Common Exam, Friday, April 13, 2007
8:30 – 9:45 A.M. at KUPF 205
Chaps. 6, 7, 8

Bring calculators
Arrive by 8:15

Power

Work doesn't depend on the time interval

Work to climb a flight of stairs~3000 J

<table>
<thead>
<tr>
<th>Time</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 s</td>
<td>3000</td>
</tr>
<tr>
<td>1 min</td>
<td>3000</td>
</tr>
<tr>
<td>1 hour</td>
<td>3000</td>
</tr>
</tbody>
</table>

Power is work done per unit time

Average Power

\[P_{\text{avg}} = \frac{W}{\Delta t} \]

Instantaneous Power

\[P = \frac{dW}{dt} = F \frac{dx}{dt} = Fv \text{ (in 1D)} \]

<table>
<thead>
<tr>
<th>Units</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>(\text{J/s}) = 1 Watt</td>
</tr>
<tr>
<td>time</td>
<td>(\text{hp}) = 746 W</td>
</tr>
</tbody>
</table>

In 2D & 3D, Power:

\[P = \vec{F} \cdot \vec{v} = Fv \cos \theta \]
Work done by a constant force

\[W = Fd \cos \theta \equiv \vec{F} \cdot \vec{d} \]

Power done by a constant force

\[P = Fv \cos \theta \equiv \vec{F} \cdot \vec{v} \]

Sample problem 7-11

Two constant forces \(\vec{F}_1 \) and \(\vec{F}_2 \) acting on a box as the box slides rightward across a frictionless floor. Force \(\vec{F}_1 \) is horizontal, with magnitude 2.0 N, force \(\vec{F}_2 \) is angled upward by 60° to the floor and has a magnitude of 4.0 N. The speed \(v \) of the box at a certain instant is 3.0 m/s.

a) What is the power due to each force acting on the box? Is the net power changing at that instant?

b) If the magnitude \(\vec{F}_2 \) is, instead, 6.0 N, what is now the net power, and is it changing?
So far, we learned

Ch. 7, Kinetic Energy and Work

During the next two weeks, we learn

Chapter 8. Potential Energy and Conservation of Energy

Concept of Potential Energy

Potential Energy: Hidden energy associated with the position of objects

- Less kinetic energy, but More potential energy
- More kinetic energy, but Less potential energy
Definition of Potential Energy

Potential energy change

\[U_f - U_i \equiv -W \]

General Form:

\[W = \int_{x_i}^{x_f} F(x) \, dx \]
\[\Delta U = -\int_{x_i}^{x_f} F(x) \, dx \]

Example:
- Gravitational potential energy
- Spring potential energy

Gravitational Potential Energy

A tomato falling down

Height: \(h_i \)

\(v_i \)

\(d \)

\(h_f \)

\(v_f \)

Gravitational force

\(F_g = mg \)

Gravitational potential energy difference:

\[U_f - U_i = -W = -mg(h_i - h_f) = mgh_f - mgh_i \]

Gravitational Potential Energy: \(U_g(h) = mgh \)
Elastic Potential Energy Difference

\[U_f - U_i = -W = -\left(\frac{1}{2} kx_i^2 - \frac{1}{2} kx_f^2 \right) = \frac{1}{2} kx_f^2 - \frac{1}{2} kx_i^2 \]

Elastic Potential Energy

\[U_{\text{elastic}}(x) = \frac{1}{2} kx^2 \]
Can we define potential energy for **any** force?

Potential Energy: Hidden energy associated with the position of objects

\[U_f - U_i = -W = - \int_{x_i}^{x_f} F(x)dx \]

Example 1: Gravitational force

- \(h_1 \)
- \(h_2 \)
- \(h_3 \)
- \(h_4 \)

\[F_g = mg \]

\(\rightarrow \) Work depends only on initial and final positions, independent of path

\(\rightarrow \) Potential energy at \(h \) can be defined

\(\rightarrow \) Conservative force

Example 2: Friction force

- \(F_k = \mu_k F_N \)

\[\int_{\text{along path}} F(x)dx = - \mu_k F_N (x_4 - 2x_3 + 2x_2 - x_1) \]

\(\rightarrow \) Work depends on path, as well as initial and final positions

\(\rightarrow \) Potential energy at \(x \) cannot be defined.

\(\rightarrow \) Non-conservative force