3.33 The probability of getting \(n \) heads in a row when tossing a fair coin \(n \) times is \(2^n \). Implement function \(\text{prob()} \) that takes a nonnegative integer \(n \) as input and returns the probability of \(n \) heads in a row when tossing a fair coin \(n \) times.

```python
>>> prob(1)
0.5
>>> prob(2)
0.25
```

3.34 Implement function \(\text{reverse_int()} \) that takes a three-digit integer as input and returns the integer obtained by reversing its digits. For example, if the input is 123, your function should return 321. You are not allowed to use the string data type operations to do this task. Your program should simply read the input as an integer and process it as an integer using operators such as \(// \) and \(\% \). You may assume that the input integer does not end with the 0 digit.

```python
>>> reverse_int(123)
321
>>> reverse_int(908)
809
```

3.35 Implement function \(\text{points()} \) that takes as input four numbers \(x_1, y_1, x_2, y_2 \) that are the coordinates of two points \((x_1, y_1)\) and \((x_2, y_2)\) in the plane. Your function should compute:

- The slope of the line going through the points, unless the line is vertical
- The distance between the two points

Your function should print the computed slope and distance in the following format. If the line is vertical, the value of the slope should be string ‘infinity’. Note: Make sure you convert the slope and distance values to a string before printing them.

```python
>>> points(0, 0, 1, 1)
The slope is 1.0 and the distance is 1.41421356237
>>> points(0, 0, 0, 1)
The slope is infinity and the distance is 1.0
```

3.36 Implement function \(\text{abbreviation()} \) that takes a day of the week as input and returns its two-letter abbreviation.

```python
>>> abbreviation('Tuesday')
'Tu'
```

3.37 The computer game function \(\text{collision()} \) checks whether two circular objects collide; it returns \(\text{True} \) if they do and \(\text{False} \) otherwise. Each circular object will be given by its radius and the \((x, y)\) coordinates of its center. Thus the function will take six numbers as input: the coordinates \(x_1 \) and \(y_1 \) of the center and the radius \(r_1 \) of the first circle, and the coordinates \(x_2 \) and \(y_2 \) of the center and the radius \(r_2 \) of the second circle.

```python
>>> collision(0, 0, 3, 0, 5, 3)
True
>>> collision(0, 0, 1.4, 2, 2, 1.4)
False
```
3.38 Implement function `partition()` that splits a list of soccer players into two groups. More precisely, it takes a list of first names (strings) as input and prints the names of those soccer players whose first name starts with a letter between and including A and M.

```python
>>> partition(['Eleanor', 'Evelyn', 'Sammy', 'Owen', 'Gavin'])
Eleanor
Evelyn
Gavin
>>> partition(['Xena', 'Sammy', 'Owen'])
```

3.39 Write function `lastF()` that takes as input a string of the form 'FirstName LastName' and returns a string of the form 'LastName, F.' (Only the initial should be output for the first name.)

```python
>>> lastF('John Locke')
'Locke, J.'
>>> lastF('Albert Camus')
'Camus, A.'
```

3.40 Implement function `avg()` that takes as input a list that contains lists of numbers. Each number list represents the grades a particular student received for a course. For example, here is an input list for a class of four students:

```
[[95, 92, 86, 87], [66, 54], [89, 72, 100], [33, 0, 0]]
```

The function `avg` should print, one per line, every student’s average grade. You may assume that every list of grades is nonempty, but you may not assume that every student has the same number of grades.

```python
>>> avg([[95, 92, 86, 87], [66, 54], [89, 72, 100], [33, 0, 0]])
90.0
60.0
87.0
11.0
```

3.41 The computer game function `hit()` takes five numbers as input: the x and y coordinates of the center and the radius of a circle C, and the x and y coordinates of a point P. The function should return `True` if point P is inside or on circle C and `False` otherwise.

```python
>>> hit(0, 0, 3, 3, 0)
True
>>> hit(0, 0, 3, 4, 0)
False
```

3.42 Implement function `ion2e()` that takes a string as input and returns a copy of the word back with the following change: if the entered word ends in 'ion', then 'ion' is replaced with 'e'.

```python
>>> ion2e('congratulation')
'congratulate'
>>> ion2e('marathon')
'marathon'
```