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We present an atomic scale theory of lattice distortions using strain-related variables and their
constraint equations. Our approach connects constrained atomic length scale variations to con-
tinuum elasticity and can describe elasticity at all length scales. We apply the general approach
to a two-dimensional square lattice with a monatomic basis, and find the atomic scale elastic
textures around a structural domain wall and a single defect, as exemplar textures. We clarify
the microscopic origin of anisotropic gradient terms, some of which are included phenomeno-
logically in Landau-Ginzburg theory. The obtained elastic textures are used to investigate
the effects of elasticity-driven lattice deformation on the nanoscale electronic structure in su-
perconductor by solving the Bogliubov—de Gennes equations with the electronic degrees of
freedom coupled to the lattice ones. It is shown that the order parameter is depressed in the re-
gions where the lattice deformation takes place. The calculated local density of states suggests
the electronic structure is strongly modulated as a response to the lattice deformation—the
elasticity propagates the electronic response over long distances. In particular, the trapping
of low-lying quasiparticle states around the defects is possible. These predictions could be
directly tested by STM experiments in superconducting materials.
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In many complex electronic materials such as
cuprates, manganites, ferroelastic martensites, and ti-
tanates, unexpected multiscale modulations of charge,
spin, polarization, and strain variables have been re-
vealed by high-resolution microscopy [1]. Itis increas-
ingly evident that the nonuniform textures found in
these doped materials have intrinsic origins: they arise
from coupling between various degrees of freedom.
The textures fundamentally affect local and meso-
scopic electronic, magnetic, and structural properties,
which are central to the functionality of correlated
electronic materials. There is substantial evidence for
significant coupling amongst the electronic degrees of
freedom with the lattice distortions in cuprates, man-
ganites, and ferroelectrics. The charge carrier doping
can act as a local stress to deform surrounding unit
cells [1]. We might employ a Landau-Ginzburg (LG)
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theory to study the coupling between the electronic
(Cooper pair) and lattice (strain tensor) degrees of
freedom in superconductors. However, the LG the-
ory can only rigorously describe the long wavelength
behavior. New generations of experimental tools to
probe individual atoms and local environments [2],
and the aforementioned growing interest in complex
functional materials, emphasize the importance of ac-
curately describing the local electronic properties and
lattice distortion at the atomic scale. In this work, we
first present a microscopic description of elasticity. We
introduce appropriate inter- and intra-cell distortion
modes and show how the form of the elastic energy
recovers the correct phonon spectra. The discreteness
of the lattice, choice of modes and constraints among
them give rise to an anisotropic gradient expansion
for the elastic energy. This leads to interesting elas-
tic domain wall and defect textures. We then cou-
ple these textures to the electronic degrees of free-
dom and study microscopically the influence of strain
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Fig. 1. Normal distortion modes for a square object of four atoms
in 2D.

on electronic wavefunctions in both s- and d-wave
superconductors.

Our approach is general, but we illustrate it here
in detail for the simplest case, namely a square lat-
tice in two-dimensional (2D) space with a monatomic
basis. We find that the most convenient strain-related
variables for atomic scale distortions are the normal
distortion modes of an elementary square object of
four atoms (Fig. 1). The first three distortion modes
in Fig. 1 correspond to the usual dilatation (e; ), shear
(e2), and deviatoric (e3) strains of the continuum elas-
ticity theory for a square lattice [3]. The next two
degenerate modes in Fig. 1, s, and s_, correspond
to the “intracell” or “shuffle” modes of the square
lattice [4], which are absent in continuum elasticity
theory. Our approach uses these five distortion vari-
ables defined for each plaquette of four atoms at
i,i+(10),7 + (11), and i + (01), where i represents
the coordinate of the lattice points, to describe the
elastic energy [5].

Since the five variables are derived from two dis-
placement variables for each lattice site, they are re-
lated by three constraint equations. By representing
e1, ez, e3,5.,and s_ in terms of displacement variables
d* and d” in k (wave vector) space and eliminating d*
and d”, the constraint equations are obtained. One
of them is the microscopic elastic compatibility equa-
tion, which relates strain modes:

(1 — cos k; cos ky)el(lz) — sink, sin kyez(l})
+ cos k, — cos ky)e3(7<) =0. (1)

The other two relate the intracell and the strain

modes:
ky ke - .. (ke tk -
2cos 5 cos ?si(k) Tisin ( 5 y) e1(k)

+isin (kx:;ky>e3(7c)=0. @)

These constraints generate anisotropic interactions
(from the lattice symmetry) between atomic scale
strain fields, similar to the compatibility equations in
continuum theory [3], but now including the intra-

cell modes. In the long wavelength limit, our descrip-
tion naturally reproduces the continuum results: For
k — 0, the above constraint equations can be written
in real space as

V2ei(F) — 2V Vyer(F) + (V; — Vi)es(F) = 0, (3)

52(F) = 71V, £ Vo) + (% F Voes@l (@)

Equation (3) is the familiar compatibility equation in
continuum theory. Equation (4) shows that the spatial
variations of strains always generate intracell modes,
the magnitudes of which vanish as the inverse of the
length scale of the strain mode variations. In contin-
uum LG theory, the energy associated with the gradi-
ent of strains is responsible for domain wall energies
as, e.g., in structural phase transitions [4]. The above
result shows that the intracell modes are the origin of
such energy terms. Since our strain-related variables
become identical to conventional strain variables for
k — 0, various length scale lattice distortions may
be described in a single theoretical framework. This
makes it possible to study typical multiscale situations
where both short- and long-wavelength distortions
are important (and coupled). It also provides a natu-
ral framework for incorporating interactions between
atomic scale strain-related fields coupled to other de-
grees of freedom in functional materials (below).

The following analysis of the simple harmonic
elastic energy for the square lattice further exempli-
fies the utility of these variables. We consider the sim-
plest energy expression by approximating the total
elastic energy as the sum of the elastic energy of each
square:

Equ=31 3 3Ala@F + Y 5BS,OF|.

i n=1,2,3 m=+,—

®)

where A, and B denote elastic moduli and “intracell
modulus,” respectively. Since some of the atomic pairs
are shared by two square plaquettes of atoms, the pa-
rameters in Eq. (5) should be appropriately renor-
malized. A robust way to determine the parameters
is to compare the phonon spectrum of our model with
experimental data.

The phonon spectrum has been obtained [6]. A
typical spectrum (upper branch) for 4 =5, A =4,
A; =3, and B = 5is shown in Fig. 2a. At k = (7, 7),
the distortion is a pure intracell mode, and the en-
ergy depends only on the intracell mode modulus
B. Therefore, as shown in Fig. 2b, w(r, ) vanishes
without including the intracell mode (B = 0), which is
unphysical.
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Fig. 2. An example of calculated phonon spectra (a) with and
(b) without intracell modes for a 2D square lattice with a
monatomic basis. The upper phonon branch is shown for both cases
M=hr=1).

We apply our formalism to obtain the domain
wall solution for the atomic displacements between
two homogeneous strain states (a “twin boundary”)
due to a phase transition to a rectangular lattice.
We then compare the solution to that obtained from
continuum theory, where discreteness effects are ne-

glected [4]. With elastic energy Fiec = %3 + EEQ,

1 _ 1 N2 1 2 1 2 \2
ELY) = Z zAlel(l) + zAzez(z) + EB[S+(1) +s_()%],

Bl =

1

1 - 1 -
-3 Les(i)* + ZF3€3(l)47 (6)

the degenerate ground state of E. is a uniform state
with e3 = +,/A,/F;, and e = e; =5, =s5_ =0. To
study the domain wall between these two degener-
ate rectangular ground states, we consider e3(i) as
the order parameter and minimize Er(ég with respect
to the other variables, using the constraint equations
(Egs. (1) and (2)) and the method of Lagrange mul-
tipliers. We obtain Efig’min =>73 %Q(—/;)U(/;)Q(l_é),
where U(k) is given in Ref. [6].

With k, = kcos6 and k, = ksin 6, the expansion
of U(k,0) about k=0 yields U(k,0)= Uy(8) +
U,(9)k + O(k*), where Uy(9) = Ay A cos?26/
(A;sin®20 + A), and Us(0) = sin® 20[6A; A B sin’
20 +4A A(A + A) cos’ 20 +3B(A+ A sin’
20)]/[24(A; + A sin®26)?]. The term Up-is purely
orientation-dependent without a length scale, and
is minimized at 6 =45 and 135° as obtained in
Ref. [3]. The difference between continuum and
our discrete theories lies in the k* term: continuum
theory commonly assumes isotropic gradients in the
order parameter, i.e., (Ve3)? [4], whereas U(8) is
anisotropic. The two origins of the anisotropy are (a)
the compatibility relation, Eq. (1), which has higher
powers in k than Eq. (3) because of discreteness,
and (b) the presence of the shuffle mode energy.
The latter can be written as gradients of strains, but
with corrections to the phenomenological isotropic

term, (663)2, commonly used in LG theory. As
U,(9) is minimized for 6 = 0 and 90°, it competes
with Up(f) which prefers 6 =45 and 135°. Thus,
the domain wall direction depends on the length
scale with a critical length scale A. ~  /B/A;. If
Ac <1, ie., less than the interatomic spacing, the
domain wall has direction 45 or 135° down to atomic
scales. If A, > 1, then for length scales smaller
(larger) than A, the domain wall direction is 0 or
90° (45 or 135°) and the domain wall has multiscale
attributes.

We examine first the case A, < 1 that would ap-
ply to materials with relatively large bulk modulus
A; (‘hard’ materials) for fixed B. Here k. = £k, and
U(k) = B(1 — cosk;)/(1 + cos k). In Fig. 3, we illus-
trate the domain wall solution with 135° domain wall
direction.The only nonzero distortion modes are e;3
and s_ (s; for a 45° domain wall). The strain e3 re-
verses sign at the domain wall, the intracell mode s_
is confined within the domain wall, and the atomic
displacements are parallel to the domain wall direc-
tion. The numerical solution for e; and s_ along a
line perpendicular to the wall is shown in Fig. 3a, for
which A, ~ 1. The e; field and the corresponding dis-
placement field near the center of the domain wall are
shown in Figs. 4a and b, in which grayscales show re-
gions with e3 positive and negative, respectively. Both
figures show that the center of the domain wall is lo-
cated at bonds rather than sites to avoid the higher
energy state of e3 = 0 and large s_. In Fig. 3b we com-
pare our results with continuum theory, which pre-
dicts e3 = €' tanh(is/£) [4] and s_ = de3/20i, from

OO 8s_
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Fig. 3. Atomic scale 135° domain wall profile for critical length
scale, Ac < 1 along the direction perpendicular to the domain wall:
(a) strain e3 and shuffle s_; (b) differences in e3 (de3 = €3 atomic —
€3 continuum )> S— (85— ) and displacement parallel to the domain wall
direction (d) ) between the results from continuum theory for k~0
and our model that includes discreteness. Parameter values are
A =5,A4=4A=4 B=>5and F3 = 50.
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Fig. 4. Strain-e3 mode for a periodic twinned microstructure (a) and a single defect (c) together
with their corresponding displacement configurations ((b) and (d)) within the highlighted

window. N = 32 x 32.

Eq. (4), where iy = i, + i,. The differences in the in-
terface region, shown in Fig. 3b, are of the order of
10% of e = |/ A,/ F3.

The domain wall solution for A, > 1, typical for
small bulk modulus A; (‘soft’ materials) is shown
in Fig. 5 for which A. ~ +/5. The e; field in Fig. Sa
shows that on length scales of the size of the system
(larger than .), the diagonal orientation is still pre-
ferred. However, this diagonal domain wall consists
of a ‘staircase’ of 0 and 90° domain walls of length
scale A.. More details on induced e, s, and s_ fields
around the ‘staircase’ wall in Figs. 5b—d, their impli-
cation for functionality of the domain walls, and the
displacement pattern are discussed in Ref. [6].

A similar approach is used to find elastic tex-
ture around structural defects. We consider impurity
atoms at the centers of the square of four atoms, which
couples to the e; mode distortion of the four nearest
neighbor atoms. The corresponding energy expres-
sion is Egqimp = Esq,lat + Eimp, Where Egq 12 is Eq. (5)
and i, is

Eimp = Z Cie (Z)hl (;) (7)

Here, hy(i) is 1 if there is a defect at the site at
i +(1/2,1/2), and zero otherwise. C; represents the
strength of the coupling. Eyqimp is minimized about

| (b) e, [ I

Ll
Eert

B ©)s, B ()s_iE

e1, €2, €3, 54+, and s_ with constraints among them for
given hy, which gives the relations between the re-
laxed strain fields and the Ah; field. Explicit expres-
sions of these relations will be presented elsewhere.
As a simple case, we show the elastic texture around
a single defect in Figs. 4c and d.

To illustrate the influence of lattice deformation
on electronic properties, we couple the twin bound-
ary and defect solutions obtained above with the elec-
tronic degree of freedoms in a model of superconduc-
tors. The electronic model Hamiltonian is defined on
a square lattice:

H=- Zfijcit,cja Z(Gi — el cio

ij,o i,o

+ Z(Aifc;rTc;[l + A:-FjCjLCiT). (8)
ij
Here c;, annihilates an electron of spin ¢ on site
i. The quantities ¢; and p are the on-site impurity
potential (if any) and the chemical potential, re-
spectively. The hopping integral 7; is modified by
the lattice distortion. The electron-lattice coupling
is approximated by ;; = £[1 — ae;;], where ¢} is the
bare hopping integral, ¢;; is the lattice-distortion vari-
able, and « is the coupling constant. In our near-
est neighbor realization, the bare hopping integral
tl-(} is t for nearest neighbor sites and zero otherwise.

ol =

Fig. 5. Atomic scale domain wall solution for materials with A, > 1. Parameter values are
A =1, A =4, A’3 =4, B=5,and F; = 50. Strain e; is zero.
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Fig. 6. Spatial variation of the SC OP for periodic twin boundaries displayed in Fig. 4a—(a)
The s-wave OP in an s-wave superconductor and (b) the d-wave; and (c) extended s-wave
components of the OP in a d-wave superconductor. The electron-lattice coupling constant
a=3.

Specifically, we take the form of the lattice distortion
tobe €ij = [|(R] + d]) - (Rl + dl)|/|R] - R,‘|],Wh€l‘€
{R;} are the undistorted lattice coordinates and {d;}
the lattice displacement vectors with respect to {R;}.
We assume an effective superconducting gap function
given by Aij = %(cmcﬂ — CijT), where l]i]' = U8,~,-
(i.e., attractive Hubbard-U model) for s-wave su-
perconductivity and U;; = Vé;,, ; (with y specifying
the nearest neighbors to the i-th site) for d-wave
superconductivity. By performing a Bogoliubov—
Valatin transformation, we may diagonalize Eq. (8)
by solving the Bogoliubov—de Gennes (BdG)
equation [7]:

Hij  Ajj uiy\ uj'
(% ) ()5 () o
J ] i

subject to the self-consistency conditions for the su-
perconducting (SC) order parameter (OP):

IJIH n,,nx nx, n En
Al‘jo]Z(ui Vj +Vi uj)tanh (m) (10)

Here the single particle Hamiltonian reads H;; =
—Iijj + (¢, — 1)8;;. We numerically solve the BdG
equations self-consistently. Below, we report results
for two types of local lattice distortions at zero
temperature—a superlattice formed by twin bound-
aries and a single defect [8]. We measure the length
and energy in units of gy (the undistorted lattice con-
stant) and . The chemical potential 4 = 0 and no ex-
trinsic impurity scattering is introduced (¢; = 0). The
pairing interaction for both the s-wave (U) and d-
wave (V) superconductors is taken to be 3. The typical
system size is NV, = 32 x 32 with periodic boundary
conditions. When the local quasiparticle density of
states (LDOS) is computed, we implement a much
larger system using the above small system as a
supercell.

In Fig. 6, we show the spatial variation of the SC
OP induced by the deformation of Fig. 4a in both s-
and d-wave superconductors. In both cases, the OP is
lowered within the domain and is elevated at the do-
main wall (Fig. 6a,b). The magnitude of the OP is de-
pressed in comparison to an undistorted square lattice
since the lattice deformation changes the band struc-
ture, leading to a reduction in normal density of states
at the Fermi energy. Even at the domain wall, where
the strain-induced deformation is weakest, the ampli-
tude of the enhanced OP is smaller than its value in an
undistorted square lattice. This is due to the confine-
ment from the two neighboring domains. In a twinned
domain of a d-wave SC, a subdominant extended s-
wave component is generated in a real combination
d £ s. Because the symmetries of two twinned do-
mains are reflected into each other with respect to
the twin boundary, the relative phase between the d-
and s-wave components switches by 7 when a twin
boundary is crossed (Fig. 6¢).

We show in Fig. 7 the spatial variation of the su-
perconducting OP around the single defect (Fig. 4c) in
both the s- and d-wave superconductor cases. The OP
is depressed at the center of the defect, and reaches
its defect-free bulk value at the scale of the supercon-
ducting coherence length. Notice that for a lattice-
deformation defect, which affects the local electron
hopping integral, the OP has a minimum at four sites
surrounding the defect center. It is different from
the case of an externally substituted unitary impu-
rity, where the minimum OP is located only at the
impurity site itself [9]. The range of influence of such
a defect can be very large depending on the strength
of electron-lattice coupling—the elasticity propagates
the electronic response. The d-wave energy gap has
a sign change at the nodal directions of the essen-
tially cylindrical Fermi surface, but the d-wave OP
does not exhibit such a sign change in real space. With
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Fig. 7. Spatial variation of the SC OP for a single defect displayed in Fig. 4c—(a) The s-wave
OP in an s-wave superconductor and (b) the d-wave; and (c) extended s-wave components
of the OP in a d-wave superconductor. The electron-lattice coupling constant & = 3.

the defect, an extended s-wave component of the OP
is induced when the dominant d-wave component is
depressed at the defect. Strikingly, the induced s-wave
component has a sign change across the diagonals of
the square lattice, i.e., sgn[cos(26)], where 6 is the az-
imuthal angle with respect to the crystalline x axis.
This is a direct manifestation of the d-wave pairing
symmetry in real space.

Once the self-consistency for the order parame-
ter is obtained, we calculate the LDOS:

pi(E)= =3 [|ul|’ F(E— E)+ V[’ f(E+ Ey)].

(11)

where f’( E)is the derivative of the Fermi distribution
function with respect to the energy. The LDOS deter-
mines the differential tunneling conductance, measur-
able by STM experiments [10]. Figure 8 shows the
LDOS at a domain wall for both types of supercon-
ductors, where the modulation of the OP forms a su-
perlattice, with maximum at the domain wall playing
the role of an off-diagonal potential barrier (4A;; in
Eq. (9)). For an s-wave superconductor, the quasipar-
ticles are gapped away with their energy below the
minimum SC OP. Outside the minimum of the pair po-
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L — 0 1 2 L — 0 1 2
E E

Fig. 8. The LDOS at a twin boundary in s-wave (a) and d-wave
(b) superconductors. Also shown are the LDOS (gray lines) for a
uniform domain. The electron-lattice coupling constant o« = 3.

tential, energy bands are formed by the quasiparticle
scattering off the off-diagonal energy barriers at the
domain walls. Interestingly, the bottom of the oscilla-
tion pattern follows the LDOS (gray line) of a system
formed by a uniform rectangular domain. Similar os-
cillations are obtained for the d-wave superconductor.
However, the bottom of the oscillations do not fol-
low the single domain DOS (gray line). In addition,
weak subgap peaks (labeled by arrows in Fig. 8b) ap-
pear symmetrically in the LDOS on the domain wall
but are absent in the single-domain LDOS. We spec-
ulate that these resonant states are due to the gradi-
ent of the s-wave gap component induced inside the
domain.

In Fig. 9, we show the calculated LDOS near the
center of a single defect. The depression of the SC

23y s=wave SC(0.0) 1515y d-wave 5C (0,0)
15
1
ooy o
(=% a
05
05
0 0
2 0 1 2 2 0 1 2
E E
4(Tey s=wave SC (=T,-1) 1.5 @y d=wave 5C (=11
3
1
g ) m)
a a”
05
]
0 0
2 1 0 1 2 2 0 1 2
E E

Fig. 9. (The LDOS near the center of a defect in s-wave (left col-
umn) and d-wave (right column) superconductors. The distance of
the measured point away from the defect is labeled by its coordi-
nate. The electron-lattice coupling constants are o = 3 (dark gray
lines) and 10 (black lines). Also shown is the defect-free LDOS
(light gray lines).
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OP at the defect makes a quantum-well-like profile
of the energy gap. The size and depth of the well is
determined by the electron-lattice coupling constant.
In the s-wave superconductor, the well is shallow and
small for weak coupling, which cannot trap low-lying
quasiparticle bound states; for strong coupling con-
stants, the well is deep and large so that subgap quasi-
particle bound states are induced (the dark gray and
black lines of Figs. 9a and c). The energy of these low-
lying states must be in-between the bottom and edge
of the well. Therefore, it is notable that the energy of
these subgap states is shifted toward the Fermi sur-
face as the electron-lattice coupling is increased (the
black line in Fig. 9a and c). The electronic structure at
the defect in a d-wave superconductor becomes even
richer: For « = 3 (weak coupling as compared to the
band width of the uniform square lattice), the lattice
distortion plays the role of a weak defect for the quasi-
particle scattering. In this case, a resonant peak with
a dip exactly at the Fermi energy is seen (the dark
gray line in Fig. 9b). The overall peak comes from
the scattering of quasiparticles off the single-particle
off-diagonal potential (i.e., local change of the hop-
ping integral as a response to the lattice deformation).
This lattice-deformation-induced resonance state also
exhibits Friedel oscillations. Typically, the peak struc-
ture appears in the LDOS at (0,0) (we label the four
sites surrounding the defect center by (0,0), (1,0),
(1,1), (0,1)) and (—2,—2). For « =10 (strong cou-
pling), the ‘resonant’ peaks are pushed to higher ener-
gies (~ £0.3) (the black line of Fig. 9d). Furthermore,
small shoulders appear close to the Fermi energy (the
black lines of Figs. 9b and d), which are precursors
of new Andreev resonance states. We have also com-
puted the LDOS without imposing self-consistency
on the OP and found that the double-peak struc-
ture is V-shaped with no existence of the shoulders.
Therefore, the new Andreev resonance states orig-
inate from the confinement of the induced s-wave
OP. All these features are unique to an elastic de-
fect in a d-wave superconductor with short coherence
length.

In summary, we have reported an approach to
“atomic-scale elasticity,” which uses symmetry modes
of elementary objects of atoms as distortion variables.
A gradient expansion for the energy with anisotropic
coefficients has been obtained, with corrections to
the phenomenological isotropic gradient terms often
used in LG theory. As an illustration, we obtained do-
main wall (twin boundary) solutions and elastic tex-
ture around a defect in terms of strain and intracell
modes, and showed how the domain wall solutions

differ from the continuum elastic soliton solution [4].
Using these atomic scale profiles of elastic texture, we
studied the influence of elastic lattice deformation on
the nanoscale electronic structure in superconductors
within a BdG approach. We showed that the SC OP
is depressed in the regions where the lattice defor-
mation exists. The calculated LDOS suggests that the
electronic structure is strongly modulated in response
to the lattice deformation. In particular, it is possible
to trap low-lying quasiparticle states around the de-
fects. Images of these states will make manifest the
underlying long-range anisotropic elastic lattice de-
formation. These predictions can be directly tested by,
e.g., STM experiments in new superconducting mate-
rials. Our approach is readily extended to other elastic
textures, SC symmetries, and lattices, as well as cou-
pling to other electronic models (for charge-transfer,
charge-density-wave, spin-density-wave, Jahn—Teller,
double-exchange, etc.).
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