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Firms, such as retailers and wholesalers routinely manage interrelated flows of cash and inventories of goods,

and have to make financial and operational decisions simultaneously. In this paper, we model a firm that

uses its capital to finance purchases of a single-product inventory, subject to periodic review, lost sales and

zero replenishment lead times. The firm earns interest on its cash on hand but pays interest on its debt.

Demand is random but not necessarily stationary over periods. The objective is to maximize the expected

value of the capital at the end of a finite planning horizon. First, it is shown that the optimal ordering

policy is characterized by a sequence of two threshold variables. Then, upper and lower bounds for these

threshold values are developed using two myopic ordering policies. Based on these bounds, we provide an

efficient algorithm to compute the two threshold values. Subsequently, it is shown that policies of similar

structure are optimal when the loan and deposit interest rates are piecewise linear functions and when there

is a maximum loan limit. Further managerial insights are provided by numerical studies.

Key words : Inventory-finance decision, threshold variables, myopic policy.

1. Introduction

In the current competitive environment, firms such as retailers and small to medium scalar whole-

salers must make decisions simultaneously on management of interrelated flows of cash and prod-

ucts. For example, most tourist shops in big cities such as New York City, Los Angeles, Chicago,

Boston and others are likely to apply capital loan to restock inventory. According to a survey

reported by Lindberg and Vaughn (2004), more than one-third of the gift shops, on average, take

financial loans from banks or other private lenders, government agencies, venture capital and stock

placements. For another example, dried sea food and tonic food retailer stores are commonly seen,

almost in every corner, in Hong Kong and some big cities in Japan, and they are selling high-

valued products such as shark fin, bird’s nest, cordyceps sinensis, Japanese sea cucumber, dried

abalone and many others [Conover et al. (1998) and Clarke (2002)]. Those stores are typically

facing financial restrictions when making inventory replenishment decisions.

In this study we model and analyze the optimal financial and operational policy of a small or

medium-scale firm whose inventory is subject to lost sales, zero replenishment lead times and peri-

odic review over a finite planning horizon. The firm’s treasury or inventory-capital profile consists

of inventory level and capital level, where a positive capital level presents the position of cash on

hand while a negative capital level means a loan position. In each period, the firm can use its cash
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on hand or an external short-term loan (if needed) to procure products for inventory. Any cash on

hand is deposited in a bank account to earn interest at a given rate, while debt incurs interest at a

higher given rate as well. We develop and study a discrete-time model for a single-product, single-

and multiple-period inventory system. The objective of the firm is to dynamically optimize the

order quantities given the current financial condition in each period via joint operational/financial

decisions, so as to maximize the expected value of the firms capital (i.e., total wealth level) at the

end of a finite time horizon.

The inventory flow is described as follows. At the beginning of each period, the firm decides on an

order quantity and the corresponding replenishment order materializes with zero lead time. During

the remainder of the period, no inventory transactions (demand fulfillment or replenishment) take

place. Instead, all such transactions are settled at the end of the period. Incoming demand is

aggregated over that period, and the total period demand draws down on-hand inventory. However,

if the demand exceeds the on-hand inventory, then the excess demand is lost. All the left-over

inventory (if any) is carried forward to the next period subject to a holding cost, and at the last

period, the remaining inventory (if any) is disposed off either at a salvage value or at a disposal

cost.

The cash flow is described as follows. All transactions pertaining to previous period are settled at

the beginning of each period, where the firm updates its capital position with the previous period’s

revenue from sales and interests earned from a deposit or paid if there was a loan. Then, the firm

decides the order quantity and pays for replenishment with cash on hand first given deposited

cash can be withdrawn without penalty. However, if the cash on hand is insufficient to pay for

replenishment, the shortage of capital can be borrowed subject to a higher interest rate. If not all

cash on hand is used for replenishment, any unused cash amount is deposited to a bank where

it earns interest. Deposited cash may be withdrawn at the beginning of any period without a

withdrawal restriction to finance a replenishment order. At the end of each period the resulting

cash on hand or debt is carried forward to the next period.

The main contribution of the paper is to establish the optimal ordering policy in terms of the

net worth of the firm (capital in product units plus the inventory on hand) at the beginning of each

period. It is shown that the optimal policy is characterized by a sequence of two threshold critical

values αn and βn [cf. Theorem 1 for the single period problem and Theorem 3 for the multiple

period problem]. The constants αn and βn are in general functions of the firms net worth. This

optimal policy has the following structure: a) If the net worth is less than αn, then the firm orders

up to αn, which is referred to as the over-utilization case. b) If the net worth is greater than βn, then

the firm orders up to βn, which is referred to as the under-utilization case. c) Otherwise, when the

net worth is between αn and βn, then the firm orders exactly as many units as it can afford without
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borrowing, which is referred to as the full-utilization case. Also, for the single period problem, we

show that the (α,β) optimal policy yields a positive expected value even with zero values for both

initial inventory and capital. For the multiple period problem, we construct two myopic policies

which respectively provide upper and lower bounds for the threshold values. Based on these upper

and lower bounds, we provide an efficient algorithm to compute the two thresholds, αn and βn,

recursively for all periods n. It is also shown that policies of similar structure are optimal when the

loan and deposit interest rates are piecewise linear functions and when there is a maximum loan

limit [cf. Theorem 5 and Theorem 6].

The remainder of this paper is organized as follows. Section 2 reviews the related literature. In

Section 3, the single period model is developed and the optimal (α,β) policy is derived, where

the threshold values are functions of the demand distribution and the cost parameters of the

problem. Section 4 extends the analysis for the dynamic multiple period problem and it derives

a two-threshold structure for the optimal policy via a dynamic programming analysis. Section 5

introduces two myopic policies that provide upper and lower bounds for each αn and βn. Numerical

studies are presented in Section 6. In Section 7, it is pointed out that simple modifications of the

study allow the extension of the results to the case of piecewise linear interest rate functions and

a maximum loan limit. Section 8 concludes the paper.

2. Literature Review

In the seminal study, Modigliani and Miller (1958) show that, within a perfect capital market, a

firm’s operational and financial decisions can be made separately. Since then, most literature in

inventory management extends the classical newsvendor problem in a variety of perspectives but

assuming there is no financial restriction faced by decision makers. Recently, considering the imper-

fection of the practical capital market, a growing literature has begun to consider the operational

decision making under financial constraints. Among those studies, inventories of goods are often

treated as special financial instruments [cf. Singhal (1988)]. In such a fashion, portfolios composed

of products and regular financial instruments have been studied using finance/investment princi-

ples such as Modern Portfolio Theory (MPT) and the Capital Asset Pricing Model (CAPM). For

related literature, we refer the reader to Corbett et al. (1999) and references therein. Further, the

relationship between inventories and finance, along with the theoretical and empirical consequences

are discussed by Girlich (2003).

The growing literature on the interface between operations management and financial decisions

can be categorized into two major streams: single-agent stream and game related multiple-agent

stream. Under each stream, the literature can be further classified into two subgroups: single-period

and multi-period models. Our study belongs to the single-agent stream with both single-period

and multi-period models.
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In the single-agent stream, a firm is typical modeled to make operational decisions and financial

decisions simultaneously without interacting with other firms. Considering an imperfect market,

Xu and Birge (2004) develop models to make production and financing decisions simultaneously

in the presence of demand uncertainty. The authors illustrate how a firm’s production decisions

are affected by the existence of financial constraints. Recently, Birge and Xu (2011) present an

extension of a model of Xu and Birge (2004) by assuming that debt and production scale decisions

depend on fixed costs necessary to maintain operations, variable costs of production, and volatil-

ity in future demand forecasts. Building on their previous work of Xu and Birge (2004), Xu and

Birge (2008) review that analysis and consider the effect of different operating conditions on cap-

ital structure, including some empirical support of their previous predicted relationship between

production margin and market leverage. Those studies focus on single-period problems.

Some studies on single-agent but multi-period problems are done by Hu and Sobel (2005), Chao

et al. (2008) and Li et al. (2013). Their multi-period models, except Chao et al. (2008), allow

different interest rates on cash on hand and outstanding loans. These papers also demonstrate the

importance of the joint consideration of production and financing decisions in a start-up setting in

which the ability to grow the firm is mainly constrained by its limited capital and dependence on

bank financing. For example, Hu and Sobel (2005) examine the interdependence of a firm’s capital

structure and its short-term operating decisions concerning inventories, dividends, and liquidity.

To this end, Hu and Sobel (2005) formulate a dynamic model to maximize the expected present

value of dividends. Chao et al. (2008) study a multiple period inventory optimization problem

faced by a self-financing firm where borrowing is not permitted, demands are independent and

identically distributed (i.i.d.) random variables and purchase and sale unit prices are identical

across all periods. Li et al. (2013) present and study a dynamic model of managerial decisions in

a manufacturing firm in which inventory and financial decisions interact and are coordinated in

the presence of demand uncertainty, financial constraints, and default risk. It is shown that the

relative financial value of coordination can be made arbitrarily large.

In the second stream of the literature, multi-agent competition between firms and financial insti-

tutions has been investigated using game theoretic approaches. This literature includes but is not

limited to: Buzacott and Zhang (2004), Dada and Hu (2008), Yasin and Gaur (2010) and Raghavan

and Mishra (2011). Most of those literature deals with single-period problem. Buzacott and Zhang

(2004) analyze a Stackelberg game between the bank and the retailer in a newsvendor inventory

model. Dada and Hu (2008) assume that the interest rate is charged by the bank endogenously and

use a game model for the relation between the bank and the inventory controller through which

the equilibrium is derived and a non-linear loan schedule is obtained to coordinate the channel.
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Yasin and Gaur (2010) study the implications of asset based lending for operational investment,

probability of bankruptcy, and capital structure for a borrower firm. Raghavan and Mishra (2011)

study a short-term financing problem in a cash-constrained supply chain.

As a part of the second stream literature, multi-agent game theoretic approaches have also been

used to model the competition between suppliers and retailers. Such recent studies are Kouvelis

and Zhao (2011a) and Kouvelis and Zhao (2011b) and many others. An important area in this

literature is the work on the impact of the trade credits provided by suppliers to retailers. Lee

and Rhee (2010) study the impact of inventory financing costs on supply chain coordination by

considering four coordination mechanisms for investigation: all-unit quantity discount, buy backs,

two-part tariff, and revenue-sharing. It is shown that using trade credit in addition to contracts,

a supplier can fully coordinate the supply chain and achieve maximum joint profit. Also, Lee and

Rhee (2011) model a firm with a supplier that grants trade credit and markdown allowance. Given

the supplier’s offer, it determines the order quantity and the financing option for the inventory

under either trade credit or direct financing from a financial institution. The impact of trade credit

is also studied in Yang and Birge (2011) from an operational perspective, in order to investigate

the role that trade credit plays in channel coordination and inventory financing. It is shown that

when offering trade credit, the supplier balances its impact on operational profit and costs.

Our paper is related to Chao et al. (2008), which consider a single-agent multi-period problem

for a self-financing retailer without external loan availability. Chao et al. (2008) show that the

optimal, cash flow-dependent, policy in each period, is uniquely determined by a single critical

value. Our study differs from Chao et al. (2008) in the following ways: (1) we consider a loan which

provides the retailer with flexibility to order a larger quantity; (2) Chao et al. (2008) assume an

i.i.d. demand process and time-stationary costs, while we consider non-stationary demand process

and time varying (loan and deposit) interest rates. In addition, we introduce two myopic policies

which are used to generate an efficient algorithm to compute the threshold values. Our model

can be considered as a generalization of Chao et al. (2008) that allows the use of financial loans

(with and without a maximum loan limit). After we completed this study, we were informed of

the independent work of Gong et al. (2012) which studies a similar model along different lines

from ours. Our study differs from Gong et al. (2012) in several aspects including the following.

We consider non-stationary demand process and time varying (loan and deposit) interest rates,

myopic policies are investigated and utilized in computations, the interest rates can be piecewise

linear functions, the case of financing under a maximum loan limit constraint is treated.

3. The Single Period Model

We first introduce necessary notation and assumptions. At the beginning of the period, the

“inventory-capital” state of the system can be characterized by a vector (x,y), where x denotes the
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amount of on-hand inventory (number of product units) and y denotes the amount of product that

can be purchased using all the available capital (i.e., y is the capital position measured in “product

units”). Note that, X = c · x and Y = c · y represent respectively values of on-hand inventory and

available capital position at the beginning of the period. Let D denote the single period random

demand. For simplicity, we assume that D is a non-negative continuous random variable with a

probability density function f(·) and cumulative distribution F (·). Let p, c, s, denote respectively

the selling price, the ordering cost and the salvage price per unit of the product. Note that we allow

a negative s in which case s represents a disposal cost per unit, e.g., the unit cost of disposing

vehicle tires, etc. Further, let i denote the interest rate for a deposit, and ℓ the interest rate for a

loan. The decision variable is the order quantity q≥ 0.

To avoid trivialities we assume that i < ℓ and it is possible to achieve a positive profit with the

aid of a loan, i.e., (1+ ℓ)c < p. This assumption is equivalently written as:

ℓ <
p

c
− 1. (1)

Note also, that the above assumptions implies i < p
c
− 1 since i < ℓ, which says that investing

on inventory is preferable to depositing all the available capital Y to the bank. Note that at

the beginning of the period it is possible to purchase products with available capital y (when

y= Y/c > 0) but it is not allowed to convert any of the available on hand inventory x into cash.

Given the initial inventory-capital state is (x, y), if an order of size q ≥ 0 is placed and the

demand during the period is D, then we have the following two cash flows.

1. The cash flow from sales of items (i.e., the realized revenue from inventory) at the end of the

period is given by

R(D,q,x) = p ·min{q+x,D}+ s · [q+x−D]+

= p · [q+x− (q+x−D)+] + s · [q+x−D]+

= p(q+x)− (p− s) · [q+x−D]+, (2)

where [z]+ denotes the positive part of real number z, and the second equality holds by min{z, t}=
z− [z− t]+.

2. The cash flow from capital at the end of the period can be computed when we consider the

following two scenarios:

i) If the order quantity 0≤ q≤ y, then the left amount c · (y− q) of cash will be deposited in the

bank and it will yield a positive flow of c · (y− q)(1+ i) at the end of the period.

ii) Otherwise, if q > y (even if q= 0> y) then a loan amount of c · (q−y) will be incurred during

the period and it will result in a negative cash flow of c · (q− y)(1+ ℓ) at the end of the period.
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Consequently, the cash flow from the bank (positive or negative) can be written in general as

K(q, y) = c · (y− q)
[
(1+ i)1{q≤y} +(1+ ℓ)1{q>y}

]
. (3)

Note that the cash flow from inventory, R(D,q,x) is independent of y, while the cash flow from

capital, K(q, y) is independent of the initial on-hand inventory, x and the demand size D. Also,

note that the ordering cost, c · q, has been accounted for in Eq. (3) while the remaining capital, if

any, has been invested in the bank and its value at the end of period is given by K(q, y).

Thus, for any given initial “inventory-capital” state (x, y) and an order quantity q, the expected

value of net worth at the end of the period is given by

G(q,x, y) =ED[R(D,q,x) ]+K(q, y). (4)

Substituting Eqs.(2) - (3) into Eq. (4) yields

G(q,x, y) = p(q+x)− (p− s)

∫ q+x

0

(q+x− t)f(t)dt+ c · (y− q)

[
(1+ i)1{q≤y} +(1+ ℓ)1{q>y}

]
. (5)

The following lemma summarizes the important properties of function G(q,x, y).

Lemma 1. The function G(q,x, y) is continuous in q, x and y, and it has the following properties.

i) It is concave in q ∈ [0,∞), for all x, y and all s < p.

ii) It is increasing and concave in x, for s≥ 0.

iii) It is increasing and concave in y, for all s < p.

Proof. The continuity follows immediately from Eq. (5). We next prove the concavity via exam-

ining the first-order and second-order derivatives. To this end, differentiating Eq. (5) via Leibniz’s

integral rule yields

∂

∂q
G(q,x, y) =

{
p− c · (1+ i)− (p− s)F (q+x) if q < y,
p− c · (1+ ℓ)− (p− s)F (q+x) if q > y.

(6)

Therefore, for q > y or q < y

∂2

∂q2
G(q,x, y) =−(p− s)f(q+x). (7)

Then the concavity in q readily follows since ∂2

∂q2
G(q,x, y)≤ 0 by Eq. (7).

Although the cost function is not differentiable (for the first order and/or the second order) at

some specific points (e.g., at q = y), we can still consider its derivatives to show its increasing or

decreasing properties that allows us to study the optimal solution. Such notational convention will

be used throughout the paper.
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The increasing property of G(q,x, y) in x and y can be shown by taking the first order derivatives

using Eq. (5):

∂

∂x
G(q,x, y) = pF̄ (q+x)+ sF (q+x)> 0, (8)

∂

∂y
G(q,x, y) = c ·

[
(1+ i)1{q<y} +(1+ ℓ)1{q>y}

]
> 0.

The joint concavity of G(q,x, y) in x and y can be established by computing the second order

derivatives below using again Eq. (5).

∂2

∂x2
G(q,x, y) = −(p− s)f(q+x)< 0,

∂2

∂y2
G(q,x, y) = 0,

∂2

∂x∂y
G(q,x, y) = 0.

Thus the Hessian matrix is negative semi-definite and the proof is complete. �

Remarks.

1. It is important to point out that G(q,x, y) might not increase in x if s < 0. In particular, if s

represents a disposing cost, i.e., s < 0, the right side of Eq. (8) might be negative in general, which

implies that G(q,x, y) is decreasing for some high values of x.

Further, for the special case with s < 0, it is of interest to locate the critical value, x′ such that

G(q,x, y) is decreasing for x> x′. To this end, we set Eq. (8) to be zero, which yields

(p− s) ·F (q+x) = p. (9)

Therefore,

x′ = F−1

(
p

p− s

)
− q, (10)

where F−1(·) is the inverse function of F (·). Eq. (10) shows that a higher disposing cost, −s, implies

a lower threshold for x′ above.

2. Lemma 1 implies that higher values of initial assets, x, y or the net worth ξ = x+y, will yield

a higher expected revenue G(q,x, y). Further, for any fixed assets (x,y) there is a unique optimal

order quantity q∗ such that

q∗(x, y) = argmaxq≥0G(q,x, y).

We next introduce the critical values of α and β as follows:

α = F−1(a); (11)

β = F−1(b), (12)
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where

a =
p− c · (1+ ℓ)

p− s
;

b =
p− c · (1+ i)

p− s
.

It is straightforward to see that a≤ b, since 0≤ i≤ ℓ by assumption. This implies that α≤ β, since

F−1(z) is increasing in z. The critical value β can been interpreted as the optimal order quantity for

the classical firm problem corresponding to the case of sufficiently large Y of our model, in which

case no loan is involved, but the unit “price” c · (1+ i) has been inflated to reflect the opportunity

cost of cash not invested in the bank at an interest rate i. Similarly, α can been interpreted as the

optimal order quantity for the classical firm problem corresponding to the case Y = 0 of our model,

i.e., all units are purchased by a loan at an interest rate ℓ.

Note also that in contrast to the classical firm model, the critical values α and β above, are

now functions of the corresponding interest rates and represent opportunity costs that take into

account the value of time using the interest factors 1+ i and 1+ ℓ.

We next state and prove the following theorem regarding the optimality of the (α, β) ordering

policy.

Theorem 1. For any given initial inventory-capital state (x, y), the optimal order quantity is

q∗(x, y) =

 (β−x)+, β ≤ x+ y;
y, α≤ x+ y < β;
α−x, x+ y < α,

(13)

where α and β are given by Eq. (11) and (12), respectively.

Proof. For any given initial state (x, y), Lemma 1 implies that there exists a unique optimal

order quantity q∗(x, y) such that the profit function G(q,x, y) is maximized. To prove Eq. (13),

we investigate the first order derivative of the expected profit function given by Eq. (6). Figure 1

illustrates its functional structure with respect to three cases for various values of x+ y.

a) If x+ y < α, then G(q,x, y) is strictly increasing in q as long as q + x ≤ α, and decreasing

thereafter, while ∂G(q,x, y)/∂q = 0 for q+ x= α, cf. Figure 1 (a). It follows that in this case the

optimal quantity q∗ is such that q∗ +x= α.

b) If α ≤ y < β, then the profit function G(q,x, y) is strictly increasing in q until q = y, and

decreasing thereafter cf. Figure 1 (b). Then, the optimal quantity is q∗(x,y) = y.

c) If x + y ≥ β, then the profit function G(q,x, y) of x + q is strictly increasing until β, and

decreasing thereafter, cf. Figure 1 (c). Then, the optimal quantity after ordering is the one such

that q+x is close to β as much as it could be. Therefore, the optimal order quantity is (β−x)+.

This completes the proof. �
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Figure 1 Functional Structure for the Derivative of G(q,x, y) with Respective to q

Note that the optimal ordering quantity to a classical newsvendor model [cf. Zipkin (2000) and

many others], can be obtained from Theorem 1 as the solution to the extreme case with i= ℓ= 0

whence the optimal order quantity is given by:

α= β = F−1

(
p− c

p− s

)
.

We further elucidate the structure of the (α,β) optimal policy below where we discuss the

utilization level of the initially available capital Y .

1. (Over-utilization) When x+ y < α, it is optimal to order q∗ = α− x= y+ (α− x− y). In

this case y = Y/c units are bought using all the available fund Y and the remaining (α− x− y)

units are bought using a loan of size: c · (α−x− y).

2. (Full-utilization) When α ≤ x + y < β, it is optimal to order q∗ = y = Y/c with all the

available fund of Y . In this case, no deposit and no loan is involved.

3. (Under-utilization) When x+ y ≥ β, it is optimal to order q∗ = (β − x)+. In particular, if

x < β, it is optimal to order β − x using c · (β − x) units of the available cash Y , and deposit the

remaining cash to earn interest. However, if x≥ β, then q∗ = 0, i.e., it is optimal not to order any

units and deposit all the amount of Y to earn interest.

The above interpretation is illustrated in Figure 2 for the case in which x = 0, by plotting the

optimal order quantity q∗ as a function of y. Note that for y ∈ (0, α) there is over utilization of y ;

for y ∈ [α,β) there is full utilization of y and for y ∈ [β,∞) there is under utilization of y.

We next define the function

V (x, y) =max
q≥0

G(q,x, y). (14)

and state and prove the following lemma which will be used in the next section.
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Figure 2 The Optimal Order Quantity when x= 0

Theorem 2. For any initial state (x, y),

i) V(x,y) is given by

V (x,y) =


p ·x− (p− s) ·T (x)+ c · y · (1+ i), x > β;
p ·β− (p− s) ·T (β)+ c · (x+ y−β)(1+ i), x≤ β, β ≤ x+ y;
p · (x+ y)− (p− s) ·T (x+ y), α≤ x+ y < β;
p ·α− (p− s) ·T (α)+ c · (x+ y−α)(1+ l), x+ y < α,

(15)

where T (x) =
∫ x

0
(x− t)f(t)dt;

ii) the function V (x, y) is increasing in x and y, and jointly concave in (x, y), for x, y≥ 0.

Proof. Part (i) follows from substituting q∗ given by Eq. (13) into Eq. (5).

For part (ii) the increasing property of V can be justified straightforwardly. For the concavity of

V , note that by Lemma 1, G(q,x, y) is concave in q, x and y. Taking the maximization of G over

q and using Proposition A.3.10 of Zipkin (2000), p436, and Eq. (14) we have that the concavity in

x and y is preserved and the proof is complete. �

From investment perspective, it is of interest to see the possibility of speculation [cf. Hull (2002)].

The following result shows that the (α,β) policy given in Theorem 1 yields positive value with zero

investment. Specifically, when the firm has zero initial inventory asset and capital, i.e., x= 0 and

y= 0, the optimal policy brings a positive expected final asset value.

Corollary 1. For x= 0 and y= 0, the following is true

V (0,0) = (p− s)

∫ α

0

tf(t)dt > 0.
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Proof. The result can be readily proved by setting x= y= 0 in Eq. (15). �
Note that arbitrage usually means that it is possible to have a positive profit for any realized

demand (i.e., of a risk-free profit at zero cost; cf. Hull (2002)), thus the above speculation possibility

does not in general imply an arbitrage. Actually, an arbitrage exists only if the demand is constant.

4. The multi-period problem

In this section, we extend the results of the previous section and consider the finite horizon version

of the problem, with N ≥ 2 periods. As in the single period, at the beginning of a period n =

1, . . . ,N , let the “inventory-capital” state of the system be summarized by a vector (xn, yn), where

xn denotes the amount of on-hand inventory (number of product units) and yn denotes the amount

of product that can be purchased using all the available capital (i.e., yn is the capital position

measured in “product units”). Note again that, Xn = c · xn and Yn = c · yn represent respectively

value of on-hand inventory and capital position at the beginning of period n. Let qn denote the

order quantity the firm uses in the beginning of period n= 1, . . . ,N. We assume the lead time of

replenishment is zero. Throughout all periods t= 1, . . . ,N −1, any unsold units are carried over in

inventory to be used in subsequent periods subject to a constant holding cost per unit per period.

At the end of the horizon, i.e., period N , all the leftover inventory (if any) will be salvaged (or

disposed off) at a constant price (cost) per unit.

Let pn, cn, hn denote the selling price, ordering cost and holding cost per unit in period n,

respectively. Let s denote the salvage price (or disposal cost) per unit at the end of period N. Let

in and ℓn, with in ≤ ℓn, be the interest rates for deposit and loan in period n, respectively.

Finally, let Dn denote the demand of period n. We assume that demands of different periods

are independent but could be non-stationary over periods. Let fn(·), Fn(·) denote respectively the

probability density function, the cumulative distribution function of Dn. The system state at the

beginning of period n is characterized by (xn, yn). The order quantity qn = qn(xn, yn) is decided at

the beginning of period n as a function of (xn, yn). It is readily shown that the state (xn, yn) process

under study is a Markov decision process (MDP) with decision variable qn [cf. Ross (1992)]. Then,

the dynamics for the two states of the system are formulated as follows, for n= 1,2, ...,N − 1

xn+1 = [xn + qn −Dn]
+; (16)

yn+1 = [Rn(Dn, qn, xn)+Kn(Dn, qn, yn)]/cn+1, (17)

where

Rn(Dn, qn, xn) = pn · (xn + qn)− (pn +hn) [xn + qn −Dn]
+
; (18)

Kn(Dn, qn, yn) = cn · (yn − qn)
[
(1+ in)1{qn≤yn} +(1+ ℓn)1{qn>yn}

]
. (19)
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In particular, at the end of period N , the revenue from inventory is

RN(DN , qN , xN) = pN ·min{xN + qN ,DN}−hN [xN + qN −DN ]
+

= pN [qN +xN ]− (pN − s)[qN +xN −DN ]
+, (20)

where hN =−s, and the revenue from the bank is

KN(DN , qN , yN) = cN · (yN − qN)
[
(1+ iN)1{qN≤yN} +(1+ ℓN)1{qN>yN}

]
(21)

For a risk-neutral firm, the objective is to maximize the expected value of the total wealth at the

end of period N , that is,

max
q1,q2,··· ,qN

E
[
RN(DN , qN , xN)+KN(DN , qN , yN)

]
,

where xN and yN are sequentially determined by decision variables qn, n ≤ N . Accordingly, we

have the following dynamic programming formulation:

Vn(xn, yn) = sup
qn≥0

E [Vn+1(xn+1, yn+1)|xn, yn] , n= 1,2, · · · ,N − 1 (22)

where the expectation is taken with respect to Dn, and xn+1, yn+1 are given by Eqs. (16), (17),

respectively. For the final period N, we have:

VN(xN , yN) = sup
qN≥0

E
[
RN(DN , qN , xN)+KN(DN , qN , yN)

]
. (23)

Note that for period N , the optimal solution is given by Theorem 1.

In the sequel it is convenient to work with the quantities p′n = pn/cn+1, h
′
n = hn/cn+1 and c′n =

cn/cn+1 and to take zn = xn+qn as the decision variable instead of qn. Here, zn refers to the available

inventory after replenishment, and it is restricted by zn ≥ xn for each period n. Accordingly, the

dynamic programming (DP) model defined by Eqs. (22)-(23) can be presented as:

Vn(xn, yn) = max
zn≥xn

Gn(zn, xn, yn), (24)

where

Gn(zn, xn, yn) =E [Vn+1(xn+1, yn+1)|xn, yn] , (25)

for 0≤ xn ≤ zn, and the inventory-capital states are dynamically given by

xn+1 = [zn −Dn]
+; (26)

yn+1 = p′n · zn − (p′n +h′
n) [zn −Dn]

+

+c′n · (xn + yn − zn)
[
(1+ in)1{zn≤xn+yn} +(1+ ℓn)1{zn>xn+yn}

]
. (27)

We first present the following result with its proof given in Appendix.
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Lemma 2. For n= 1,2, · · · ,N ,

(1) The function Gn(zn, xn, yn) is increasing in xn and yn, and it is concave in zn and (xn, yn).

(2) The function Vn(xn, yn) is increasing and concave in (xn, yn).

We next present and prove the main result of this section.

Theorem 3. (The (αn, βn) ordering policy).

For period n = 1,2, · · · ,N with given state (xn, yn) at the beginning of the period, there exist

positive constants αn = αn(xn, yn) and βn = βn(xn, yn) with αn ≤ βn, which define the optimal

order quantity as follows:

q∗(xn, yn) =

 (βn −xn)
+, xn + yn ≥ βn;

yn, αn ≤ xn + yn <βn;
αn −xn, xn + yn <αn.

(28)

Further, αn is uniquely identified by

E

[(
∂Vn+1

∂xn+1

− (p′n +h′
n)
∂Vn+1

∂yn+1

)
1{αn>Dn}

]
= [c′n(1+ ℓn)− p′n]E

[
∂Vn+1

∂yn+1

]
, (29)

and βn is uniquely identified by

E

[(
∂Vn+1

∂xn+1

− (p′n +h′
n)
∂Vn+1

∂yn+1

)
1{βn>Dn}

]
= [c′n(1+ in)− p′n]E

[
∂Vn+1

∂yn+1

]
. (30)

where the expectations are taken with respect to Dn conditionally on the initial state (xn, yn).

Theorem 3 establishes that the optimal ordering policy is determined by two threshold variables.

More importantly, these two threshold values αn and βn can be obtained recursively by solving

the implicit equations, Eqs. (29) and (30), respectively.

Remark. The study of Chao et al. (2008) assumes that borrowing is not allowed and thus the

firm is firmly limited to order at most yn units for period n. For this model, it was shown that

the optimal policy is determined, in each period, by one-critical value. Our results presented in

Theorem 3 contain this study as a special case. This can be seen if we set ℓn to be sufficiently large

such that a loan is financially prohibited. In this case, αn becomes zero and βn can be interpreted

as the critical value developed by Chao et al. (2008).

Corollary 2. For any period n<N and its initial state (xn, yn), the threshold variables of αn

and βn are only determined by the total worth ξn = xn+ yn, i.e., they are of the form: αn = αn(ξn)

and βn = βn(ξn). But for the last period N , αN and βN are independent of either xN or yN .

In view of Corollary 2, one can first compute the αn and βn at the beginning of the period based

on the total worth ξn. The decision on the order quantity qn can then be made by Eq. (28).
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5. Myopic Policies and Threshold Bounds

As shown by Theorem 3, there is a complex computation involved in the calculation of αn and

βn. In what follows, we study myopic ordering policies that are relatively simple to implement.

Such myopic policies optimize a given objective function with respect to any single period and

ignore multi-period interactions and cumulative effects. We introduce two types of myopic policies.

Specifically, myopic policy (I) assumes the associated cost for the leftover inventory ŝn is only the

holding cost, i.e., ŝn =−hn. Myopic policy (II) assumes that the leftover inventory cost s̃n is not

only the holding cost but it also includes its value in the following period, i.e., s̃n = cn+1 − hn.

In the following two subsections, we will show that myopic policy (I) (respectively myopic policy

(II) ) yields lower bounds, α̂n and β̂n (respectively upper bounds, α̃n and β̃n) for the two threshold

values, αn and βn.

Before presenting the myopic policies, we present the following lemma that will be applied to

derive the upper and lower bounds.

Lemma 3. For real functions f(x) and g(x),

(a) if both f(x) and g(x) are monotonically increasing or decreasing, then

E[f(X) · g(X)]≥E[f(X)] ·E[g(X)],

where the expectation is taken with respect to the random variable X.

(b) If f(x) is increasing (decreasing), while g(x) is decreasing (increasing), then

E[f(X) · g(X)]≤E[f(X)] ·E[g(X)].

5.1. Myopic Policy (I) and Lower Threshold Bounds

Myopic policy (I) is the one period optimal policy obtained when we change the periodic cost

structure by assuming that only the holding cost is assessed for any leftover inventory i.e., we

assume the following modified “salvage value” cost structure:

ŝn =

{
−hn, n <N,
s, n=N.

Let further,

ân =
pn − cn[1+ ℓn]

pn − ŝn
; (31)

b̂n =
pn − cn[1+ in]

pn − ŝn
. (32)

and the corresponding critical values are respectively given by

α̂n = F−1
n (ân); (33)

β̂n = F−1
n (b̂n). (34)
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For n= 1, . . . ,N, the order quantity below defines the myopic policy (I):

q̂n(xn, yn) =

 (β̂n −xn)
+, xn + yn ≥ β̂n;

yn, α̂n ≤ xn + yn < β̂n;
α̂n −xn, xn + yn < α̂n.

The next theorem establishes the lower bound properties of the myopic policy (I).

Theorem 4. The following are true:

i) For the last period N , αN = α̂N and βN = β̂N .

ii) For any period n= 1,2, . . .N − 1,

αn ≥ α̂n,

βn ≥ β̂n.

5.2. Myopic Policy (II) and Upper Bounds

Myopic policy (II) is the one period optimal policy obtained when we change the periodic cost

structure by assuming that not only the holding cost is assessed but also the cost in the next period

for any leftover inventory i.e., we assume the following modified “salvage value” cost structure:

s̃n =

{
cn+1 −hn, n <N ;
s, n=N.

(35)

One can interpret the new salvage values s̃n of Eq. (35) as representing a fictitious income from

inventory liquidation (or pre-salvage at full current cost) at the beginning of the next period n+1,

i.e., it corresponds to the situation that the firm can salvage inventory at the price cn+1 at the

beginning of the period n+1. Note that the condition cn(1+ℓn)+hn ≥ cn+1 is required if inventory

liquidation is allowed. Otherwise, the firm will stock up at an infinite level and sell them off at the

beginning of period n+1. Such speculation is eliminated by the aforementioned condition.

Let further,

ãn =
pn − cn[1+ ℓn]

pn − s̃n
, (36)

b̃n =
pn − cn[1+ in]

pn − s̃n
. (37)

and the corresponding critical values which are given by

α̃n = F−1
n (ãn), (38)

β̃n = F−1
n (b̃n). (39)

For n= 1, . . . ,N, the order quantity below defines the myopic policy (II):

q̃n(xn, yn) =

 (β̃n −xn)
+, xn + yn ≥ β̃n;

yn, α̃n ≤ xn + yn < β̃n;
α̃n −xn, xn + yn < α̃n.
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Let V L
n (xn, yn) denote the optimal expected future value when the inventory liquidation option is

available only at the beginning of period n+1 (but not the rest of the periods n+2, . . . ,N) given

the initial state (xn, yn) of period n. For notational simplicity, let ξn+1 = ξn+1(xn, yn, zn,Dn) =

xn+1 + yn+1 represent the total capital and inventory asset value in period n+ 1 when the firm

orders zn ≥ xn in state (xn, yn) and the demand is Dn.

Prior to giving the upper bounds of αn and βn, we present the following result.

Proposition 1. For any period n and given its initial state (xn, yn), function Vn(xn−d, yn+d)

is increasing in d where 0≤ d≤ x.

In view of Proposition 1, V L
n can be written as

V L
n (xn, yn) = max

zn≥xn
E [Vn+1(0, ξn+1) |xn, yn] . (40)

It is straightforward to show E [Vn+1(0, ξn+1) |xn, yn] is concave in zn. Therefore, V
L
n has an

optimal policy determined by a sequence of two threshold values αL
n and βL

n .

Proposition 2. The following are true: αL
n ≥ αn and βL

n ≥ βn, for all n.

We omit a rigorous mathematical proof (by contradiction) of the above proposition and instead

we provide the following intuitively clear explanation that holds for both αn and βn. Note that

inventory liquidation at period n + 1 provides the firm with more flexibility i.e., the firm can

liquidate the initial inventory xn+1 into cash so that the firm holds cash ξn+1 = xn+1 + yn+1 only.

Further, note that the firm will chose to stock up to a higher level of inventory when liquidation is

allowed. Indeed, if the firm ordered more in period n, all the leftover inventory after satisfying the

demand Dn can be salvaged at full cost cn+1 at the beginning of the next period n+ 1. In other

words, the firm will take the advantage of inventory liquidation to stock a higher level than that

corresponding to the case in which liquidation is not allowed in the current period n. The advantage

of doing so is twofold: (1) more demand can be satisfied so more revenue can be generated and (2)

there is no extra cost while liquidation of the leftover inventory is allowed.

The next result establishes the upper bound properties of the myopic policy (II).

Proposition 3. For any period n= 1,2, . . . ,N − 1, if cn(1 + ℓn) + hn ≥ cn+1, then the critical

constants of the optimal policy given in Eqs. (29)-(30) and its myopic optimal policy given in Eqs.

(38)-(39) satisfy

α̃n ≥ αn;

β̃n ≥ βn.

For the last period N , αN = α̃N and βN = β̃N .
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5.3. An Algorithm to Compute (αn, βn)

With the aid of the lower and the upper bounds presented in §5.1 and §5.2, we develop the

following heuristic algorithm for a computational-simplification purpose.

Algorithm: For period n, the threshold αn can be obtained via

αn = argmax
{
E [Vn+1(xn+1, yn+1) |xn + yn] : zn ∈ (α̂n, α̃n)

}
, (41)

where xn+1 is given by Eq. (26) and yn+1 is given below following from Eq. (27),

yn+1 = p′n · zn − (p′n +h′
n) · [zn −Dn]

+
+ c′n · (xn + yn − zn)(1+ ℓn).

For period n, the threshold βn can be obtained via

βn = argmax
{
E [Vn+1(xn+1, yn+1) |xn + yn] : zn ∈ (β̂n, β̃n)

}
, (42)

where xn+1 is given by Eq. (26) and yn+1 is given below by Eq. (27),

yn+1 = p′n · zn − (p′n +h′
n) [zn −Dn]

+
+ c′n · (xn + yn − zn)(1+ in).

Note that the calculations involved in Eqs. (41) and (42) are optimizations within bounded spaces

and we can employ an efficient search procedure based on Eq. (29) for αn and Eq. (30) for βn.

Those bounds simplify the computational space and thus expedite the calculation process.

6. Numerical Studies

In this section, we provide some numerical studies for the case of Uniform and Exponential demand

distributions. Specifically, Subsection 6.1 considers a single period problem, while Subsection 6.2

treats a two-period problem.

6.1. Single Period Model

As shown in Section 3, one major reason for the two distinct threshold variables, α and β, is the

two financial rates, i and l. It is of interest to see how sensitive of the variation between the two

threshold values with respect to the difference between i and ℓ. In this section, we experiment the

single period model with Uniform demand distribution of D∼U(0,100) and Exponential demand

distribution of D ∼Exp(50). We set the selling price as p= 50; cost c= 20; salvage cost per unit

s= 10. We fix the interest rate as i= 2% and change the loan rate ℓ from 2% to 50%. It shows that

the value of β does not change with respect to ℓ. Specifically, β = 74.00 for the Uniform demand,

while β = 67.35 for the Exponential demand.

Figure 3 depicts the change of α with respect to ℓ for each demand distribution. For both

demand distributions, α is decreasing in ℓ. The threshold values, α and β, of Uniform demand are
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Figure 3 α of Single Period firm Problem

Figure 4 β/α of Single Period Problem

larger than those of Exponential demand. This can be explained by the difference between their

distributions.

Figure 4 depicts the change of β/α with respect to ℓ. This numerical study shows that the

difference between α and β, measured by β/α is not significantly sensitive to the difference between

i and ℓ, measured by ℓ/i. Specifically, while ℓ/i = 25, β/α = 1.48 for the Uniform demand, and

β/α= 1.94 for the Exponential demand.

6.2. Two-Period Model

In this experiment, we consider a two-period problem and apply the algorithm presented in §5.3 to

calculate the optimal solutions for each period. We assume i.i.d. Uninform demand distributions,

D∼U(0,200), for each period and set the selling price as p= 50; cost c= 35; salvage cost per unit
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Figure 6 Optimal Threshold Values in Period 1 versus Initial Total Worth

s= 10 and holding cost h= 5. In the first experiment, we fix the interest rate as i= 5% and the

loan rate ℓ= 10%, while in the second one, we fix the interest rate as i= 5% and vary the loan

rate ℓ from 5% to 20%.

6.2.1. Optimal threshold values. The first numerical study shows the sensitivities of the

optimal order quantity in each period with respect to the total initial asset ξn, where n= 1 indicates

the beginning period while n= 2 indicates the ending period. Figure 5 depicts the optimal order-

up-to levels (i.e., the two threshold values α and β) for the ending period. In this case, α= 57.2125

and β = 65.9188. Note that the structure of the optimal order quantity obtained in this numerical

study repeats Figure 2 presented via analysis.

Figure 6 depicts the threshold variables for the beginning period. Here, the zigzag shape is

caused by the rounding calculations to approximate yn by [Yn/c] for each period, which explains the
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Table 1 Sensitivity of the Loan Rate

ℓ q∗1 q∗2 V1(0,0) V2(0,0) V1/V2

5% 111 66 1097.13 432.30 2.54
10% 110 57 935.08 324.88 2.88
15% 108 49 775.81 232.77 3.33
20% 105 40 624.45 156.00 4.00

non-monotonicity observation of α(ξ) in ξ. For α(ξ), its lower bound of α̂= 41.61, while its upper

bound is α̃= 114.43. For β(ξ), its lower bound is β̂ = 47.94, while its upper bound is β̃ = 131.84.

Furthermore, for initial net worth ξ ∈ (42,145), the firm would order ξ with all available capital.

6.2.2. Sensitivity of the optimal solution to the loan rate. In this numerical study, we

illustrate the sensitivity of the optimal solution with respect to the loan rate. As shown in Corollary

1, the optimal order policy has positive value even for zero initial inventory and zero initial capital.

In this study we stay with the initial states xn = 0 and yn = 0 in each period n = 1,2. It is of

our interest to see the value of optimal ordering policy through the time horizon. Table 1 exhibits

the optimal values at each period for ℓ ∈ [5%,20%], for i= 5%. First, the optimal order quantity

q∗2 in the ending period is relatively sensitive to the loan rate ℓ, and it is decreasing in ℓ; while

the optimal order quantity q∗1 in the beginning period is not sensitive to ℓ. This can be explained

by the additional variability of the longer horizon associated with q∗1 . Second, the expected total

ending wealths, V1 and V2 are both decreasing in ℓ. Importantly, the (αn, βn)-policy yields a positive

value by generating a positive expected ending wealth (e.g., Vn > 0) even if the initial asset and

capital are both zero. In addition, these calculations also show a positive value of time since V1

is always larger than V2. The calculations also demonstrate that the value of time at a small loan

rate (keeping everything else the same) is smaller than that at a large loan rate. For example,

V1/V2 = 2.54 for ℓ= 5%, while V1/V2 = 4 for ℓ= 20%.

7. Model Extensions

In this section, we study two extensions of the model. First we consider the case of piecewise linear

(loan and deposit) interest rate functions and second the case where there is a maximum loan limit.

7.1. Piecewise Type of Loan and Deposit Functions

Up to this section, the loan function was assumed to be a linear function: L(x) = (1+ ℓ) · x with

a constant loan rate ℓ. However, L(x) can have a more complex form in practice. In this section

we investigate the often occurring case in which L(x) is a piecewise linear function, i.e., it has the

form:

L(x) = (1+ ℓ(m)) ·x, x∈ (x(m−1), x(m)],
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where x(m−1) <x(m), x(0) = 0 and ℓ(m) < ℓ(m+1) for m= 1,2,3, ....

Similarly, we consider the deposit interest function to be a piecewise linear function of the form:

M(y) = (1+ i(k)) · y, y ∈ (y(k−1), y(k)],

where y(k−1) < y(k), y(0) = 0 and i(k) ≤ i(k+1) for k= 1,2,3, ....

Without loss of generality, we assume that the loan interest rates are always greater than the

deposit interest rates, that is ī < ℓ(1) where ī= supk{i(k)}.
Prior to characterizing the optimal ordering policy, we next introduce the critical values of α(m)

and β(k) for m,k= 1,2,3, ... as follows:

α(m) = F−1(a(m)); (43)

β(k) = F−1(b(k)), (44)

where

a(m) =
p− c · (1+ ℓ(m))

p− s
;

b(k) =
p− c · (1+ i(k))

p− s
.

It is straightforward to see that β(1) ≥ · · ·β(k) ≥ β(k+1) · · · ≥ β̄ > α(1) ≥ · · ·α(m) ≥ α(m+1) · · · ≥ 0

where β̄ = F−(p−c·(1+ī)

p−s
).

We present the structure of the optimal ordering policy in Theorem 5 below. The proof follows

by a straightforward modification of the proof of Theorem 1 and thus it is omitted for simplicity.

Theorem 5. For any given initial inventory-capital state (x, y), the optimal order quantity is

q∗(x, y) =


β(k) −x, β(k+1) ≤ x+ y≤ β(k);
· · · , · · ·
y, α(1) ≤ x+ y < β̄;
· · · , · · ·
α(m) −x, α(m+1) ≤ x+ y < α(m),

where {α(m)} and {β(k)} are given by Eq. (43) and (44), respectively.

For the multi-period problem, the optimal order quantity for each period shares a similar struc-

ture to that of single period problem, given by Theorem 5. However, the threshold values pertaining

to each period n<N depend on the period’s initial state values xn and yn.

7.2. Financing under a Maximum Loan Limit Constraint

In practice, the outstanding loan amount is often restricted to be less than or equal to a maximum

limit. Let Ln > 0 denote the maximum loan limit for period n. In this case, we have the following

structural results for the optimal ordering policy. The proof follows by straightforward modifications

of the ones for Theorem 1 and Theorem 3 and thus it is omitted for simplicity.
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Theorem 6. (The optimal ordering policy under a maximum loan limit).

For period n= 1,2, · · · ,N with given state (xn, yn) at the beginning of the period, if there is a loan

limit Ln, then there exist positive constants αL
n = αL

n(xn, yn) and βL
n = βL

n (xn, yn) with αL
n ≤ βL

n ,

which define the optimal order quantity as follows:

q∗(xn, yn) =


(βL

n −xn)
+, xn + yn ≥ βL

n ;
yn, αL

n ≤ xn + yn <βL
n ;

αL
n −xn, αL

n −L′
n ≤ xn + yn <αL

n ;
L′

n, xn + yn <αL
n −L′

n.

where L′
n =Ln/cn.

Note that, for period n, it is allowed that αL
n <L′

n. In this case, the maximum loan limit is not

binding since the optimal order quantity q∗n ≤ αL
n <L′

n.

8. Conclusions

In this paper, we studied the optimal inventory-finance policy for a single-item inventory system

within an environment that allows interest earning for deposit and capital loans. We showed that

the optimal ordering policy, called (αn, βn)-policy, for each period is characterized by two threshold

variables. In addition, we provided two myopic policies which give a lower bound and a upper

bound of the threshold variables. With the two bounds, we developed an algorithm to compute

the two threshold values αn and βn.

There are various possible directions of research to follow up with our current study, some

of them are: a) To include a fixed ordering cost and/or a fixed financial transaction cost. b)

Our study assumes risk neutral decision making. It is an interesting direction to analyze the risk

performance pertaining to the system, e.g., bankruptcy probabilities [cf. Babich et al. (2012), Gong

et al. (2012) and Li et al. (2013)]. In addition, it is not difficult to see many other related topics

and generalizations of this work for future research.

9. Appendix

Proof of Lemma 2. We prove the result by induction. In particular, in each iteration, we will

prove properties (1) and (2) by recursively repeating two steps: deducing the property of Gn from

the property of Vn+1 and obtaining the property of Vn from the property of Gn. Throughout the

proof, for a matrix or a vector w, we denote its transpose by wT . The Hessian Matrix (if it exists) of

a function G=G(x, y) will be denoted by HG (x, y). For example, the Hessian Matrix of Vn (xn, yn)

is denoted by

HVn (xn, yn) =

[
∂2Vn

∂xn∂xn

∂2Vn
∂xn∂yn

∂2Vn
∂yn∂xn

∂2Vn
∂yn∂yn

]
. (45)
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1. For VN , we have a one period problem. In this case, the result for function GN(zN , xN , yN) is

obtained by Lemma 1 with zn = xn + qn and the result for VN(xN , yN) is given by Theorem 2 of

the single period problem.

2. For n= 1,2, · · · ,N − 1, we prove the results recursively using the following two steps:

Step 1. We show that Gn(zn, xn, yn) is increasing in yn and concave in zn and (xn, yn) if

Vn+1(xn+1, yn+1) is increasing in yn+1 and concave (xn+1, yn+1).

We first compute the partial derivatives that will be used in the sequel for any given zn. From

Eq. (26) we have:

∂xn+1

∂zn
=

∂xn+1

∂xn

= 1{zn>Dn}, (46)

∂xn+1

∂yn
= 0. (47)

Similarly, from Eq. (27) we obtain:

∂yn+1

∂zn
= p′n1{zn<Dn} −h′

n1{zn>Dn} − c′n
[
(1+ in)1{zn<xn+yn} +(1+ ℓn)1{zn>xn+yn}

]
, (48)

and

∂yn+1

∂xn

= p′n1{zn<Dn} −h′
n1{zn>Dn}, (49)

∂yn+1

∂yn
= c′n

[
(1+ in)1{zn<xn+yn} +(1+ ℓn)1{zn>xn+yn}

]
. (50)

From Eqs. (46)-(50), it readily follows that the second order derivatives of xn+1 and yn+1 with

respect to zn, xn and yn are all zero.

In the sequel we interchange differentiation and integration in several places, this is justified by

the Lebesgue’s Dominated Convergence Theorem [cf. Bartle (1995)].

The increasing property of function Gn(zn, xn, yn) in yn can be established by taking the first

order derivative of Eq. (5) with respect to yn. Then,

∂

∂yn
Gn(zn, xn, yn) = E

[
∂Vn+1(xn+1, yn+1)

∂xn+1

∂xn+1

∂yn
+

∂Vn+1(xn+1, yn+1)

∂yn+1

∂yn+1

∂yn

]
= E

[
∂Vn+1(xn+1, yn+1)

∂yn+1

∂yn+1

∂yn

]
≥ 0,

where the second equality holds since ∂xn+1/∂yn = 0, by Eq. (47), and the inequality holds by Eq.

(50) and the induction hypothesis that Vn+1 is increasing in yn+1.

To prove the concavity of Gn(zn, xn, yn) in zn, we next show that ∂2Gn(zn, xn, yn)/∂z
2
n ≤ 0. To

this end we compute the first and second order derivatives as follows:

∂

∂zn
Gn(zn, xn, yn) = E

[
∂Vn+1(xn+1, yn+1)

∂xn+1

∂xn+1

∂zn
+

∂Vn+1(xn+1, yn+1)

∂yn+1

∂yn+1

∂zn

]
(51)
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and

∂2

∂z2n
Gn(zn, xn, yn) = E

[[
∂xn+1

∂zn
,
∂yn+1

∂zn

]
·HVn+1 ·

[
∂xn+1

∂zn
,
∂yn+1

∂zn

]T
]
, (52)

where

HVn+1 =

 ∂2Vn+1

∂xn+1∂xn+1

∂2Vn+1

∂xn+1∂yn+1

∂2Vn
∂yn+1∂xn+1

∂2Vn+1

∂yn+1∂yn+1


is the Hessian matrix of Vn+1(xn+1, yn+1). Now the induction hypothesis regarding Vn+1, implies

that HVn+1 is negative semi-definite, i.e., wHVn+1wT ≤ 0 for any 1 by 2 vector w, thus the result

follows using Eq. (52).

To prove the concavity of Gn(zn, xn, yn) in (xn, yn), we compute its Hessian matrix and show that

it is negative semi-definite. To this end we compute the first and second order partial derivatives

of Vn+1 with respect to xn and yn for any given zn, as follows:

∂Gn

∂xn

= E

[
∂Vn+1(xn+1, yn+1)

∂xn+1

∂xn+1

∂xn

+
∂Vn+1(xn+1, yn+1)

∂yn+1

∂yn+1

∂xn

]
, (53)

∂Gn

∂yn
= E

[
∂Vn+1(xn+1, yn+1)

∂xn+1

∂xn+1

∂yn
+

∂Vn+1(xn+1, yn+1)

∂yn+1

∂yn+1

∂yn

]
, (54)

and

∂2Gn

∂x2
n

= E
[
J

(1)
n+1

]
, (55)

∂2Gn

∂xn∂yn
= E

[
J

(2)
n+1

]
, (56)

∂2Gn

∂y2
n

= E
[
J

(3)
n+1

]
, (57)

where, by Eqs. (46) - (50), the terms involved with the second order derivatives of xn+1 and yn+1

with respect to xn and yn have vanished and where for notational convenience we have defined:

J
(1)
n+1 =

[
∂xn+1

∂xn

,
∂yn+1

∂xn

]
·HVn+1 ·

[
∂xn+1

∂xn

,
∂yn+1

∂xn

]T

,

J
(2)
n+1 =

[
∂xn+1

∂xn

,
∂yn+1

∂xn

]
·HVn+1 ·

[
∂xn+1

∂yn
,
∂yn+1

∂yn

]T

,

J
(3)
n+1 =

[
∂xn+1

∂yn
,
∂yn+1

∂yn

]
·HVn+1 ·

[
∂xn+1

∂yn
,
∂yn+1

∂yn

]T

.

Thus, the Hessian matrix of Gn in terms of (xn, yn) is:

HGn (xn, yn) =

[
∂2Gn

∂xn∂xn

∂2Gn
∂xn∂yn

∂2Gn
∂yn∂xn

∂2Gn
∂yn∂yn

]
, (58)
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with its elements given by Eqs. (55) - (57). To prove it is negative semi-definite, we consider the

quadratic function below for any real z and t,

[z, t] ·HGn · [z, t]T =
∂2Gn

∂xn∂xn

z2 +2
∂2Gn

∂xn∂yn
· z · t+ ∂2Gn

∂yn∂yn
· t2

= E
[
J

(1)
n+1z

2 +2J
(2)
n+1zt+J

(3)
n+1t

2
]
. (59)

If we define the 1× 2 vector w=w(n, z, t) as follows:

w= z ·
[
∂xn+1

∂xn

,
∂yn+1

∂xn

]
+ t ·

[
∂xn+1

∂yn
,
∂yn+1

∂yn

]
, (60)

then Eq. (59) can be further written as

[z, t] ·HGn · [z, t]T = E
[
w ·HVn+1 ·wT

]
. (61)

Since by the induction hypothesis HVn+1 is negative semi-definite, we have

w ·HVn+1 ·wT ≤ 0

and this implies that the right side of Eq. (61) is non-positive. Thus, the proof for Step 1 is complete.

Step 2. We show that Vn(xn, yn) is concave in (xn, yn) if Gn(zn, xn, yn) is concave in zn and

(xn, yn).

Since Gn(zn, xn, yn) is concave in zn and (xn, yn), then Vn(xn, yn) = maxzn≥xn Gn(zn, xn, yn) is

concave in xn, yn by the fact that concavity is reserved under maximization [cf. Proposition A.3.10

in Zipkin (2000), p436].

Thus the induction proof is complete. �

Proof of Theorem 3. Given state (xn, yn) at the beginning of period n = 1,2, · · · ,N , we

consider the equation:
∂

∂zn
Gn(zn, xn, yn) = 0, (62)

where ∂Gn(zn, xn, yn)/∂zn is given by Eq. (51). Substituting Eqs. (46) and (48) into Eq. (51) we

consider the following cases:

(1) for zn ≤ xn + yn,

∂Gn

∂zn
= E

[
∂Vn+1

∂xn+1

1{zn>Dn} +
∂Vn+1

∂yn+1

(
p′n1{zn<Dn} −h′

n1{zn>Dn} − c′n(1+ in)
) ∣∣xn, yn

]
; (63)

(2) for zn >xn + yn,

∂Gn

∂zn
= E

[
∂Vn+1

∂xn+1

1{zn>Dn} +
∂Vn+1

∂yn+1

(
p′n1{zn<Dn} −h′

n1{zn>Dn} − c′n(1+ ℓn)
) ∣∣xn, yn

]
, (64)
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where for each case above, random variables xn+1 and yn+1 within the expectations are given by

Eqs. (26) and (27), respectively.

The results follow readily by setting the right sides of Eqs. (63) and (64) equal to zero and

simple simplifications. Note that ∂Gn(zn, xn, yn)/∂zn is monotonically decreasing in zn due to its

concavity shown in part (1) of Lemma 2, therefore, there are unique solutions to each of these

equations. �
Proof Corollary 2. For period N , the independence of xN or yN is obvious since this is a

single period. For period n<N , let us revisit Eqs. (63) and (64). Note that xn+1 is independent of

(xn, yn) by Eq. (26) while yn+1 is dependent of xn+yn by Eq. (27). Therefore, αn and βn implicitly

given by Eqs. (63) and (64) are dependent of ξn = xn+yn only, and thus completes the proof. �
Proof of Lemma 3. To prove (a), we only give the proof for the case that f(x) and g(x) are

increasing. The same argument can be applied for the case of decreasing f(x) and g(x).

Let X ′ be another random variable which is i.i.d. of X. Since f(x) and g(x) are increasing, we

always have

[f(X)− f(X ′)][g(X)− g(X ′)]≥ 0.

Taking expectations with respect to X and X ′ yields

E
[
[f(X)− f(X ′)][g(X)− g(X ′)]

]
= E[f(X)g(X)+ f(X ′)g(X ′)− f(X ′)g(X)− f(X)g(X ′)]

= E[f(X)g(X)]+E[f(X ′)g(X ′)]−E[f(X ′)]E[g(X)]−E[f(X)]E[g(X ′)]

= 2E[f(X)g(X)]− 2E[f(X)]E[g(X)]≥ 0.

The result of part (a) readily follows from the above.

In a similar vein, we can prove part (b) via changing the direction of the inequality above. �
Proof of Theorem 4. We only prove the result for αn. The same argument can be applied to

prove the result for βn.

In view of Eq. (63), αn is uniquely given as the solution to the equation below,

E

[
∂Vn+1

∂yn+1

(
p′n1{αn<Dn} −h′

n1{αn>Dn} − c′n(1+ ℓn)
)]

=−E

[
∂Vn+1

∂xn+1

1{αn>Dn}

]
. (65)

Since
∂Vn+1

∂xn+1
≥ 0 by Lemma 2 part (2), the equation above is negative, which implies

E

[
∂Vn+1

∂yn+1

(
p′n1{αn<Dn} −h′

n1{αn>Dn} − c′n(1+ ℓn)
)]

≤ 0. (66)

Further note that for any realization of demand Dn = d> 0, the two terms of the left hand side of

Eq. (66):
∂Vn+1(xn+1(d), yn+1(d))

∂yn+1(d)
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and

p′n1{αn<d} −h′
n1{αn>d} − c′n(1+ ℓn)

are both increasing in d. Specifically, the first term is increasing by the concavity of Vn+1 [cf. Lemma

2, part (2)] and Eq. (27). Then, by Lemma 3 and Eq. (66), one has,

E

[
∂Vn+1

∂yn+1

]
E
[
p′n1{αn<Dn} −h′

n1{αn>Dn} − c′n(1+ ℓn)
]
≤ 0 (67)

Since
∂Vn+1

∂yn+1
≥ 0 by Lemma 2 part (2), the above inequality implies

E
[
pn1{αn<Dn} −hn1{αn>Dn} − cn(1+ ℓn)

]
≤ 0,

which, after simple algebra, is equivalent to

pn − cn · (1+ ℓn)− (pn − sn)Fn(αn)≤ 0.

The above further simplifies to

F (αn)≥
pn − cn · (1+ ℓn)

pn − sn
.

By Eqs. (31) and (33), the right hand side in the above inequality is Fn(α̂n). Thus, we have

Fn(αn)≥ Fn(α̂n), which completes the proof for αn ≥ α̂n by the increasing property of Fn(·). �
Proof of Proposition 1. It is sufficient to prove that for an arbitrarily small value of d > 0,

Vn(xn, yn)≤ Vn(xn − d, yn + d). To this end, consider the initial state to be (xn − d, yn + d). In this

case, the firm can always purchase d units without any additional cost to reset the initial state to

be (xn, yn). This means Vn(xn, yn)≤ Vn(xn − d, yn + d), and thus completes the proof. �
Proof of Proposition 3. For period N , the result readily follows from the optimal solution of

single period model. We only prove for α̃n ≥ αn as a similar argument (with replacing ℓn with in)

can be applied to prove β̃n ≥ βn.

By Proposition 2, we have αn ≤ αL
n and αL

n is determined by taking derivative of Eq. (40) and

setting it equal to zero, that is

E

[
∂Vn+1(0, ξn+1)

∂ξn+1

(
1{αL

n>Dn} + p′n1{αL
n<Dn} −h′

n1{αL
n>Dn} − c′n(1+ ℓn)

)]
= 0. (68)

For any realization of the demand Dn = d> 0 the term

∂Vn+1(0, ξn+1(d) )

∂ξn+1(d)

is decreasing in d by the concavity of Vn+1 [cf. Lemma 2 part (2)] and the fact that ξn+1 is increasing

in d by Eqs. (26)-(27).
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In addition the term

1{αn>d} + p′n1{αn<d} −h′
n1{αn>d} − c′n(1+ ℓn)

= p′n − (p′n +h′
n − 1)1{αn>d} − c′n(1+ ℓn),

is increasing in d.

By Eq. (68) and Lemma 3, one has

E

[
∂Vn+1(0, ξn+1)

∂ξn+1

]
·E

[
1{αL

n>Dn} + p′n1{αL
n<Dn} −h′

n1{αL
n>Dn} − c′n(1+ ℓn)

]
≥ 0.

Since ∂Vn+1(0, ξn+1)/∂ξn+1 ≥ 0 by Lemma 2 part (2), the above inequality implies

E
[
1{αL

n>Dn} + p′n1{αL
n<Dn} −h′

n1{αL
n>Dn} − c′n(1+ ℓn)

]
≥ 0, (69)

which, after simple algebra, is equivalent to

pn − cn · (1+ ℓn)− (pn +hn − cn+1)Fn(α
L
n)≥ 0.

The above further simplifies to

F (αL
n)≤

pn − cn · (1+ ℓn)

pn +hn − cn+1

.

Note that the right hand side of the above is less than 1 since cn(1+ℓn)+hn ≥ cn+1 by assumption.

Next, by Eqs. (36) and (38), the right hand side in the above inequality is Fn(α̂n). Thus, we have

Fn(α̃n)≥ Fn(α
L
n), which means α̃n ≥ αL

n . Thus, the proof for α̃n ≥ αn is complete, since αL
n ≥ αn

by Proposition 2. �
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