HW#7: Appl. of Newton's Laws (Due 11 pm central time, 10/28, Tuesday).
HW hint posted on course web (http://web.njit.edu/~kenahn)
Common exam 2 on Oct 31st, Friday
 8:30 - 9:45 A.M. (Arrive by 8:15am)
 KUPF 209
 Exam covers B1 Chapter 4, B2 Chapter 6 Sect 1-4
 Bring scientific calculators

Last class...
 B2. Sect. 6.4 :
 Objects moving through liquid or gas : resistive forces
 Example: Objects moving together

Today..
 Other applications of Newton's Laws
A 4.8 kg object hangs at one end of a rope that is attached to a support on a railroad boxcar. When the car accelerates to the right, the rope makes an angle of 22° with the vertical. The acceleration of gravity is 9.8 m/s2.

Find the acceleration of the car. (Hint: $\vec{a}_{\text{object}} = \vec{a}_{\text{car}}$)

Consider the 637 N weight held by two cables shown below. The left-hand cable had tension T and makes an angle of θ with the wall. The right-hand cable had tension 960 N and makes an angle of 26° with the ceiling.

a) What is the tension T in the left-hand cable slanted at an angle of θ with respect to the wall? Answer in units of N.

b) What is the angle θ which the left-hand cable makes with respect to the wall? Answer in units of $^\circ$.
As shown in the figure, a block is pushed up against the wall. Let the mass of the block be $m = 2.8 \text{ kg}$, the coefficient of kinetic friction between the block and the wall be $\mu = 0.56$, and $\theta = 61^\circ$. Suppose $F = 73 \text{ N}$.

The acceleration of gravity is 9.8 m/s^2.

Find the force of friction. Answer in units of N.

iClicker quiz

Normal force on the block points

- a) Up
- b) Down
- c) Left
- d) Right
- e) 61 degree from horizontal