i
i
|
i
i
1

A Secret of Ancient Geometry
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New Jersey Institute of Technology
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1 Introduction

The architecture of antiquity has a sense of har-
mony and proportion rarely equaled even in the
greatest works of other eras. The quality of the
work of an architect or designer is determined by
how he or she comes to grips with the mathemat-
ical constraints on space inherent in all designs—
“what is possible,” in contrast with the designer’s
intention, “what ought to be.” The history of ar-
chitecture reflects the history of ideas in that “what
ought to be” has changed from metaphysical “nat-
ural” world views to explorations of the individual
“artist.” Additionally, the history of technology is
reflected in changes of “what is possible.”

There are two kinds of constraints on space that
the architect or designer must confront:

constraints imposed on a design because
of the geometrical properties of space;

constraints imposed on a design by the de-
signer who creates a geometrical founda-
tion or scaffolding as an overlay to the de-
sign. The designer’s choice is based on the
context of the design and on the effect that
he or she wishes to achieve.

Without constraints, a design is chaotic, irrele-
vant and lacking in focus. Where do the designer’s
constraints come from? In ancient times they were
derived either from spiritual contexts or handed
down from generation to generation by tradition.
The results were cathedrals such as Chartres and
Hagia Sophia or structures such as the Egyptian
Pyramids and the Great Temple of Jerusalem or the
temples of ancient Greece such as the Parthenon,
the Theseum, and the temples of Poseidon and
Ceres.

Modern architecture has replaced spiritual—and
tradition-bound—contexts with the private vision
of the designer or architect and substituted diver-
sity for tradition. However, the designer is left with
few tools to deal with such a lack of constraint. Af-
ter all, what should the designer do when each de-
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Figure 1: The Brunes star.

sign breaks new ground? In an effort to recover the
principles of ancient architecture, many researchers
have studied the geometric and spiritual bases of
ancient structures [7, 16, 17, 19].

This paper will discuss the work of Tons Brunes,
a Danish engineer, who hypothesized a system of
ancient geometry that he believed lay at the ba-
sis of many of the temples of antiquity [4]. It was
Brunes'’s belief that there existed until about 1400,
a network of temples and a brotherhood of priests
originating in ancient Egypt which had a secret sys-
tem of geometry. At the basis of Brunes’s the-
ory is the eight-pointed star illustrated in Figure
1. Brunes claimed to have seen this star in ancient
temples (but gave no references) where he stated
that it was often mistaken for ornamentation. From
the geometry of this star he was able to reconstruct
reasonably close facsimiles to the plans and eleva-
tions of the ruins of ancient temples such as the
Pantheon, the Theseum, and the Temples of Ceres
and Poseidon, noting that certain intersections co-
incide with features of these temples [10]. Unfortu-
nately, although the examples he uses to illustrate
his theories are cleverly rendered, there is no his-
torical record to support his claims. As a result his
research has met considerable skepticism. Never-



Secret of Ancient Geometry

27

theless, as we shall see, the Brunes star reveals a
geometry consistent with ancient architecture, folk
art, and the musical scale. Even though it is un-
likely to have played the all-pervasive role for tem-
. ple construction that Brunes conjectured, it may
well have been one of the organizing tools. At any
. rate, the beauty of its geometry is reason enough to
study it.

9 The Concept of Measure in
Ancient Architecture

One thing that we can say for sure about the
thought processes of antiquity is that they differed
markedly from our own. Until Aristotle introduced
observation and measurement as the only way to
arrive at truth, it appears that reality was best de-
scribed by numbers, music, and poetry.

R. A. Schwaller di Lubicz [5] felt that the com-
bination of myth and symbol conveyed by ancient
writings was the only way information about the
workings of the universe could be conveyed without
reducing its true meaning. According to Di Lu-
bicz [5] the ancient Egyptians felt that:

Measure was an expression of Knowl-
edge that is to say that measure has
for them a universal meaning linking the
things of here below with things Above
and not solely an immediate practical
meaning—quantity is unstable: only func-
g tion has a value durable enough to serve
{ as a basis [for description]. Thus the
Egyptians’ unit of measurement was al-
ways variable—measure and proportions
were adapted to the purpose and the sym-
bolic meaning of the idea to be expressed.
[For example] the cubit will not necessarily
be the same from one temple to another,
since these temples are in different places
and their purposes are different.

Before a standard unit of measure can be in-
troduced, there must be a sophisticated means of
transportation in order for its users to be able to
travel to a central location to retrieve the standard
measure for their own purposes.

In societies without access to standard measures,
other methods were developed to enable the crafts-
man to build or the architect to create structures
without need of standard measure. Even when mea-
suring rods were available, they may have been used
only as an adjunct to the use of pure geometry in

the design of sacred structures. In place of num-
bers to describe a measurement, a kind of applied
geometry was developed in which lengths were con-
structed without the need to measure them. All
that was needed was a length of rope and a straight-
edge (the equivalent of our compass and straight-
edge). Methods were then devised to subdivide
any length into sublengths, always by construction.
Evidence of construction lines have been discov-
ered on the base of the unfinished Temple of Sardis
in Turkey and also in the courtyard of the Tem-
ple of Zeus of Jerash in Jordan [18]. Artmann 2]
has shown how such methods were used to con-
struct the Gothic cathedrals. The geometry needed
to build these cathedrals was learned from boiled-
down versions of the first books of Euclid, known as
pseudo-Boethius [3] which highlighted the construc-
tive methods while eliminating the proofs of the
theorems. The knowledge to implement this geom-
etry was taught to the guilds of masons, other arti-
sans, and builders and then passed on from genera-
tion to generation by oral tradition. One can imag-
ine easily learned constructive techniques based on
the Brunes star being transmitted by this tradition
and applied to the construction of ancient sacred
structures. We shall describe Brunes’s hypotheti-
cal reconstruction of this geometry.

3 The Ancient Geometry of
Tons Brunes

In ancient times it was an important problem to
find a way to create a square or rectangle with
the same area or circumference as a given circle—
“squaring the circle,” as it was known. Since the
circle symbolized the celestial sphere while a square
or rectangle oriented with its sides perpendicular to
the compass directions of north, east, south, and
west symbolized the Earth, the squaring of the cir-
cle could be thought to symbolically bring “heaven
down to earth.” Brunes demonstrates one way in
which ancient geometers may have attempted to
solve this problem using only compass and straight-
edge (we now know that this cannot be done ex-
actly). To square the circle with respect to circum-
ference Brunes first considers a geometric construc-
tion which he refers to as a “sacred cut.”

To create the sacred cut of a side of a unit square,
place the point of your compass at a vertex and
draw an arc through the center of the square as
shown in Figure 2. This cuts the side down by a
factor of 1/+/2. In Figure 3 arc AB and the diagonal
CD of the half square are approximately equal. In
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Figure 2: The sacred cut.
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Figure 3: Comparison of lengths.
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Figure 4: Four sacred cuts within a square.
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Figure 5: The circumference of the circle is approx-
imately equal to the perimeter of the outer square.

Figure 6: The ad quadratum square.

fact,

AB = w/2/4=11107...  while
CcD=+5/2=11118....

In Figure 4 four sacred cuts AB are placed into
a square. In Figure 5 the four sacred cuts form a
circle whose circumference is equal to the perimeter
of a square with edge CD to within 1.6%.

In Figure 6, we see that a circle is drawn that
is tangent to an outer square (inscribed circle) and
touching the vertices of an inner square (circum-
scribed circle). This square-within-a-square, called
an “ad quadratum” square, was much used in an-
cient geometry and architecture [19]. The area of
the inner square is obviously half the area of the
outer square. In a sequence of circles and squares
inscribed within each other each square is 1/2 the
area of the preceding square. Figure 7 shows a se-
quence of ad quadratum squares which are shaded
to form a logarithmic spiral known as the Baravelle
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Figure 7: The Baravelle spiral.
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Figure 8: Approximate squaring of the circle.

spiral. It is easy to construct and with color makes
an interesting design.

Another geometric structure used by ancient ge-
ometers was the upward-pointing triangle ABC
in Figure 8 which also has half the area of the
circumscribing square BCFE. If the downward-
pointing triangle DEF is constructed, then rectan-
gle JKITH, formed by the vertical lines through the

intersection points of the upward- and downward- -

pointing triangles and the circle, has approximately
the same area as the circle. It can be determined
(not shown here) that the width of this rectangle is
4/5 of the diameter of the circle. Taking the square
to have length equal to 1 unit, then the radius of

C B

Figure 9: Trisection of the diagonal of a rectangle.
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Figure 10: Construction of the Brunes star.

the circle equals 1/2 and

Area of circle = m(1/2)% = .7853. ..
Area of rectangle = 4/5 = .80,

an error of 1.8%.

In Figure 9 we show that for an arbitrary rect-
angle the line AB from a vertex to the center of
the opposite side cuts the diagonal CD at the 1/3
point. We now use this geometrical property to de-
scribe the structure of the Brunes star of Figure 1.
Take the circumscribing square and subdivide it by
placing perpendicular axes within it, as shown in
Figure 10. This divides the outer square into four
overlapping rectangular half-squares. Place two di-
agonals into each of the four half squares and add
the two diagonals of the outer square. Notice that
the resulting diagram (shown in Figure 10) is the
Brunes star.

We now see that this star contains all the in-
formation needed to get good approximations to
squaring the circle in both circumference and area.
Also hidden within the Brunes star are numerous
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Figure 11: The 3 x 3 grid of subsquares determined
by the Brunes star.
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Figure 12: Division of a line into 3, 4, 5, 6, or 8
equal parts.

Figure 13: Division of a line into seven approxi-
mately equal parts.

3,4,5-right triangles. For example, triangle ABC is
a 3,4,5-right triangle because,

AQ 1
C oc =5
Therefore using the trigonometry identity,
2tan 1C
tanC = —————2——,
(1-tan® 3C)
it follows that,
AB 1 4
— =tanC = ——+ = -. 1
BG -3 8 )

If the Brunes star with all of its construction lines
depicted in Figure 10 is placed on each face of a
cube, it can be shown that the vertices of all of
the six Archimedean solids and two Platonic solids
(cube and octahedron) related to the cubic system
of symmetry as well as the tetrahedron coincide
with the points of intersection of the construction
lines [10]. The Brunes star also succeeds in provid-
ing the geometrical basis for dividing an arbitrary
length into any number of equal sublengths without
the use of measure.

4 Equidivision of Lengths:
A Study in Perspective

Figure 10 contains the construction points with
which to subdivide lengths into 3 and 4 equal
parts without the need of a standard measure, i.e.,
points I and M divide diagonal AP into thirds
(see Figure 9) while H, O, and L divide QC in
quarters. The central cross of Figure 10 is there-
fore subdivided by the central irregular octagon
GHIJKLMN into four equal parts and the diago-
nals into three equal parts in a similar way. Points
I, K, G, and M then provide the points that subdi-
vide the outer square into a 3 x 3 grid of subsquares,
as shown in Figure 11. Figure 12 indicates how the
Brunes star divides a line segment into 3, 4, 5, and
8 equal parts, while a sacred cut drawn from a ver-
tex of the outer square in Figure 13 defines the level
that partitions a line into seven parts which are ap-
proximately the same; the error is within 2%. In
similar ways, Brunes has shown that the Brunes
star can be used to equipartition a line into between
1 and 12 parts in a manner which does not require
a standard measure, but only a length of stretched
rope.

This equipartitioning property of the Brunes star
has its roots in another ancient geometric construc-
tion [15] which was first related to me by Michael
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Figure 14: Double square with diagonals.

Porter, a Professor of Architecture at Pratt Insti-
tute. In Figure 14 the outer square of the Brunes
star has been extended to a double square. The
principal diagonals of the double square divide the
width of the upper square into two equal parts.
The principal diagonals intersect the two diagonals
of the upper square at the trisection points of the
width. At the same time, the trisected width in-
tersects the long side of the double square at the
1/3 point. Continuing one more step, the two di-
agonals of the 1/3-rectangle intersect the principal
diagonal at points which divide the width into four
equal parts. This width also divides the long side of
the double square at the 1/4 point. This construc-
tion may be continued to subdivide a line segment
into any number of equal parts, as in Figure 15 with
eight subdivisions.

As is often the case with mathematics, a diagram
set up to demonstrate one concept is shown to have
a deeper structure. We could also view Figures 14
and 15 as a pair of railroad tracks in perspective
receding to the horizon line. The diagonal and the
right side of the double square play the role of the
railroad tracks as shown in Figure 16. If the ob-
server is at an arbitrary location in the foreground,
then the distance between the tracks appears half
as great as at the base of the double square at some
measured distance in the direction of the horizon
referred to as a “standard distance,” or 15. At a
distance from the observer of 25 the distance be-

Figure 15: Square with diagonals.
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Figure 16: Railroad tracks in perspective. The
point P is the central vanishing point.

tween the tracks appears to be 1/4 as large as the
base width. In a similar manner, the tracks appear
to be 1/8 as wide at 35 (not shown). How many
standard units S make the tracks appear 1/3 as
wide? To answer this question requires us to an-
alyze the pattern in greater depth. Table 1 shows
the relation between apparent width between the
railroad tracks L and the receding distance D (in
units of ) towards the horizon. The receding dis-
tance is also expressed in terms of logarithms to the
base 2. In other words, the relation between D and
L in Table 1 can be expressed by the formula:

D (in units of S) = logy 1/L.
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It is clear from Table 1 that for L =1/3, 1/L = 3
and -

7 =log, 3 = log;( 3/ log;o 2 = 1.585.

The author has further examined the projective
transformation that gives rise to Figures 14, 15, and
16 and has related it to the series of overtones re-
sulting from plucking the string of a monochord or
other stringed instrument [14].

Apparent width (L) Receding distance (D)

1=1/2° 0=log,1
1/2 = 1/2¢ 1=log,2
1/3=1/2° ? = log, 3
1/4 =1/22 2 =log, 4
1/8 =1/23 3 =log, 8

Table 1

5 The 3,4,5-Triangle in Sacred
Geometry and Architecture

We showed in Section 3 that triangle ABC in Fig-
ure 10 is a 3,4,5-right triangle. The 3,4,5-right tri-
angle was called the Egyptian triangle by Vitruvius,
the architect of the Emperor Augustus, and had
great significance in the construction of the pyra-
mid of Cheops [9, 17]. In cap. 56, Plutarch [17] de-
scribed this triangle as the symbol of the Egyptian
trinity, associated with the three significant Egyp-
tian deities:

3 <= Osiris
4 << Isis
5 <= Horus

The key to understanding the geometry of the
Brunes diagram lies in its construction. But how
did ancient architects construct the star diagram?
This diagram is easy to construct if one begins with
a square, but it is not an easy matter to construct
a large square if one has only a length of rope and
some stakes to work with. However the entire di-
agram can equally well be constructed beginning
with the 3,4,5-right triangle. The 3,4,5-tight trian-
gle can be constructed from a loop of rope with 12
knots, as shown in Figure 18. The 12 sectors of
the circle shown in Figure 17 could also have rep-
resented the 12 regions of the zodiac visited by the
sun during the course of the year, as viewed from a
geocentric standpoint.

Figure 17: Ropes.
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A

Figure 18: Rope used to create the Brunes star in
Figure 19.

A H F
12 6
]
12 3
4
4 5
D
5
K 2 C
G
B
| E L

Figure 19: Segment lengths of the Brunes star.

I have created a videotape of a group of students
constructing this star on an open field using four
lengths of 50-foot clothesline anchored by camp-
ing stakes [11]. To construct the Brunes star begin
with four lengths of rope each length divided into
12 equal sections by 12 knots as shown in Figure 17.
Although the rope is shown stretched out in a line,
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the ends are connected so that it forms a loop. Four
such loops—ADBGCA (see Figure 19), FJDBEF,
IBGJHI, and LGJDK L—are stretched into four
3.4,5-right triangles, each providing one vertex of
the outer square of Figure 10. The right angles
of these 3,4,5-triangles are located at the vertices
of the inner square DBGJ. We have succeeded in
constructing the outer square AILF along with the
midpoints of its sides H K EC. Now that the outer
square has been formed, we can stand back and
observe the harmony of this figure. In order to bet-
ter appreciate its geometry, we must make a brief
digression and consider the geometry of the 3,4,5-
right triangle. From Equation 1 it follows that tri-
angle ABC is a 3,4,5-right triangle. All other right
triangles in Figure 10 are either 3,4,5-right triangles
or fragments of a 3,4,5-triangle obtained by bisect-
ing its acute angles. In Figure 19 the dimensions of
the sublengths are indicated. These may be gotten
from Figure 10 by assigning each segment of the
string a length of 6 units. The properties of 3,4,5-
triangles given by Equation 1 can also be used to
verify these lengths. Figure 19 shows the star dia-
gram to have 3,4,5-right triangles at four different
scales. Referring to vertex labels of Figure 10,

AABC . 18 24 : 30
NADJ 9 : 12 : 15
AQDG 6 : 8 : 10
ADHI : 3 : 4 : b

So we see that the star diagram is entirely harmo-
nized by the 3,4,5-right triangle.

As we previously mentioned, Brunes used these
principles of geometry to show how many of the
structures of antiquity might have been propor-
tioned [10]. He subsumed the principles of this ge-
ometry into a series of 21 diagrams (not shown)
related to the star diagram and the sacred cut [11].
He claims that each step in the creation of a plan
for one of the ancient structures follows one or an-
other of these diagrams. We illustrate the result of
Brunes’s analysis for the Temple of Ceres by the gulf
of Salerno in Southern Italy built by Greek colonists
during the period from 550-450 B.C. Brunes has re-
constructed his analysis from the ruins of this tem-
ple. Although Brunes obtained close fits between
key lines of the elevation and plan (not shown) of
these structures, his constructions require an ini-
tial “reference circle” the choice of which is quite
arbitrary as shown in Figures 21 and 22. Despite
the close fits between Brunes’s diagrams and the
actual temple, one never knows the degree to which

Figure 20: The Temple of Ceres.
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Figure 21: Analysis of the Temple of Ceres by
Brunes using the sacred cut.
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Figure 22: Analysis of the Temple of Ceres by
Brunes using triangles.
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Figure 23: Line segments used to generate the generalized Brunes star.
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Figure 24: Intersection points: p = (1/6,1/v/2),
q= (1/\’/53 1/8), r = (1/7,1/7).

Figure 25: The generalized Brunes star.

they have been forced by his imagination. In my

opinion, it is unlikely that this method was actu-
ally used as described by Brunes. Nevertheless, the
simplicity and harmony of Brunes’s diagrams make
it plausible that they could have been used in some
unspecified manner as a tool for temple design.

6 A Generalized Brunes Star

Gary Adamson [1] has generalized the Brunes star
by replacing the eight line segments that make up
the diagonals of the four half-squares by a segment
of an hyperbola juxtaposed in eight different orien-
tations within a unit square, as shown in Figure 23.
Four of these hyperbolas intersect as shown in Fig-
ure 24 at three characteristic points p, ¢, r with
coordinates:

p=(414..,.707..) = (%%) E—
11
g=(107..., 414..) = (_2, 5)

r = (.618..., 618...) = (; %) where 7 = (1 + v5)/2

Therefore, the key numbers of the ancient Roman
system of proportions v/2 and # (also referred to
in modern dynamical systems theory as the “silver
mean”) [13], and the golden mean T are represented
in a single diagram. The generalized Brunes star is
shown in Figure 25. The points of intersection lie
on the edges of the three inner squares. The edge
length of the innermost square is 772, the middle
square is 1/3, and the outer square is 61 = /2—1.
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Figure 26: The equal-tempered chromatic scale and the color wheel.

7 What Pleases the Ear
Should Please the Eye

We have seen that 3,4,5-triangles pervade the
Brunes star. Not all relationships involving the
numbers 3, 4, and 5 refer to the 3,4,5-right trian-
gle. Such relationships play a major role in the
structure of the musical scale and make a surprise
appearance in the structure of the color spectrum of
light which could be thought of as a kind of “musi-
cal scale” for the eye. Elsewhere I have shown that
the ancient musical scale, in which tones are asso-
ciated with the ratio of string lengths, is organized
by a 3,4,5-relationship between the tones [14]. Also,
if we regard the 12 sectors of the circle as tones of
the equal-tempered chromatic scale, we see in Fig-
ure 26 that a subdivision of the tonal circle into 3,
4, and 5 semitones gives rise to the tones A,C,E
of the musical A minor triad [6]. The association
between tones and number ratios led the architects
of the Italian Renaissance to build a system of ar-
chitectural proportions based on the musical scale
[14].

According to the leading architect of that period,
Leon Battista Alberti [20]: “The numbers by which
the agreement of sounds affect our ears with delight
are the very same which please our eyes and our
minds. We shall therefore borrow all our rules for
harmonic relations from the musicians to whom this
kind of numbers is well known and wherein Nature
shows herself most excellent and complete.” Eber-
hart [6] has made the observation that the wave-
lengths of visible light occur over a range between
380 my (millimicrons; 1 mp = 10~ 7cm) in the ul-
traviolet range to about twice that amount in the

infrared, or a visual “octave.” He states,

When the colors of visible light are
spread out in such a way that equal dif-
ferences in wavelength take equal amounts
of space, it stands out that blue and yel-
low occupy relatively narrow bands while
violet, green, and red are broad [see Fig-
ure 27]. Observe that the distance from
the ultraviolet threshold to blue to yellow
to the infrared threshold is very closely
4 : 3 : 5 of that spectral “octave”, ie.,
383.333... x 2%4/12 = 483 myu (mid blue)
and 383.333... x 27/12 = 574.333... mpu
(mid yellow). This means that if we sub-
jectively identify the two thresholds of
ultraviolet and infrared, as is commonly
done in making color wheels, calling both
extremes simply “purple,” then the nar-
row bands of “blue” and “yellow” have ap-
proximate centers lying at corners of the
same triangle with 3,4,5 proportions as the
A minor triad [see Figure 26].

Eberhart’s observation adds some additional sub-
stance to the Renaissance credo that what pleases
the ear also pleases the eye.

8 Conclusion

According to Plato, the nature of things and the
structure of the universe lay in the study of music,
astronomy, geometry and numbers, the so-called
quadrivium. Built into sacred structures would be
not only a coherent geometrical order but also a
sense of the cosmic order in terms of the cycles of
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Figure 27: Color Scale.

the sun and the moon and the harmonies of the
musical scale. The Brunes star with its ability to
approximately square the circle, its equipartioning
properties, its relationship to 3,4,5-triangles, and
its ability to be generalized to a geometrical figure
exhibiting the golden and silver mean makes it a
plausible tool for use of the builders of ancient sa-
cred structures.
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