HW#8: Work and Energy (Due 11 pm central time, 11/4, Tuesday).

HW hint will be posted on course web (http://web.njit.edu/~kenahn)

Prof. Ahn will be on travel for a workshop during Nov. 6th - 9th.

Prof. George Georgiou will give the lecture on Nov. 7th, Friday.

So far, we studied

Exam 1: Vector, Units, 1D and 2D motions

Exam 2: Newton's Laws, Forces, Circular motions

Till Exam 3, we will learn

Energy and Work

Today:
Work, Kinetic Energy, Work-Energy Theorem
B1, Ch5 Sec.1-2, B2, Ch7 Sec.3
Motivation: Why do we learn about work and energy???

Energy: Central concept in science and engineering
... and in our daily lives...

Energy transforms from one type to other, but conserved.
In Physics 105, we learn about "Mechanical Energy".

Kinetic energy

Kinetic energy (K.E.): An energy associated with motion

Kinetic energy of an object of mass m and speed v

\[K.E. = K = \frac{1}{2}mv^2 \]

→ Energy is a scalar quantity (No direction!)

SI Unit for energy: J (Joule)

\[J = kg \cdot \frac{m^2}{s^2} = kg \cdot \frac{m}{s^2} \cdot m = N \cdot m \]
The heavier and the faster, the kinetic energy gets greater.

(KE of a fast baseball) vs (KE of a slow baseball)?

(KE of a car at 60 mi/h) vs (KE of a trailer at 60 mi/h)?

What makes kinetic energy change?

Special case: Constant Acceleration (1 D motion)

Remember result eliminating \(t \):
\[
\frac{v^2}{2} - \frac{v_0^2}{2} = 2a(x - x_0)
\]

Multiply by \(\frac{1}{2} m \):
\[
\frac{1}{2} mv^2 - \frac{1}{2} mv_0^2 = ma(x - x_0)
\]

But
\[
F_{net} = ma, \quad \Delta (\frac{1}{2} mv^2) = F_{net} \Delta x
\]

Change in kinetic energy is equal to the "net work"!
Definition of work by a force in 1D:

\[W_F = F \Delta x \]

\[\text{(Work)} = \text{(Force)} \times \text{(Displacement)} \]

Work done by a force \(F \) **on** an object, the displacement of which is \(\Delta x \).

iClicker Quiz 1

Work done by a gravity on a falling elephant

\[W = F \Delta x \]

is __________.

a) Positive
b) Negative
c) Zero

If force and displacement point in the same direction, the work is ________.
iClicker Quiz 2: Work done by a gravity on a ball that is going up

Gravity

Displacement

Gravity

\[W = F \Delta x \]

Is work positive, negative, zero?

a) Positive

b) Negative

c) zero

If force and displacement point the opposite directions, the work is ______.

Work-Energy Theorem

As shown for 1D motion,

\[K_f - K_i = \Delta K = W_{net} \]

→ Work-Energy Theorem

Positive net work: KE increases (iClicker Quiz 1)

Negative net work: KE decreases (iClicker Quiz 2)
Example 1: Falling elephant

For 2D, 3D motion...

Kinetic energy

\[K.E. = \frac{1}{2}mv^2 = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2) \]
Work in 2D and 3D

What if force and displacement are *perpendicular*?

Example: Uniform circular motion

No change in speed (magnitude of velocity) → No kinetic energy change → No net work!
Work done by a constant force

\[W = |\vec{F}| \cdot |\vec{d}| \cos \theta_{F,d} = \vec{F} \cdot \vec{d} \]

\[\text{Scalar (dot) product} \]

\((B2, \text{Ch7, Sec.3}) \)

Math Review: Scalar (dot) product

\[\vec{A} \cdot \vec{B} = |\vec{A}| \cdot |\vec{B}| \cos \theta_{\vec{A},\vec{B}} = A_xB_x + A_yB_y + A_zB_z \]

\[\theta = 180^\circ \rightarrow \vec{A} \cdot \vec{B} = -|\vec{A}| \cdot |\vec{B}| \]

\[\theta = 0 \quad \rightarrow \quad \vec{A} \cdot \vec{B} = +|\vec{A}| \cdot |\vec{B}| \]

\[\theta = 90^\circ \quad \rightarrow \quad \vec{A} \cdot \vec{B} = 0 \]

\[\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}, \quad (\vec{A} + \vec{B}) \cdot \vec{C} = \vec{A} \cdot \vec{C} + \vec{B} \cdot \vec{C} \]
Examples for work in 2D

Example 1: Forces along different directions

Example 2: Work, scalar product, angle