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Role of complex energy landscapes and strains in multiscale inhomogeneities
in perovskite manganites
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We analyze the essential role played by complex energy landscapes in the nanometer- to micron-scale
inhomogeneities observed in perovskite manganites using a model expressed in terms of symmetrized
atomic-scale lattice distortion modes. We also examine the stability of large metal and insulator domains in the
absence of defects. Our results demonstrate that an intrinsic mechanism, which involves long-range interactions
between strain fields, the Peierls-Nabarro energy barrier, and complex energy landscapes with multiple metastable
states, rather than an extrinsic mechanism such as chemical randomness, is responsible for the inhomogeneity in
perovskite manganites.
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I. INTRODUCTION

Multiscale inhomogeneity observed in perovskite man-
ganites has been the subject of intense studies.1 Unlike
inhomogeneities for other complex electronic systems, such
as stripes in high-Tc cuprates, the coexistence of metallic and
insulating phases within the same crystals of manganites has
been directly observed through various high-resolution local
probes, such as dark field images and scanning microscopy.2–4

Nanoscale inhomogeneities have also been implied based on
x-ray diffraction results.5 Even though some degree of phase
coexistence is expected in materials with first-order phase
transition, the phase coexistence in manganites is unique in its
appearance over wide ranges of conditions, temperatures, and
length scales from nanometer to micrometer.1 Furthermore,
understanding the metal-insulator phase coexistence and its
response under magnetic fields is considered essential for
the development of the theory of colossal magnetoresistance
(CMR) effects of several orders of magnitude in mangan-
ites, because experimental results indicate that such CMR
effects occur through percolative transitions.2 Therefore, as
a prerequisite for the CMR theory, the origin of the phase
coexistence itself needs to be understood and has been one
of the most controversial issues for manganites research.
Theories based on chemical randomness and electronic phase
separation have been proposed as a mechanism for such
inhomogeneities.6,7 However, the theory based on chemical
randomness assumes an unrealistic exact degeneracy between
metallic and insulating phases,7 the correction of which
ultimately leads to a homogeneous phase.8 Also, in the early
theory6 based on a scenario of electronic phase separation into
two phases with different electron concentrations, the effect of
the long-range Coulomb interaction, which could be the most
important term against the electron density inhomogeneity,
has not been incorporated adequately into the model. Later
theories9 indicate that the long-range Coulomb interaction
reduces the length scale of the electron density inhomogeneity
down to nanometer scale.

As an alternative to these theories, we have previously
proposed an intrinsic mechanism for phase coexistence,10,11

in which the interaction between strain fields plays an
important role, as recognized in earlier works.12–14 Specif-
ically, our model10 includes an intrinsic complexity of en-
ergy landscapes,15 long-range anisotropic interaction between
strain fields, and discreteness of lattices, and it demonstrates
how they give rise to multiscale inhomogeneities observed
in manganites. In our theory, the several-orders-of-magnitude
CMR effect is considered due to the change in the energy
landscape by magnetic fields. This idea is supported by
experimental results,16 which show that the ground state
changes from a distorted charge-orbital ordered antiferromag-
netic insulating state to an undistorted ferromagnetic metallic
state by 2–5 T magnetic fields. These experimental results
suggest that the energy difference between the competing
phases should be only about a few meV per Mn ion. Such
a small energy difference between the insulating and metallic
phases is surprising, and is a consequence of strong coupling
between spin, charge, orbital, and lattice degrees of freedom
and the experimental capability to tune the energy balance
finely through doping. Our theory not only provided insights
for many puzzling experimental results obtained by that
time,2–4,17,18 but it has also contributed to drawing intense
research interests in the relation between strain, phase coex-
istence, and energy landscapes.19 For example, the observed
large-scale inhomogeneity of the order of 10 μm without any
observable chemical inhomogeneity at a length scale of 0.5 μm
or larger is consistent with the intrinsic mechanism.20 The
lamellar morphology of coexisting phases and the change of
domain configurations upon thermal cycling between 10 and
300 K further support our mechanism based on intrinsic energy
landscapes.21 It is also found that the anisotropic epitaxial
strain in thin films gives rise to anisotropic percolation, which
suggests that the phase coexistence is much more strongly
affected by long-range strain rather than by local chemical
inhomogeneity due to doping.22

Furthermore, as we will show in the current paper, the
atomic-scale model used in our previous work, instead of a
traditional continuum model such as a phase field model,23,24

is essential to explain the stability of the metal-insulator
coexistence in the absence of defects, because the atomic-scale
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energy barrier initially proposed by Peierls and Nabarro25

blocks a parallel shift of the metal-insulator interface. There-
fore, even though a continuum theory could include anisotropic
long-range interaction, such a continuum theory would not
support the stable metal-insulator coexistence for which two
phases have different energies unlike twin structures.

We proposed the basic ideas in Ref. 10, but now we develop
them further and describe more extensive implementations
of the approach here. Specifically, we present details of our
model, methods, and results, as well as further simulations
on the stability of phase coexistence. In Sec. II, the details
of the Hamiltonian used for the simulations and results
obtained with various initial conditions and parameters are
presented. We also contrast these results with simulations
for a system that includes short-range interactions only. In
Sec. III, we discuss the mechanism underlying the stability
of micron-scale phase coexistence through further simulations
and analyses. In Sec. IV, we summarize our main results.
Definitions of symmetry modes, constraints, and relations
among modes and displacements in reciprocal space are
presented in Appendix A. Energies and energy gradients used
for the simulations of inhomogeneous states are presented in
Appendixes B and C, respectively. The programs used for the
simulations are available online.26

II. MODEL FOR STRAIN-INDUCED METAL-INSULATOR
PHASE COEXISTENCE

A. Properties of manganites, requirements for phase
coexistence in manganites, and hypothesis to examine

Perovskite manganites typically have the chemical formula
of R1−xAxMnO3, where R represents rare-earth elements,
such as La, Nd, and Pr, and A represents alkaline-earth metal
elements such as Ca and Sr.1,27,28 Important electrons for
both electronic properties and structures are eg electrons on
the Mn ions, as the degeneracy of the eg orbitals leads to
a strong Jahn-Teller electron-lattice coupling. Shortly after
the discovery of CMR in these materials,29 the importance
of the strong electron-lattice coupling was pointed out to
explain the thousandfold CMR effect in terms of polaronic-to-
metallic phase transition.28 The same strong electron-lattice
coupling is also responsible for a large structural difference
between the low-temperature metallic and insulating phases
of manganites. In the insulating phase, the eg electrons are
localized and the charge and orbital states are ordered. Due to
the Jahn-Teller coupling, such a charge-orbital ordered state
accompanies uniform and short-wavelength lattice distortions.
For example, the long Mn-O bond (or the elongated eg

electron orbital) in La0.5Ca0.5MnO3 alternates its direction
within a plane, which gives rise to short-wavelength lattice
distortions.30,31 Along the direction perpendicular to this plane,
the short Mn-O bond repeats itself, and therefore the unit
cell is compressed along this orientation, giving uniform or
long-wavelength lattice distortions. In contrast, manganites in
the metallic ground state have a structure close to an ideal cubic
perovskite structure without the Jahn-Teller lattice distortions
because the eg electrons are delocalized. The ground state can
be changed between metallic and insulating phases in various
ways, such as by the size of R and A ions, applied magnetic
fields, or applied pressures.32–34

We propose that the first key to understanding the phase
coexistence in manganites is metastability, which has been
observed in many experiments. For example, the distorted
insulating phase of manganites can be transformed into the
undistorted metallic phase by either x rays35 or magnetic
fields,32 and the metallic phase does not revert to the insulating
phase even after the external perturbations are removed. In
particular, in the x-ray experiment,35 a reduction of superlattice
peak intensity and a simultaneous increase of conductivity,
while the sample is exposed to x rays, demonstrate the trans-
formation of the insulating phase into the metallic phase and
the presence of inhomogeneity. However, an energy landscape
with local and global energy minima is not sufficient to
explain the observed submicron scale inhomogeneity, because
such inhomogeneity is unstable against thermal fluctuations.
Furthermore, as mentioned above,1 the inhomogeneity in
manganites is unusual in its appearance over wide ranges of
conditions and length scales, which is an indication of an extra
mechanism at play that affects the phase coexistence.

Based on the strong electron-lattice coupling mentioned
above and experiments showing the important role of strain
in the metal-insulator transition in manganites,36 we propose
that the extra mechanism should be related to the long-range
anisotropic interaction between strain fields. It is thus essential
to consider the energy landscape in terms of lattice distortion
variables, which will ultimately have a bearing on other de-
grees of freedom such as magnetic moment or electron density.
The origin of the long-range anisotropic interaction within
this framework is bonding constraint, often referred to as
strain compatibility, which enforces single-valued strain fields
without broken bonds.37–40 The anisotropy reflects discrete
rotational symmetries associated with lattice structures.

The cubic phase of perovskite manganites contains five
atoms per unit cell. The insulating charge and orbital ordered
phase consists of a zigzag pattern of the long Mn-O bond
orientation, which further increases the number of atoms per
unit cell. Inclusion of such details is necessary for a complete
description of the properties of these materials. For the current
study, however, we focus on the following three key features
of manganites essential for multiscale inhomogeneities, and
we capture them in a simple model. First, the metallic phase
has almost no lattice distortions in comparison with the charge-
orbital ordered insulating phase. Second, the insulating ground
state has a uniform or long-wavelength lattice distortion.
This property is essential because it is the long-wavelength
distortion, not the short-wavelength one, that gives rise to the
long-range anisotropic interaction between strain fields. Third,
the insulating phase has a short-wavelength lattice distortion,
in addition to the uniform distortion. As we will show below,
the symmetry-allowed coupling between the uniform and
short-wavelength distortions gives rise naturally to an energy
landscape with multiple minima. Our hypothesis is that any
system with these three properties could host metal-insulator
phase coexistence. Our goal is to find a simple model system
and verify this hypothesis through numerical simulations.

B. Model system, variables, and constraint equations

Before we introduce our model, we examine whether a
simpler two-dimensional model can be used instead of a
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FIG. 1. Two-dimensional square lattice with a monatomic basis.
�u�i represents the displacement of the atom at the site with the index
�i = (ix,iy), where the integers ix and iy range from 1 to N . The site
at the bottom left corner is chosen for �i = (1,1).

three-dimensional model, in particular to capture the effect
of the long-range strain-strain interactions. In D-dimensional
space (D = 2 or 3), the anisotropic strain-strain interaction
decays as 1/rD , where r represents the distance between two
points.37,38,41 Spatial integration of 1/rD would give rise to a
logarithmic divergence in both two- and three-dimensional
spaces,42 which indicates that the effect of the interaction
would be similar for both cases. Indeed, simulations in
two- and three-dimensional spaces show similar results.37,41,43

Thus, we limit ourselves in this work to a two-dimensional
model for simplicity.

One of the simplest lattices in two-dimensional space is
a square lattice with a monatomic basis shown in Fig. 1. By
considering one isotropic electron orbital per site and nearest-
neighbor electron hopping, the lattice supports a metallic
electron density of states (DOS) without a gap. Therefore,
such an undistorted square lattice shares the first property of
manganites mentioned above. To include the second property,
we deform the square unit cell of the lattice to a rectangular unit
cell, either along the horizontal or vertical direction. To include
the third property, we incorporate (π,π )-type displacements
of atoms along the horizontal (vertical) direction for the
rectangular lattice elongated along the vertical (horizontal)
direction. Rectangular lattices with such short-wavelength
lattice distortions support an electron DOS with a gap at the
center, as previously obtained by Ono and Hamano,44,45 if
we consider natural electron hopping amplitude modulation
by changes in interatomic distances. Therefore, such lattices
have an insulating DOS for the electron density of half an
electron per site. Even though the two-dimensional lattice
described above is simple, it shares all three properties of
manganites that we propose as essential characteristics for the
observed inhomogeneity, and it provides a testing ground for
our hypothesis.

We look for an energy expression for which the undistorted
and distorted lattices described above are the local and global
energy minimum states. For this purpose, we use symmetrized
atomic-scale lattice distortion modes that we developed
recently,39 instead of displacement variables. These modes are
ideal to describe anharmonic energy landscapes with multiple
minima, similar to the Ginzburg-Landau theory for continuum.
The symmetrized atomic-scale lattice distortion modes for
the monatomic square lattice are shown in Fig. 2. The first
three modes are long-wavelength modes, since they can be
obtained by uniformly deforming the square lattice. The last
two modes, which correspond to (π,π ) staggered distortions
of the lattice, are short-wavelength modes. For the square
lattice, each atom is shared by four neighboring plaquettes,

FIG. 2. Symmetry distortion modes10,39 for the motif of the two-
dimensional square lattice with a monatomic basis shown in Fig. 1.

which makes the modes at neighboring plaquettes dependent
on each other. Such a constraint can be expressed in terms of
equations in the Fourier transformed space, and the five modes
can describe any lattice distortion for the square lattice. In
the long-wavelength limit, the three long-wavelength modes
become identical to the familiar strain modes, which makes
our approach ideal for describing nano- and micrometer-scale
inhomogeneities within the same theoretical framework. The
inclusion of constraints allows our method to automatically
generate the effects of the long-range anisotropic interaction.

We consider N × N square lattices.46 The displacement
variables for the atom at the site �i are ux

�i and u
y

�i . The symmetry

modes shown in Fig. 2 are defined for each site �i in terms of �u�i ,�u�i+(1,0), �u�i+(0,1), and �u�i+(1,1). Periodic boundary conditions are
applied to the modes. The definition of the symmetry modes,
their constraint equations, and relations among modes and
displacements are presented in Appendix A.

C. Total energy of the model and the Hamiltonian
for electronic property calculations

In terms of the modes, we consider the following energy
expression, Etot, as the total energy of the model system for
metal-insulator phase coexistence:10

Etot = Es + El + Ec, (1)

Es =
∑

�i

[
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2
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(
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)]
�i
, (2)

El =
∑

�i

[
A1

2
e2

1 + A2

2
e2

2 + A3

2
e2

3

]
�i
, (3)

Ec =
∑

�i

[
C3

(
s2
x − s2

y

)
e3

]
�i . (4)

The first term Es with the short-wavelength modes includes
all symmetry-allowed terms up to the sixth order with positive
coefficients, since we are interested in a first-order-transition-
like energy landscape. The second term El with the long-
wavelength modes up to the second order mediates the long-
range anisotropic interactions. The third term Ec represents
the coupling between the long- and short-wavelength modes,
where the e3 mode is coupled to the sx and sy modes in
a symmetry-allowed form. This last term gives rise to the
global energy minimum state with long- and short-wavelength
distortions, in addition to the local energy minimum state
without distortions. The energy expression Etot gives rise to
the energy landscape described in Sec. II B for appropriate
ranges of parameter values.
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To establish a connection between electronic properties and
lattice distortions as observed in manganites, the following
Su-Shrieffer-Heeger (SSH) Hamiltonian44 is used for the
electronic structure calculations:

HSSH =
∑

�i
−t0

[
1 − α

(
ux

�i+(10)
− ux

�i
)]

(c†�i c�i+(10) + H.c.)

− t0
[
1 − α

(
u

y

�i+(01)
− u

y

�i
)]

(c†�i c�i+(01) + H.c.). (5)

Here, H.c. represents the Hermitian conjugate, and we consider
only one orbital per site and neglect electron spin for simplicity.
The operator c

†
�i is the creation operator of an electron at

site �i. We include the electron-lattice coupling through the
renormalization of electron hopping amplitudes only, because
our goal is to demonstrate a possible connection between
lattice distortion and metallic or insulating properties. Full
analysis of the role of electron-lattice coupling for phase
coexistence would require inclusion of terms representing
the direct coupling between electron density and the lattice
distortion in addition to terms like Eq. (5). For example, it
has been shown that the combined effects of the two kinds of
electron-lattice couplings can lead to unusual types of phase
coexistence.47,48

The SSH Hamiltonian is a Hamiltonian for independent
electrons, and it can be diagonalized within a one-electron
basis. Therefore, we construct an electronic Hamiltonian
matrix for given lattice distortions, ux

�i and u
y

�i , with a basis set

{c†�i |0〉}, where |0〉 represents the state without electrons. We
diagonalize the matrix numerically, and fill energy levels with
electrons according to the electron density. With the lth lowest
energy eigenstate represented as |l〉 = ∑

�i zl,�ic
†
�i |0〉, the local

DOS at site �i is calculated from D�i(E) = ∑
l δ(E − El)|zl,�i |2,

which reveals local electronic properties.49

We consider that the total energy Etot is obtained by
minimizing the energy of the system with respect to all degrees
of freedom, including the electronic ones, except for the lattice
degrees of freedom. Therefore, Etot is used for calculations of
the energy landscape and the Euler simulations, whereas HSSH

is used for calculations of electronic properties associated with
templates of lattice distortions.

D. Energy landscape for homogeneous states

For the analysis of the energy landscape for homogeneous
states, we define the following variables:

ẽ1 ≡ e1(�k = 0), (6)

ẽ2 ≡ e2(�k = 0), (7)

ẽ3 ≡ e3(�k = 0), (8)

s̃x ≡ sx[�k = (π,π )], (9)

s̃y ≡ sy[�k = (π,π )]. (10)

We expect the ground state of Etot to be homogeneous with
ẽ1, ẽ2, ẽ3, s̃x , and s̃y distortions only. Therefore, we study the
following energy expression, which includes these particular
distortions only, to understand the energy landscape for the

homogeneous states:

Eh
tot = Eh

s + Eh
l + Eh

c , (11)
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l
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2
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2
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2
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3, (13)
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c

N2
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y

)
ẽ3. (14)

Because ẽ1, ẽ2, ẽ3, s̃x , and s̃y are independent of each other,
as explained in Appendix A, we minimize Eh

tot with respect
to ẽ1, ẽ2, and ẽ3 independently and obtain ẽ1 = 0, ẽ2 = 0,
ẽ3 = −C3(s̃2

x − s̃2
y )/A3, and the following energy expression

in terms of s̃x and s̃y only:

E
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tot
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y
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(

G1

4
− C2

3

2A3

) (
s̃4
x + s̃4
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+
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3
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x s̃

2
y + H1

6

(
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x + s̃6

y

)
+ H2

6
s̃2
x s̃

2
y

(
s̃2
x + s̃2

y

)
. (15)

We find parameter values for which E
h,min
tot /N2 has one local

energy minimum state without distortion, (s̃x ,s̃y) = (0,0), and
four symmetry-related degenerate global energy minimum
states with distortions, (s̃x ,s̃y) = (±s0,0), (0,±s0), where s0

is the size of the minimum energy sx or sy distortion.50,51

For comparison, we choose two sets of parameter values, one
giving a shallow and the other a deep local energy minimum
at (s̃x ,s̃y) = (0,0), as shown with a thin blue and a thick red
curve, respectively, in Fig. 3, part of which is shown in Ref. 10.
In manganites, such a difference in energy landscape can be
related to the size of the rare-earth or alkaline-earth metal
elements, which is known experimentally to influence the
physical properties of manganites.33 Alternatively, we may
consider this a measure of “microstrain.”53 For the parameter
values with the deep local energy minimum, the energy
difference between local and global minima is about 6 meV
per site, similar to the energy difference per Mn ion between
metallic and insulating phases of the manganites with phase
coexistence.16

E. Methods of simulations for inhomogeneous states

To study inhomogeneous states, particularly metastable
states, we first minimize Etot analytically with respect to all
the independent variables except sx(�i) and sy(�i), and we obtain
an energy expression E′

tot(sx,sy). The details of the derivation
and the expression for E′

tot(sx,sy) are provided in Appendix B.
The energy landscape of E′

tot(sx,sy) for inhomogeneous states
in 2N2-dimensional space is much more complicated than
that of homogeneous states in Fig. 3, possibly glasslike,54,55

because of the effective long-range interactions as a result of
the constraints among the distortion modes.
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FIG. 3. (Color online) Energy landscape for the homogeneous
states. E

h,min
tot /N 2 vs s̃x with s̃y = 0 for the two chosen parameter

sets. The parameter values for the deep local energy minimum case,
represented by the thick red curve, are A1 = 7 eV/Å2, A2 = 4 eV/Å2,
A3 = 6 eV/Å2, B = 2 eV/Å2, C3 = 20 eV/Å3, G1 = 60 eV/Å4,
G2 = 80 eV/Å4, H1 = 480 eV/Å6, and H2 = 640 eV/Å6, for which
the minimum energy distortions are s0 = 0.34 Å and |ẽ3| = 0.39 Å,
and E

h,min
tot /N 2 has a value of −0.0058 eV for the global energy

minimum states. The height of the energy barrier between the
local and global energy minima is 0.0160 eV, measured from the
local energy minimum. These parameter values give rise to an
energy difference of about 6 meV per site between distorted and
undistorted phases, similar to the energy difference per Mn ion
between ferromagnetic undistorted metallic and antiferromagnetic
distorted insulating phases of the manganites. The size of the
minimum energy distortion s0 is also of the same order of magnitude
as that of the Jahn-Teller distortion observed in manganites.52 The
only different parameter value for the shallow local minimum case,
represented by the thin blue curve, is B = 0.5 eV/Å2, which gives rise
to s0 = 0.38 Å, |ẽ3| = 0.49 Å, the global energy minimum E

h,min
tot /N 2

of −0.1053 eV, and the energy barrier of 0.0009 eV.

In our simulations, we set initial configurations of sx(�i) and
sy(�i) and relax the lattice according to the Euler method,

sn+1
x (�i) = sn

x (�i) − γ
∂E′

tot(sx,sy)

∂sx(�i)

∣∣∣∣
sn
x ,sn

y

, (16)

sn+1
y (�i) = sn

y (�i) − γ
∂E′

tot(sx,sy)

∂sy(�i)

∣∣∣∣
sn
x ,sn

y

, (17)

where the superscript n or n + 1 represents the number of
Euler steps taken from the initial configuration, and γ controls
the size of the Euler step. Expressions for ∂E′

tot(sx,sy)/∂sx(�i)
and ∂E′

tot(sx,sy)/∂sy(�i) are provided in Appendix C. We run
the simulations until E′

tot(sx,sy) reaches equilibrium.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Lattice distortion
model with multiple
energy minima

Short-range-interaction
model with multiple
energy minima

FIG. 4. (Color online) Left column: Simulation for the relaxation
of lattice distortions for a 32 × 32 lattice. The energy landscape with
a shallow local minimum, which is represented by the thin blue curve
in Fig. 3, is considered here. The vertices correspond to the displaced
positions of atoms. The color represents p3 = s2

x − s2
y , with green

corresponding to zero, and red and blue corresponding to ±s2
0 , except

±(2.6s0)2 for panel (a). Right column: Simulation of the relaxation for
a model with a short-range interaction only, for comparison with the
lattice distortion model on the left. The variable p = M2 is plotted on
a 32 × 32 lattice with a periodic boundary condition. Red represents
p = 28.6M2

0 for (e) and p = M2
0 for (f)–(h), and green represents

p = 0.

F. Initial conditions and results of the simulations
for inhomogeneous states

Figures 4(a)–4(d) show the results of simulations carried out
on a 32 × 32 lattice for the energy landscape with a shallow
local minimum, shown in the thin blue curve in Fig. 3 for
homogeneous states. The color of each plaquette represents
p3(�i) ≡ sx(�i)2 − sy(�i)2, and the vertices of plaquettes repre-
sent the locations of displaced atoms. Through the coupling
between p3 and e3 in Ec, positive and negative values of p3

are usually accompanied by an e3 distortion elongated along
the y and x direction, respectively. Most plaquettes with p3

close to zero have little distortion. Starting from an initial
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configuration of sx(�i) and sy(�i) randomly chosen between −2s0

and 2s0 as shown in Fig. 4(a), the system is relaxed through
the Euler method with γ = 0.0015 Å2/eV. Figures 4(b)–
4(d) correspond to the configurations at the Euler step,
n =1000 and 4000, and the stable configuration at n =100 000,
respectively.56 Following the energy gradient from a random
initial configuration, the simulation approximately represents
a rapid quenching of the system from a very high temperature
to 0 K.

For comparison, we study a system with a similar energy
expression,

EM =
∑

�i

W

2
M2

�i + X

4
M4

�i + Y

6
M6

�i

+ Z

2
{[M�i+(1,0) − M�i]

2 + [M�i+(0,1) − M�i]
2}, (18)

but without constraint or long-range interaction between
variables M�i . The last term becomes Z(∇M)2/2, the familiar
Ginzburg-Landau gradient term, in the continuum limit.
Parameter values are chosen57 so that the energy landscape
is similar to the lattice distortion model and the uniform
ground state for EM is M�i = ±M0 = ±0.38, identical to s0

in Å. Figures 4(e)–4(h) show the results of a simulation on
a 32 × 32 lattice, in which p = M2, analogous to p3 for the
lattice distortion model, is shown. The initial configuration of
M�i , shown in Fig. 4(e), is chosen randomly between −5.3M0

and 5.3M0, and is relaxed according to the Euler method.58

Both systems in Fig. 4 show nucleation and growth of the
low-energy phases, as expected for the first-order-like energy
landscape. However, comparison between the left and right
columns reveals distinct features present only in the lattice
distortion model.

First, the nucleation droplets in Fig. 4(b) are highly
anisotropic, in contrast with those in Fig. 4(f). Second,
distortions separated by a relatively large distance along the
diagonal direction interact with each other, grow toward each
other, and merge through the long-range interaction, as seen
for the yellow and red band along the 135 degree orientation
in Figs. 4(b) and 4(c). Such characteristics of the long-range
interaction cannot be identified in Figs. 4(f) and 4(g). Third,
the nucleation occurs via pairs of distortions with different
orientations to minimize the interface energy between the
distorted region and the undistorted background, as shown
in Fig. 4(b). Such features are absent in the panels of the
right column in Fig. 4, where the interaction is purely short-
ranged. Recent x-ray scattering experiments have revealed the
presence of short-range anisotropic precursor correlations in
the orthorhombic phase of manganites at high temperatures,
which disappear in the rhombohedral phase.5 Such a feature
has a similarity with the anisotropic droplets observed in our
simulations for the lattice distortion model.

For the deep local-energy-minimum case described by the
thick red curve in Fig. 3, simulations of rapid quenching
using the Euler method for a 64 × 64 lattice do not create
the nucleation of the low-energy phase. Instead, we obtain
an undistorted homogeneous state as the final state, which
is an indication of strong metastability due to a higher-energy
barrier between the distorted and undistorted states. In crystals,
we expect that line or planar defects as well as thermal

(a) (b)
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Undistorted

Insulator

M
etal

M
etal

55
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O
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FIG. 5. (Color online) (a) Stable configuration of distorted and
undistorted domains for a 64 × 64 lattice for the energy landscape
with a deep local minimum, shown by the thick red curve in Fig. 3. The
color represents p3 with red and green for s2

0 and 0, respectively. (b)
Map of the local electron DOS calculated at E = 0 for the distortions
in (a). Red, green, and blue correspond to 0.6, 0.3, and 0 state per site
per eV, respectively. The local electron DOS per site per eV calculated
at the center of the undistorted and the distorted regions is shown over
the corresponding domains.

fluctuations would assist the nucleation. Simulations of such
processes require more computational resources. Therefore,
we start from predesigned initial states and relax the lattice to
obtain stable coexistence of distorted and undistorted domains.
An initial state is chosen according to

sx(�i) = s0(−1)ix+iy

{
cos

[
2π (ix + iy − 4)

N

]
+ 1

2

}
, (19)

sy(�i) = 0, (20)

with N = 64, and it is relaxed with γ = 0.0002 Å2/eV. As
a result, we obtain a stable configuration shown in Fig. 5(a).
We find stable coexistence of large undistorted [green region in
Fig. 5(a)] and distorted [red region in Fig. 5(a)] domains, unlike
the shallow-local-minimum case. The size of the domain is
determined only by the initial condition, and therefore it can be
as large as several micrometers, consistent with experimental
results for manganites.

For comparison, we again carry out simulations for the
system with a short-range interaction only, described by EM

in Eq. (18) with a similar energy landscape and a predesigned
initial state,

M�i = M0

{
cos

[
2π (ix + iy)

N

]
+ cs

}
. (21)

For cs = 0.5, γ = 0.0002, and N = 64, we find that the final
stable configuration is a uniform ground state, rather than a
state with domains. For cs = 0, γ = 0.0002, and N = 128, we
find only a line of atoms, rather than a domain, with M close
to zero between regions with M = M0 and M = −M0. This
comparison shows that the strain-strain long-range interaction
indeed plays an essential role for the coexistence of the
distorted and undistorted phases.

To demonstrate electronic inhomogeneity associated with
the structural inhomogeneity, we calculate the electronic
properties for the template of the lattice distortions in Fig. 5(a).
We use the SSH Hamiltonian in Eq. (5) with t0 = 1 eV and
α = 1 Å−1, similar to the electron hopping amplitude and the
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Jahn-Teller coupling constant for manganites, which results
in a gap of about 1 eV for the distorted phase, similar to
the Jahn-Teller gap for the manganites. Typical local electron
DOSs within the undistorted and distorted regions are shown
over the corresponding domains in Fig. 5(b). The local DOS
is symmetric about the energy E = 0, and a gap opens near
E = 0 in distorted regions, as obtained in Ref. 44. Therefore,
the distorted and undistorted regions have insulating and
metallic electron DOSs, respectively, at half-filling without any
spatial charge inhomogeneity. The map of the local electron
DOS at E = 0 is shown in the background of Fig. 5(b).

The possible inhomogeneity in the local DOS without
any charge inhomogeneity in our model is in contrast with
other explanations for the inhomogeneity based on electronic
phase separation.6 Our results also indicate that chemical
inhomogeneity is not a necessary condition to have a large-
scale coexistence of metallic and insulating domains, which
is in contrast to other theories.7 Although lattice defects or
segregation of dopants could play a role in nucleation, the
stability of the metal-insulator coexistence relies on intrinsic
energy landscapes, which explains why external perturbations
such as focused x rays,35 light,59 or electron beams alter
metallic and insulating domains in manganites.

III. STABILITY OF PHASE COEXISTENCE

A. Stability against uniform domain wall motions

Unlike twin boundaries between two domains of the same
energy, the metal-insulator boundaries in Fig. 5 split two
phases with different energies. Thus, it could usually be
anticipated that the metal-insulator boundaries would advance
into the higher-energy metallic phase and lower the total energy
of the system, and the stable metal-insulator coexistence in
Fig. 5 is surprising. Therefore, in this section, we examine
the stability of the metal-insulator coexistence against various
kinds of perturbations and find the mechanism for the stability.
First, we examine the energy barrier blocking a uniform shift
of the metal-insulator boundaries. Red dots connected by the
lowest line in Fig. 6 show sx(ix,iy)(−1)ix+iy versus ix for iy = 1
near the boundary between the undistorted (i.e., ix � 51)
and distorted (i.e., ix � 52) phases for the configuration in
Fig. 5(a). To find the energy barrier against uniform domain
wall shift, we increase the value of sx(ix,iy)(−1)ix+iy at the

40 45 50 55 60
i
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0.2

0.3

-s
x(i

x,1
)x
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i x  (
Å

) i
y
=1

FIG. 6. (Color online) The red dots represent the profiles of
sx(ix,iy)(−1)ix+iy with iy = 1 near the domain boundary in Fig. 5(a).
Dots of other colors show how this profile changes as the domain
boundary shifts uniformly by two interatomic distances.

(a) (b) (c)

FIG. 7. (Color online) Configurations of lattice distortions near
the domain boundary, as the boundary moves by two interatomic
distances. The color scheme is different from Figs. 4 and 5(a).
Here, the colors represent the sx mode, with red, green, and blue
corresponding to s0, 0, and −s0, respectively. Parts (a)–(c) correspond
to the profiles represented by red, green, and purple dots in Fig. 6.

sites immediately adjacent to the domain boundary, that is,
at ix = 51 − is , iy = 1 + is with integer is’s, in eight steps
from near zero to the full distortion close to s0. At each step,
we minimize the total energy with respect to the distortions
at all other sites using the Euler method. This gives rise
to distortion profiles shown by dots of different colors in
Fig. 6. The two-dimensional configurations for the red, green,
and purple dots in Fig. 6 are also shown in Figs. 7(a)–7(c),
respectively, where the colors represent sx . The results show
that sx(ix,iy)(−1)ix+iy at (51,1), (50,1), and similar sites
adjacent to the domain boundary, grow together, compensating
for sx distortions with opposite signs at the two neighboring
sites, and the domain boundary advances by two interatomic
distances.

For a further quantitative analysis of the energy barrier,
we define the effective location of the domain boundary, ddb,
according to

ddb = 2 × s∗
x − 0.040 Å

0.308 Å − 0.040 Å
, (22)

where s∗
x represents the value of sx(ix,iy)(−1)ix+iy chosen at

ix = 51 in Fig. 6, and 0.040 and 0.308 Å are the values of s∗
x

before and after the domain wall moves by two interatomic
distances. Minimized total energy E′

tot is plotted in Fig. 8
for 0 � ddb � 2, which shows an energy barrier, an example
of the Peierls-Nabarro barrier.25 We compare three energies,
E1 = −2.946 eV, E2 = −1.668 eV, and E3 = −3.693 eV for

0.0 0.5 1.0 1.5 2.0
d

db

-4

-3

-2

-1

E
/ to

t (
eV

)

FIG. 8. Total energy E′
tot for the 64 × 64 system, given by

Eq. (B26), vs the location of the domain boundary defined by Eq. (22),
as the boundary moves by two interatomic distances. Each point is
found from each corresponding curve in Fig. 6. The configurations in
Figs. 7(a)–7(c) correspond to ddb = 0.0, 1.0, and 2.0, respectively.
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ddb = 0.0, 1.0, and 2.0, which correspond to the configurations
shown in Figs. 7(a)–7(c), respectively. Most changes in the
distortion occur in the 64 × 2 plaquettes near the domain
boundary, as shown in Figs. 6 and 7. Therefore, the energy
difference between the two stable domain configurations for
ddb = 0.0 and 2.0 is (E1 − E3)/128 = 0.0058 eV per site,
which agrees with the energy difference per site between
the undistorted and distorted uniform phases in Fig. 3. The
energy barrier normalized for 64 × 2 plaquettes, that is,
(E2 − E1)/128, is 0.0100 eV, which is a little lower than the
height of the energy barrier per site, �Eper site = 0.0160 eV,
between the local and global energy minima in Fig. 3.

From this analysis, we obtain the energy barrier against the
uniform shift of the domain wall of the order of 2�Eper site

multiplied by the domain wall length in the unit of the inter-
atomic distance, which would be a macroscopic energy barrier
for the domain walls of micron length scale. Discreteness of
the lattice in our model is essential for the Peierls-Nabarro
energy barrier, and traditional continuum models such as the
phase field model would not support the stable metal-insulator
coexistence in Fig. 5 in the absence of defects.

B. Stability against nonuniform domain wall modifications

The importance of the long-range interaction between strain
fields is more evident for the stability against nonuniform mod-
ifications of the metal-insulator boundaries. As an example,
we convert a patch of the undistorted region in a configuration
similar to Fig. 5(a) into a distorted state initially, and we relax

(a) (b)

(c) (d)

FIG. 9. (Color online) Simulation of the domain wall stability
against a small nonuniform modification of the domain boundary for
the configuration similar to Fig. 5(a). The color scheme is identical to
Fig. 7. Part (a) represents the initial perturbed configuration. Parts (b)
and (c) show intermediate configurations. Part (d) represents the final
stable configuration, which is identical to the original configuration
before the perturbation.

the whole lattice according to the Euler method. The initial, two
intermediate, and final configurations are displayed in Fig. 9.
The results show that the distortion in the converted region
disappears initially except for two atomic layers [Fig. 9(c)],
the width of which shrinks by further relaxation, restoring
the original configuration [Fig. 9(d)]. The simulation demon-
strates the stability of the metal-insulator coexistence against
nonuniform modifications of the interface. We emphasize here
that a similar simulation with the continuum elastic theory
starting from a configuration like Fig. 9(a) would further
relax the configuration in Fig. 9(d) into a homogeneous
state with the low-energy phase, because of the absence of
the Peierls-Nabarro energy barrier. Therefore, the long-range
anisotropic elastic interaction is not enough, but the atomic
discreteness also plays an essential role in the absence of
defects for the stability of the metal-insulator coexistence.

To gain further insight into the role of lattice compat-
ibility, we examine other modes and energy distribution.
Figures 10(a)–10(c) show the modes, e1, e2, and e3 for the
sx distortions in Fig. 9(b). The strain fields tend to spread
into the domains from the domain boundary. In particular, the
e3 field inside the converted patch in Fig. 10(c) cannot reach
−C3s

2
0/A3, the full distortion of e3 inside the domain, due

to the strain compatibility. The map of Etot(�i), the sum of
the terms with the site index �i in Eqs. (2)–(4), is displayed
in Fig. 10(d), which shows that the energy cost for creating
the distorted patch is not confined near the interface, but is
distributed over the whole converted patch, as observed in
the continuum phase field model.23,24 This is different from

(a) (b)

(c) (d)

FIG. 10. (Color online) Modes and energy distribution for the
configuration shown in Fig. 9(b). Colors in (a)–(c) show e1(�i), e2(�i),
and e3(�i) with red and blue corresponding to ±0.45 Å and green to
zero. Colors in (d) show Etot(�i), which is the sum of the terms with
the site index �i in Eqs. (2)–(4), with red and blue corresponding to
0.06 and −0.006 eV, respectively. Typical values of e3(�i) and Etot(�i)
inside the converted patch are −0.08 and 0.02 eV, respectively.
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systems with short-range interactions only, for which the
energy cost would be confined near the domain walls within the
range of the interaction. This difference shows that the lattice
constraint, leading to the effective long-range interaction, plays
an important role in the stability of the metal-insulator phase
coexistence in manganites against nonuniform modifications
of metal-insulator boundaries. Similarly, we find that if we
convert a patch of the distorted region of a similar size into
the undistorted state, the system relaxes back to the original
configuration.

However, the above results do not mean that it is impossible
to change the phase of a region. For example, as shown in
Fig. 11, if we convert a large enough patch [Fig. 11(a)],
even though the distortions in most of the converted region
disappear initially, the distortions in two layers next to the
original domain boundary remain [Fig. 11(b)], the width of
which expands [Fig. 11(c)]. Eventually, the distorted domain
grows by two atomic layers [Fig. 11(d)]. The different
relaxation behavior between the configurations in Figs. 9(c)
and 11(b) shows that the growth of the low-energy phase
involves simultaneous changes in distortions of a significant
number of unit cells next to the interface. Such a collective
change of distortions would require overcoming a mesoscopic
energy barrier, which would involve a time scale much longer
than the atomic time scale. Slow growth of the low-energy
phase has been observed in a number of experiments for
manganites. For example, Ref. 21 reports a time scale of the

(a)

(c) (d)

(b)

FIG. 11. (Color online) Simulation of the growth of the low-
energy insulating phase by a nonuniform modification of the domain
boundary, converting a large enough undistorted patch into a distorted
state, for the configuration similar to Fig. 5(a). The color scheme is
identical to Fig. 7. An initial configuration is shown in (a). Parts
(b) and (c) show intermediate configurations. Part (d) represents the
final stable configuration, which shows that the distorted region has
expanded by two atomic layers.

(a)

(c) (d)

(b)

FIG. 12. (Color online) Simulation of the growth of the high-
energy metallic phase by a nonuniform modification of the domain
boundary, converting a large enough distorted patch into an undis-
torted state, for a configuration similar to Fig. 5(a). The color scheme
is identical to Fig. 7. An initial configuration is shown in (a). Parts
(b) and (c) show intermediate configurations. Part (d) represents the
final stable configuration.

order of 10 min for the growth of the low-energy phase. A
rough order-of-magnitude estimate of the energy barrier �E

can be made by assuming an activated thermal process so
that the relaxation time is given by τ = τ0 exp(�E/kBT ),
where τ0 represents the intrinsic time scale for ion motion,
kB is the Boltzmann constant, and T is the temperature. With
τ ∼ 103 s, τ0 ∼ 10−13 s, and kBT ∼ 10 meV, we obtain �E of
the order of 1 eV. If we consider the typical energy scale for the
distortion of the unit cell to be 1–10 meV, this energy barrier
corresponds to about 100–1000 unit cell distortions within the
layer next to the two-dimensional interface, consistent with
our simulations. A similar growth of the undistorted metallic
region occurs if we convert a large enough distorted region
into the undistorted state, as shown in Fig. 12. The result is
reminiscent of experiments in which the volume fraction of the
undistorted phase is increased by external perturbations such
as x rays or light.35,59

The results in this subsection demonstrate the important role
played by the long-range anisotropic strain-strain interaction
for the stability of the metal-insulator phase coexistence
against nonuniform perturbations of the interface.

IV. SUMMARY

We have discussed various aspects of a model for the strain-
induced phase coexistence observed in perovskite manganites.
A square lattice and associated atomic-scale distortion modes
were used to construct an energy expression with local and
global energy minimum states, which captures features of
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manganites essential for phase coexistence: a metallic local-
energy-minimum state without lattice distortions and an insu-
lating global-energy-minimum state with short wavelength and
uniform lattice distortions. Expressions for modes, constraint
equations, energies, and energy gradients have been presented.
Our simulations for an energy landscape with a shallow local-
energy-minimum state revealed nucleation with anisotropic
correlations upon rapid quenching. Our simulations for an
energy landscape with a deep local-energy-minimum state
showed stable coexistence of undistorted metallic and distorted
insulating domains. Further, we studied the stability of such
metal-insulator coexistence against various perturbations. We
found that domain configurations are stable against uniform
shift of the boundary due to the discreteness of the lattice and
the intrinsic energy barrier between local- and global-energy-
minimum states. For nonuniform modifications of metal-
insulator boundaries, the long-range interaction between strain
fields gave rise to the domain wall energy distributed over
the whole modified area for our two-dimensional model (or
volume for three-dimensional systems), rather than the region
confined near the domain wall, providing extra stability in
addition to the Peierls-Nabarro energy barrier to the phase
coexistence. To provide a comparison, we carried out simula-
tions for a system with a short-range interaction only, which
showed no anisotropic nucleation or stable coexistence of local
and global energy minimum phases. The results demonstrate
that the long-range interaction between stain fields, complex
energy landscapes, and the Peierls-Nabarro energy barrier play
an important role in metal-insulator coexistence in perovskite
manganites.60
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APPENDIX A: DEFINITION OF MODES, THEIR
CONSTRAIN EQUATIONS, AND RELATIONS IN

RECIPROCAL SPACE

Displacement of atoms in a periodic structure can be
described using two components. One is the component
that changes monotonically as the site indices shift along a
direction. This component, represented by a superscript “nF”
below, cannot be Fourier-transformed and corresponds to the
uniform distortion of the lattice. The rest of the displacement,
represented by a superscript “F” below, can be Fourier-
transformed and is subject to periodic boundary conditions.
Therefore, we express the displacements as follows:

ux
�i = u

x,nF
�i + u

x,F
�i , (A1)

u
y

�i = u
y,nF
�i + u

y,F
�i , (A2)

where

u
x,nF
�i = εxx

0 ix + ε
xy

0 iy, (A3)

u
y,nF
�i = ε

xy

0 ix + ε
yy

0 iy, (A4)

u
x,F
�i =

∑
�k

ux
�k e

i�k·�i , (A5)

u
y,F
�i =

∑
�k

u
y

�k e
i�k·�i , (A6)

and εxx
0 , ε

xy

0 , and ε
yy

0 are strain tensors from the continuum
theory of elasticity.

Periodic boundary conditions result in kx = 2πnx

N
and ky =

2πny

N
, where nx = −N/2 − 1, . . . ,N/2 and ny = −N/2 −

1, . . . ,N/2. For u
x,nF
�i and u

y,nF
�i , the rigid rotation of the whole

system is excluded, since it is irrelevant to the potential energy
change. Similarly, the �k = 0 components of u

x,F
�i and u

y,F
�i

correspond to the rigid translations of the whole system, which
are set to zero.

For the square lattice, we define the symmetry modes shown
in Fig. 2 as follows:

e1(�i) = 1

2
√

2

(−ux
�i − u

y

�i + ux
�i+10

− u
y

�i+10

−ux
�i+01

+ u
y

�i+01
+ ux

�i+11
+ u

y

�i+11

)
, (A7)

e2(�i) = 1

2
√

2

(−ux
�i − u

y

�i − ux
�i+10

+ u
y

�i+10

+ux
�i+01

− u
y

�i+01
+ ux

�i+11
+ u

y

�i+11

)
, (A8)

e3(�i) = 1

2
√

2

(−ux
�i + u

y

�i + ux
�i+10

+ u
y

�i+10

−ux
�i+01

− u
y

�i+01
+ ux

�i+11
− u

y

�i+11

)
, (A9)

sx(�i) = 1

2

(
ux

�i − ux
�i+10

− ux
�i+01

+ ux
�i+11

)
, (A10)

sy(�i) = 1

2

(
u

y

�i − u
y

�i+10
− u

y

�i+01
+ u

y

�i+11

)
. (A11)

These modes are fully subject to the periodic boundary con-
ditions. Thus, they can be Fourier-transformed, for example,
according to

e1(�i) =
∑

�k
e1(�k)ei�k·�i . (A12)

From the definitions, we find

e1(�k = 0) = εxx
0 + ε

yy

0√
2

= ẽ1, (A13)

e2(�k = 0) = ε
xy

0√
2

= ẽ2, (A14)

e3(�k = 0) = εxx
0 − ε

yy

0√
2

= ẽ3, (A15)

sx(�k = 0) = 0, (A16)

sy(�k = 0) = 0, (A17)

e1(�k 
= 0) = 1

2
√

2

[−(1 − eikx )(1 + eiky )ux
�k

− (1 + eikx )(1 − eiky )uy

�k
]
, (A18)
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e2(�k 
= 0) = 1

2
√

2

[−(1 + eikx )(1 − eiky )ux
�k

− (1 − eikx )(1 + eiky )uy

�k
]
, (A19)

e3(�k 
= 0) = 1

2
√

2

[−(1 − eikx )(1 + eiky )ux
�k

+ (1 + eikx )(1 − eiky )uy

�k
]
, (A20)

sx(�k 
= 0) = 1

2
(1 − eikx )(1 − eiky )ux

�k , (A21)

sy(�k 
= 0) = 1

2
(1 − eikx )(1 − eiky )uy

�k . (A22)

The five variables are related by three constraint equa-
tions, because only two physically independent displacement
variables exist for each site.39 These constraint equations are
found from the relations between the symmetry modes and
the displacement variables in reciprocal space. For kx 
= 0 and
ky 
= 0, we invert the linear relations between [sx(�k), sy(�k)]
and [ux

�k , u
y

�k ] in Eqs. (A21) and (A22) and replace them in
the expressions with other modes in Eqs. (A18)–(A20). This
leads to

sin
kx

2
cos

ky

2
sx(�k) + cos

kx

2
sin

ky

2
sy(�k)

−
√

2i sin
kx

2
sin

ky

2
e1(�k) = 0, (A23)

cos
kx

2
sin

ky

2
sx(�k) + sin

kx

2
cos

ky

2
sy(�k)

−
√

2i sin
kx

2
sin

ky

2
e2(�k) = 0, (A24)

sin
kx

2
cos

ky

2
sx(�k) − cos

kx

2
sin

ky

2
sy(�k)

−
√

2i sin
kx

2
sin

ky

2
e3(�k) = 0. (A25)

These constraint equations indicate that e1(π,π ), e2(π,π ),
and e3(π,π ) vanish and s̃x ≡ sx(π,π ) and s̃y ≡ sy(π,π ) are
independent variables. Constraint equations for kx = 0 or
ky = 0 should be considered separately from Eqs. (A23)–
(A25). Equations (A13)–(A17) show that e1(�k = 0), e2(�k = 0),
and e3(�k = 0) are independent of each other, and sx(�k = 0)
and sy(�k = 0) vanish. For kx = 0 and ky 
= 0, Eqs. (A18)–
(A22) show that e1(�k) = −e3(�k) and e2(�k) are independent
variables, and sx(�k) = sy(�k) = 0. Similarly, for kx 
= 0 and
ky = 0, e1(�k) = e3(�k) and e2(�k) are independent variables, and
sx(�k) = sy(�k) = 0.

To describe lattice distortions in our simulations, we
primarily use the variables sx(�i) and sy(�i). These variables
can be assigned arbitrarily except that they should sat-
isfy sx(�k) = sy(�k) = 0 if kx = 0 or ky = 0, as required by
Eqs. (A16), (A17), (A21), and (A22). In our numerical simu-
lations, we implement this condition by subtracting unphysical
components with kx = 0 or ky = 0 from sx(�i) and sy(�i),
each time we initialize or change sx(�i) and sy(�i). However,
sx(�i) and sy(�i) do not uniquely determine lattice distortions,
because of the singular relation between [sx(�k), sy(�k)] and
[ux

�k , u
y

�k ] in Eqs. (A21) and (A22). As seen above, e1(�k = 0),

e2(�k = 0), e3(�k = 0), e1(kx = 0,ky 
= 0) = −e3(kx = 0,ky 
=
0), e2(kx = 0,ky 
= 0), e1(kx 
= 0,ky = 0) = e3(kx 
= 0,ky =
0), and e2(kx 
= 0,ky = 0) should be specified, in addition
to sx(�i) and sy(�i), for the complete description of lattice
distortions.

Displacement variables ux
�i and u

y

�i are calculated from these

modes. For the nonperiodic parts of displacements, u
x,nF
�i and

u
y,nF
�i in Eqs. (A3) and (A4), we use Eqs. (6)–(8) to obtain

u
x,nF
�i = e1(�k = 0) + e3(�k = 0)√

2
ix +

√
2e2(�k = 0)iy, (A26)

u
y,nF
�i =

√
2e2(�k = 0)ix + e1(�k = 0) − e3(�k = 0)√

2
iy . (A27)

We find the periodic parts of the displacement, u
x,F
�i and

u
y,F
�i , through the Fourier transformation of ux

�k and u
y

�k , which
are obtained by inverting two nonsingular equations among
Eqs. (A18)–(A22). Therefore, if kx 
= 0 and ky 
= 0, we invert
Eqs. (A21) and (A22) to obtain

ux
kx 
=0,ky 
=0 = 2

(1 − eikx )(1 − eiky )
sx(�k), (A28)

u
y

kx 
=0,ky 
=0 = 2

(1 − eikx )(1 − eiky )
sy(�k). (A29)

If kx 
= 0 and ky = 0, Eqs. (A18) and (A19) lead to

ux
kx 
=0,ky=0 = −

√
2

1 − eikx
e1(�k), (A30)

u
y

kx 
=0,ky=0 = −
√

2

1 − eikx
e2(�k). (A31)

Similarly, if kx = 0 and ky 
= 0, we obtain

ux
kx=0,ky 
=0 =

√
2

1 − eiky
e2(�k), (A32)

u
y

kx=0,ky 
=0 =
√

2

1 − eiky
e1(�k). (A33)

The kx = 0 and ky = 0 components of the displacements
correspond to rigid displacements, which are set to zero:

ux
kx=0,ky=0 = 0, (A34)

u
y

kx=0,ky=0 = 0. (A35)

By adding periodic and nonperiodic parts of displacements
according to Eqs. (A1) and (A2), we find ux

�i and u
y

�i .

APPENDIX B: ENERGY EXPRESSIONS FOR
INHOMOGENEOUS STATES

To study inhomogeneous configurations, particularly
metastable configurations, we minimize Etot analytically
with respect to all the independent variables except
sx(�i) and sy(�i), that is, e1(�k = 0), e2(�k = 0),
e3(�k = 0), e1(kx = 0,ky 
= 0) = −e3(kx = 0,ky 
= 0),
e2(kx = 0,ky 
= 0), e1(kx 
= 0,ky = 0) = e3(kx 
= 0,ky = 0),
and e2(kx 
= 0,ky = 0), and we obtain an energy expression
E′

tot(sx,sy). The details of the derivation are as follows. First,
we represent e1, e2, and e3 in reciprocal space, and we rewrite
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El and Ec in Eqs. (3) and (4) in the following form:

El = N2
∑

�k

A1

2
e1(�k)e1(−�k) + A2

2
e2(�k)e2(−�k)

+ A3

2
e3(�k)e3(−�k), (B1)

Ec =
∑

�i

⎧⎨
⎩C3[sx(�i)2 − sy(�i)2]

∑
�k

e3(�k)ei�k·�i

⎫⎬
⎭ . (B2)

Next, because the constraint equations apply differently
depending on whether either kx or ky is zero or not, we divide
the �k sum into four parts,

∑
�k

=
∑

kx 
=0,ky 
=0

+
∑

kx=0,ky 
=0

+
∑

kx 
=0,ky=0

+
∑

kx=0,ky=0

, (B3)

and we treat each part separately. If kx 
= 0 and ky 
= 0,
constraint equations (A23)–(A25) are rewritten as follows:

(e1)kx 
=0,ky 
=0 = − i√
2

[
cot

ky

2
sx(�k) + cot

kx

2
sy(�k)

]
, (B4)

(e2)kx 
=0,ky 
=0 = − i√
2

[
cot

kx

2
sx(�k) + cot

ky

2
sy(�k)

]
, (B5)

(e3)kx 
=0,ky 
=0 = − i√
2

[
cot

ky

2
sx(�k) − cot

kx

2
sy(�k)

]
. (B6)

Therefore, the part with kx 
= 0 and ky 
= 0 for El in Eq. (B1)
is expressed as

(El)kx 
=0,ky 
=0 = N2

2

∑
kx 
=0,ky 
=0

(
sx

sy

)T

−�k

(
Bxx Bxy

Bxy Byy

)
�k

(
sx

sy

)
�k
,

(B7)

where

Bxx(�k) = 1

2
(A1 + A3) cot2

ky

2
+ 1

2
A2 cot2

kx

2
, (B8)

Byy(�k) = 1

2
(A1 + A3) cot2

kx

2
+ 1

2
A2 cot2

ky

2
, (B9)

Bxy(�k) = 1

2
(A1 + A2 − A3) cot

kx

2
cot

ky

2
. (B10)

Similarly, the part with kx 
= 0 and ky 
= 0 for Ec in Eq. (B2)
is equivalent to

(Ec)kx 
=0,ky 
=0 =
∑

�i

{
C3[sx(�i)2 − sy(�i)2]

∑
kx 
=0,ky 
=0

− i√
2

[
cot

ky

2
sx(�k) − cot

kx

2
sy(�k)

]
ei�k·�i

}
.

(B11)

For the terms with kx = 0 and ky 
= 0, we apply the constraint
equation e1(�k) + e3(�k) = 0 to eliminate e1(�k) in El in Eq. (B1)

and obtain

(El + Ec)kx=0,ky 
=0

= N2
∑

kx=0,ky 
=0

A1 + A3

2
e3(−�k)e3(�k) + A2

2
e2(−�k)e2(�k)

+
∑

�i
C3[sx(�i)2 − sy(�i)2]

∑
kx=0,ky 
=0

e3(�k)eiky iy . (B12)

Since we are interested in metastable phases in this work and
e2(�k) and e3(�k) are independent for kx = 0 and ky 
= 0, we
minimize the energy (El + Ec)kx=0,ky 
=0 with respect to e2(�k)
and e3(�k) separately and obtain

(e1)min
kx=0,ky 
=0 = −(e3)min

kx=0,ky 
=0 = C3F0,ky
(s2

x − s2
y )

A1 + A3
, (B13)

(e2)min
kx=0,ky 
=0 = 0, (B14)

where

F�k
(
s2
x − s2

y

) ≡ 1

N2

∑
�i

[sx(�i)2 − sy(�i)2]e−i�k·�i . (B15)

The minimized energy expression for (El + Ec)kx=0,ky 
=0 is

(El + Ec)min
kx=0,ky 
=0 = − C2

3

2(A1 + A3)
N2

∑
kx=0,ky 
=0

F0,−ky

× (
s2
x − s2

y

)
F0,ky

(
s2
x − s2

y

)
. (B16)

We apply a similar analysis to the terms with kx 
= 0 and ky = 0
in Eqs. (B1) and (B2). Using the constraint e1(�k) − e3(�k) = 0,
we eliminate e1(�k) and obtain

(El + Ec)kx 
=0,ky=0

= N2
∑

kx 
=0,ky=0

A1 + A3

2
e3(−�k)e3(�k) + A2

2
e2(−�k)e2(�k)

+
∑

�i
C3[sx(�i)2 − sy(�i)2]

∑
kx 
=0,ky=0

e3(�k)eikx ix . (B17)

Independent minimizations of this energy with respect to e2(�k)
and e3(�k) lead to

(e1)min
kx 
=0,ky=0 = (e3)min

kx 
=0,ky=0 = −C3Fkx ,0(s2
x − s2

y )

A1 + A3
, (B18)

(e2)min
kx 
=0,ky=0 = 0, (B19)

(El + Ec)min
kx 
=0,ky=0 = − C2

3

2(A1 + A3)
N2

∑
kx 
=0,ky=0

F−kx ,0

× (
s2
x − s2

y

)
Fkx ,0

(
s2
x − s2

y

)
. (B20)

The terms with �k = 0 in Eqs. (B1) and (B2) are

(El + Ec)kx=0,ky=0

= N2

[
A1

2
e1(�k = 0)2 + A2

2
e2(�k = 0)2 + A3

2
e3(�k = 0)2

]

+
∑

�i
C3[sx(�i)2 − sy(�i)2]e3(�k = 0). (B21)
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We minimize the above expression with respect to e1(�k = 0),
e2(�k = 0), and e3(�k = 0) independently, since they are not
constrained to each other, and we obtain

(e1)min
kx=0,ky=0 = 0, (B22)

(e2)min
kx=0,ky=0 = 0, (B23)

(e3)min
kx=0,ky=0 = −C3

A3
F�k=0

(
s2
x − s2

y

)
, (B24)

(El + Ec)min
kx=0,ky=0 = −C2

3N
2

2A3

[
F�k=0

(
s2
x − s2

y

)]2
. (B25)

Finally, by adding the terms with different cases of kx and ky

found above, we obtain the following total energy, E′
tot, which

depends only on sx and sy :

E′
tot(sx,sy) = E′

l+c + Es, (B26)

where

E′
l+c = (El + Ec)min

kx=0,ky=0 + (El + Ec)min
kx=0,ky 
=0

+ (El + Ec)min
kx 
=0,ky=0 + (El)kx 
=0,ky 
=0 + (Ec)kx 
=0,ky 
=0,

(B27)

and Es is given by Eq. (2). We use this energy expression
E′

tot(sx,sy) for the simulations of inhomogeneous states.
In addition to sx(�i) and sy(�i) configurations, e1(�i), e2(�i),

and e3(�i) configurations give useful information on the
nature of the inhomogeneous states. The relations used to
eliminate e1, e2, and e3 variables above, namely Eqs. (B4)–
(B6), (B13), (B14), (B18), (B19), and (B22)–(B24) for
different cases of kx and ky , are used to find e1(�k), e2(�k), and
e3(�k) from given sx(�i) and sy(�i), which lead to e1(�i), e2(�i), and
e3(�i) configurations. Equations (A26)–(A35) are used to find
the displacements, ux(�i) and uy(�i), from the distortion modes.

APPENDIX C: GRADIENTS OF THE ENERGY EXPRESSION FOR SIMULATIONS USING THE EULER METHOD

The gradient of E′
tot(sx,sy) necessary for the Euler method is found from

∂E′
tot(sx,sy)

∂sx(�i) = ∂(El)
ky 
=0
kx 
=0

∂sx(�i) + ∂(Ec)
ky 
=0
kx 
=0

∂sx(�i) +
∂(El + Ec)min

kx=0,ky 
=0

∂sx(�i) +
∂(El + Ec)min

kx 
=0,ky=0

∂sx(�i) +
∂(El + Ec)min

kx=0,ky=0

∂sx(�i) + ∂Es

∂sx(�i) , (C1)

∂E′
tot(sx,sy)

∂sy(�i) = ∂(El)
ky 
=0
kx 
=0

∂sy(�i) + ∂(Ec)
ky 
=0
kx 
=0

∂sy(�i) +
∂(El + Ec)min

kx=0,ky 
=0

∂sy(�i) +
∂(El + Ec)min

kx 
=0,ky=0

∂sy(�i) +
∂(El + Ec)min

kx=0,ky=0

∂sy(�i) + ∂Es

∂sy(�i) . (C2)

The expression for each term is given below:

∂(El)kx 
=0,ky 
=0

∂sx(�i) =
∑

kx 
=0,ky 
=0

[Bxx(�k)sx(�k) + Bxy(�k)sy(�k)]ei�k·�i , (C3)

∂(El)kx 
=0,ky 
=0

∂sy(�i) =
∑

kx 
=0,ky 
=0

[Byy(�k)sy(�k) + Bxy(�k)sx(�k)]ei�k·�i , (C4)

∂(Ec)kx 
=0,ky 
=0

∂sx(�i) = iC3√
2

∑
kx 
=0,ky 
=0

{
cot

ky

2
F�k

(
s2
x − s2

y

) − 2sx(�i)
[

cot
ky

2
sx(�k) − cot

kx

2
sy(�k)

]}
ei�k·�i , (C5)

∂(Ec)kx 
=0,ky 
=0

∂sy(�i) = iC3√
2

∑
kx 
=0,ky 
=0

{
cot

kx

2
F�k

(
s2
y − s2

x

) − 2sy(�i)
[

cot
kx

2
sy(�k) − cot

ky

2
sx(�k)

]}
ei�k·�i , (C6)

∂(El + Ec)min
kx=0,ky 
=0

∂sx(�i) = − 2C2
3

A1 + A3
sx(�i)

∑
kx=0,ky 
=0

eiky iyF0,ky

(
s2
x − s2

y

)
, (C7)

∂(El + Ec)min
kx=0,ky 
=0

∂sy(�i) = 2C2
3

A1 + A3
sy(�i)

∑
kx=0,ky 
=0

eiky iyF0,ky

(
s2
x − s2

y

)
, (C8)

∂(El + Ec)min
kx 
=0,ky=0

∂sx(�i) = − 2C2
3

A1 + A3
sx(�i)

∑
kx 
=0,ky=0

eikx ixFkx ,0
(
s2
x − s2

y

)
, (C9)

∂(El + Ec)min
kx 
=0,ky=0

∂sy(�i) = 2C2
3

A1 + A3
sy(�i)

∑
kx 
=0,ky=0

eikx ixFkx ,0
(
s2
x − s2

y

)
, (C10)

∂(El + Ec)min
�k=0

∂sx(�i) = −2C2
3

A3
sx(�i)F�k=0

(
s2
x − s2

y

)
, (C11)
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∂(El + Ec)min
�k=0

∂sy(�i) = 2C2
3

A3
sy(�i)F�k=0

(
s2
x − s2

y

)
, (C12)

∂Es

∂sx(�i) = Bsx(�i) + G1sx(�i)3 + G2sx(�i)sy(�i)2 + H1sx(�i)5 + H2

3
[2sx(�i)2 + sy(�i)2]sx(�i)sy(�i)2, (C13)

∂Es

∂sy(�i) = Bsy(�i) + G1sy(�i)3 + G2sy(�i)sx(�i)2 + H1sy(�i)5 + H2

3
[2sy(�i)2 + sx(�i)2]sy(�i)sx(�i)2. (C14)

*kenahn@njit.edu
†Present address: Department of Physics, Northern Illinois University,
De Kalb, IL 60115, USA and Advanced Photon Source, Argonne
National Laboratory, Argonne, IL 60439, USA.
1N. Mathur and P. Littlewood, Phys. Today 56(1), 25 (2003).
2M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature
(London) 399, 560 (1999).

3Ch. Renner, G. Aeppli, B.-G. Kim, Y.-A. Soh, and S.-W. Cheong,
Nature (London) 416, 518 (2002).
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