\sin t = \frac{1}{2j}(e^{jt} - e^{-jt})$$

And for the complex number $s = \alpha + j\omega$, there is its conjugate $s^* = \alpha - j\omega$. Furthermore, $s + s^* = 2\text{Re}[s] = 2\alpha$

Therefore, let's rewrite $f_a(t)$ in terms of complex series of $e^{j\omega t}$ functions and their conjugates.

We now call this the **Fourier Series** of a function within an interval of T.
Fourier Series

\[f_a(t) = C_0 + \sum_{k=1}^{N} C_k \cos\left(\frac{2\pi kt}{T} + \psi_k\right) \]

\[= C_0 + C_1 \cos\left(\frac{2\pi 1t}{T} + \psi_1\right) + \cdots + C_k \cos\left(\frac{2\pi kt}{T} + \psi_k\right) + \cdots + C_N \cos\left(\frac{2\pi Nt}{T} + \psi_N\right) \]

Expanding the sum

\[= C_0 + \frac{C_1}{2} e^{j\left(\frac{2\pi 1t}{T} + \psi_1\right)} + \frac{C_1}{2} e^{-j\left(\frac{2\pi 1t}{T} + \psi_1\right)} + \cdots + \frac{C_k}{2} e^{j\left(\frac{2\pi kt}{T} + \psi_k\right)} + \frac{C_k}{2} e^{-j\left(\frac{2\pi kt}{T} + \psi_k\right)} + \cdots + \frac{C_N}{2} e^{j\left(\frac{2\pi Nt}{T} + \psi_N\right)} + \frac{C_N}{2} e^{-j\left(\frac{2\pi Nt}{T} + \psi_N\right)} \]

Using Euler's formula.

\[= C_0 + \frac{C_1}{2} e^{j\psi_1} e^{\frac{j2\pi l t}{T}} + \frac{C_1}{2} e^{-j\psi_1} e^{-\frac{j2\pi l t}{T}} + \cdots + \frac{C_k}{2} e^{j\psi_k} e^{\frac{j2\pi k t}{T}} + \frac{C_k}{2} e^{-j\psi_k} e^{-\frac{j2\pi k t}{T}} + \cdots + \frac{C_N}{2} e^{j\psi_N} e^{\frac{j2\pi N l t}{T}} + \frac{C_N}{2} e^{-j\psi_N} e^{-\frac{j2\pi N l t}{T}} \]

Formulation of phasors

Let \(g_k(t) = e^{\frac{j2\pi k t}{T}} \) and then \(g_k(t)^* = e^{-\frac{j2\pi k t}{T}} \) and \(a_k = \frac{C_k}{2} e^{j\psi_k} \) and then \(a_k^* = \frac{C_k}{2} e^{-j\psi_k} \) where \(a_0 = C_0 \)
Fourier Series

\[f_a(t) = a_0 + a_1 g_1(t) + [a_1 g_1(t)]^* + \cdots + a_k g_k(t) + [a_k g_k(t)]^* + \cdots + a_N g_N(t) + [a_N g_N(t)]^* \]

Recasting in terms of general orthogonal functions.

\[a_0 + \sum_{k=1}^{N} a_k g_k(t) + [a_k g_k(t)]^* \quad \text{Simplifying the sum.} \]

where \(g_k(t) = e^{\frac{j2\pi kt}{T}} \), \(g_k(t)^* = e^{-\frac{j2\pi kt}{T}} \), \(a_k = \frac{C_k}{2} e^{j\psi_k} \), \(a_k^* = \frac{C_k}{2} e^{-j\psi_k} \), \(a_0 = C_0 \)

and \(a_k = \frac{1}{T} \int_{t_1}^{t_1+T} f(t)g_k(t)^* \, dt \)

\[= \frac{1}{T} \int_{t_1}^{t_1+T} f(t)e^{-\frac{j2\pi kt}{T}} \, dt \]

\[f_a(t) = a_0 + \sum_{k=1}^{N} [a_k e^{\frac{j2\pi kt}{T}} + a_k^* e^{-\frac{j2\pi kt}{T}}] = \sum_{k=-N}^{N} a_k e^{\frac{j2\pi kt}{T}} = C_0 + \sum_{k=1}^{N} 2 \text{Re}[a_k e^{\frac{j2\pi kt}{T}}] \]

Note that since the magnitude of the \(a_k \) coefficients are 1/2 the value of the \(C_k \) coefficients, 2 real part is required.

\[f_a(t) = a_0 + \sum_{k=1}^{N} C_k \cos\left(\frac{j2\pi kt}{T} + \psi_k\right), \quad \text{where} \quad 2a_k = C_k e^{j\psi_k} \quad \text{and} \quad a_0 = C_0 \]
Homework

• Fourier Series
 – Problem (3)

• Compute the Fourier Series for the function using 3 terms in the series:

\[f(t) = 1 \text{ for } 0 < t < \pi \text{ and } f(t) = 0 \text{ for } \pi < t < 2\pi \]

\[
a_k = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{-jkt} dt = \frac{1}{2\pi} \int_{0}^{\pi} e^{-jkt} dt = \left(\frac{1}{2\pi} \right) \left(\frac{1}{-jk} \right) e^{-jkt} \bigg|_{0}^{\pi} = \frac{1}{-2\pi k} (e^{-j\pi} - 1)
\]

\[
= \frac{1}{-2\pi k} e^{-j\pi k/2} (e^{-j\pi k/2} - e^{+j\pi k/2})
\]

\[
= \frac{\sin k\pi}{\pi k}; \text{ for } k \neq 0
\]

\[
a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt = \frac{1}{2\pi} \int_{0}^{\pi} 1 dt = \frac{1}{2}
\]

\[
f(t) = \frac{1}{2} + 2 \sum_{k=1}^{N} \frac{\sin \frac{k\pi}{2}}{\pi k} \cos(kt - k\frac{\pi}{2})
\]
Homework

• Mean Squared Error
 – Problem (1)
 • For our example in class, prove that $E^2 = 0.017$ for $f(t) = \cos(\pi t/2)$
 – Problem (2)
 • It is desired to approximate $f(t) = \sin(t)$ in the interval $0 < t < \pi/2$ by the straight line $f_a(t) = mt + b$. Determine the values of m and b for a least mean square error approximation and calculate the corresponding MSE.

• Fourier Series
 – Problem (3)
 • Compute the Fourier Series for the function using 3 terms in the series:
 \[
 f(t) = 1 \quad \text{for} \quad 0 < t < \pi, \quad f(t) = 0 \quad \text{for} \quad \pi < t < 2\pi
 \]
 – Problem (4)
 • Compute the Fourier Series for the function using 4 terms in the series:
 \[
 f(t) = t \quad \text{for} \quad 0 < t < 3
 \]

• 5CT.1.1, 5CT.1.2