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List of notations
A

1
, A

2
, A

3 
= �Moduli for modes e i1

( ) , e i2

( ) , and e i3

( )  in V
sq

A3
'
 = Negative of moduli for e i3

( )  in V
rec

a = (A
1
 – A

2
 + A

3
)/(A

1
 + A

2
 – A

3
)

B = Modulus for modes s ix

( )  and s iy

( ) in V
sq

C
3
 = Coupling coefficient between s i s ix y

 ( ) − ( )2 2
 and 

e i3

( )  in V
multi

C
x
, C

y
 = cos , cosk kx y

e i
( ) , e i1

( ) , e i2

( ) , e i3

( )  = Distortive symmetry mode for 1D chain, 
and dilatational, shear and deviatoric symmetry modes for 2D 
square lattice

f k f k( ), ( )n



 = Constraint equations for chain and square lattice  
(n = 1 ... 6)

F
3
 = Coefficient for the fourth order term in V

rec

G
1
, G

2
, H

1
, H

2
 = Coefficients for the fourth and sixth order term in 

V
multi

i i,  = Indices for sites for chain and square lattice

K = spring constant for chain

k k,


 = Dimensionless reciprocal space variables for chain and 
square lattice

L L Lchain chain sq, ,   = Lagrangian for chain and modified Lagrangians 
for chain and square lattice

L
rec

, L
multi

 = Lagrangians for rectangular lattice and lattice with 
multiple local and global energy minima

M = Mass of atom

P i P im m( ) ( ),


 = Conjugate momenta of symmetry modes m for 
chain and square lattice
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p p pi i
x

i
y, , 

 = Momenta of atoms for chain and square lattice

r i
( )  = Rotational symmetry mode for square lattice

S
x
, S

y = 
sin , sink kx y

s i s i s i s ix y

   ( ) ( ) ( ) ( )+ −, , ,  = Staggered symmetry modes for square 
lattice

T
sq 

= Kinetic energy for square lattice

t(i) = Translational symmetry mode for chain

t i t i t i t ix y

   ( ) ( ) ( ) ( )+ −, , ,  = Translational symmetry modes for square 
lattice

u u ui i
x

i
y, , 

 
=

 
Displacements of atoms for chain and square lattice

V, V
sq

, V
rec

, V
multi

 = Potential energy for square lattice, rectangular 
lattice, and lattice with multiple local and global energy minima

β β β β β1 2 3 4 5, , ,,
 
=

 

1

1 1 1

− − −

− −

cos cos , sin sin , cos cos ,

( cos )( cos ), (

k k k k k k
k k
x y x y

x y

x y

++ +cos )( cos )k kx y1  

γ γ γ
ss ss ss' ' '( ), ( ), ( )( ) ( )k k k
  

0 1
 
= Kinetic energy coefficients and their first 

and second order terms in long wavelength limit for square lattice 
(s, s’ = 1, 3)

λ λ( ), ( )nk k


 = Lagrangian multipliers for chain and square lattice 
(n = 1 ... 6)

ω = Angular frequency of normal mode

1.	 Introduction
The dynamics at nanometer length scale has been a focus of 
recent attention in materials research.1 In particular, emerging 
materials with competing ground states, such as high-
temperature superconducting cuprates, colossal magnetoresistive 
manganites2,3,4 and multiferroic materials often show dynamic 
nanometer scale features, for example, stripes in cuprates5,6 
and anisotropic correlations in manganites.7,8 Furthermore, 
recent advances in time-resolved X-ray technique have allowed 
experimenters to directly probe lattice dynamics in atomic scale.9 
It is believed that understanding these nanoscale features and 
their dynamics is essential to explain macroscopic properties of 
these materials.

For the description of mesoscopic scale domain structures and 
their dynamics, phenomenological Ginzburg-Landau formalism 
has been very successful.10,11 One of the keys for such a success is 
the use of symmetry in the definition of variables, which makes 

the selection of free energy terms self-evident. Motivated by the 
success of the Ginzburg-Landau approach for the continuum, 
symmetry-based atomic scale description of lattice distortions has 
been recently proposed and demonstrated for a two-dimensional 
square lattice.12 In this approach, atomic scale symmetry modes 
are defined on a plaquette of atoms and are used to express 
potential energy terms associated with lattice distortions. This 
method has been used to understand atomic scale structure of 
twin boundaries,12 antiphase boundaries and their electronic 
textures,13 strain-induced metal–insulator phase coexistence in 
manganites,8 superconducting-order parameter textures around 
structural defects14 and the coupling between electronic nematic 
order parameter and structural domains in metamagnets near 
a quantum critical point.15 Thus far, this approach has been 
used for static lattices, or the relaxation of lattice distortions 
introduced through the Euler method,10 which does not require 
kinetic energy terms. In the current article, the authors present 
the study on how the approach based on atomic scale symmetry 
modes can be extended to describe lattice dynamics, within the 
scope of both classical and quantum mechanical formalism. In 
section 2, the authors discuss how to express kinetic energy term 
in symmetry modes, present the study within the formalism of 
classical mechanics and compare the result with the continuum 
results.11 The authors formulate quantum mechanics in terms 
of atomic scale symmetry modes in section 3. The authors 
present a demonstration of symmetry-mode-based approach for 
lattice dynamics, that is, the phonon-mode analysis in terms of 
symmetry modes in section 4. Brief discussion on how to apply 
the method for the simulation of atomic scale dynamics in solid–
solid phase transitions is given in section 5. The conclusion is 
given in section 6.

2.	 Classical formalism

2.1	 One-dimensional lattice with a monatomic basis
Using a one-dimensional lattice with a monatomic basis shown 
in Figure 1, the authors demonstrate the concept of the mode-
based description of lattice dynamics. The displacements of atoms 
are represented by u

i
, where i being an index for the site. To be 

specific, the authors assume that the interaction between the nearest 
neighbor atoms are described by a spring with a spring constant K, 
while other potential energy terms are negligible, as represented by 
the following Lagrangian,

1.
	

L Mu K u u
i

i i ichain = − −∑ +
1
2

1
2

2
1

2
 ( )

Figure 1. One-dimensional lattice with a monatomic basis.

ui

i−1 i+1i
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where, M is the mass of the atom. The authors take a two-atom 
unit as a motif for this lattice and define the symmetry modes, e(i) 
and t(i),

2.
	

e i u ui i( ) ( )≡ −+
1
2 1

3.
	

t i u ui i( ) ( )≡ ++
1
2 1

where a normalization factor is chosen according to the number 
of displacement variables in the definition. These modes are also 
shown in Figure 2.

The two variables, e and t, correspond to the distortion and rigid 
translation of the motif, respectively. Since the two modes are 
defined from one physically independent displacement variable 
at each site i, these modes are related through one constraint 
equation shown below in the reciprocal space and direct space, 
respectively.

4.	 f k e e k e t kik ik( ) ( ) ( ) ( ) ( )≡ + − − =1 1 0

5.	 e i e i t i t i+( ) + ( ) − +( ) + ( ) =1 1 0

In terms of these modes, the Lagrangian in Equation (1) is expressed 
in the following way

6.
	

L M e i t i K e i
i

chain = 





+ −∑ 1
2 2

1
2

22 2 2[ ( ) ( ) ] ( ) ( )



The result shows that introduction of atomic scale rigid modes, 
such as t, which are not considered in the previous work,12 allows 
kinetic energy term being expressed in a quadratic form. To obtain 
equations of motion, the authors modify L

chain
 with a Lagrange 

multiplier λ( )k , as shown below.

7.

	



 

 L M e k e k t k t k

K e k e

k
chain = 





− + −

−

∑ 1
2 2

1
2

2

[ ( ) ( ) ( ) ( )]

( ) ( ) (−− + −k k f k) ( ) ( )λ

The Lagrangian formalism of dynamics leads to the two equations 
of motion,

8.
	

M e k Ke k k e ik

2
2 1 0( ) ( ) ( )( )+ − + =−λ

9.
	

M t k k e ik

2
1 0( ) ( )( )+ − =−λ

and a well-known dispersion relation for the one-dimensional 
chain,16

10.
	

ω = −
K
M

k( cos )1

This result shows that the lattice dynamics can be studied within the 
framework of atomic scale symmetry modes and their constraint 
equations, without using the displacement variables explicitly.

Anharmonicity of one-dimensional chains is important to understand 
nonlinear excitations, such as solitons, kink-solitons, intrinsically 
localized modes and breathers.17,18 Atomic scale modes, e and t, 
found here can be used to incorporate such anharmonicity into the 
Hamiltonian, which, along with their constraint equations, would 
provide a formalism to study the dynamics of nonlinear excitations in 
one-dimensional chains. In the next subsection, the authors demonstrate 
how the mode-based approach is applied to lattice dynamics for a two-
dimensional square lattice with a monatomic basis.

2.2	 Two-dimensional square lattice 
with a monatomic basis

Symmetry-based atomic scale description of lattice distortions for 
a two-dimensional square lattice with a monatomic basis, shown 
in Figure 3, has been studied previously,12 where three long-
wavelength modes, dilatational e

1
, shear e

2
 and deviatoric e

3
 modes 

and two short-wavelength modes, s
x
 and s

y
, are defined, as shown 

in Figure 4. In terms of displacement variables ui
x
  and ui

y
 , and i

x
 

Figure 2. Symmetry modes for the one-dimensional chain in Figure 1.

e t

Figure 3. Two-dimensional square lattice with a monatomic basis.

u
→

i
→

i
→

Figure 4. Distortional symmetry modes of the motif for the  

two-dimensional square lattice with a monatomic basis in Figure 3.

e1 e2 e3 Sx Sy
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and i
y
 representing site indices, these distortional symmetry modes 

are expressed as follows:

11.

	

e i

u u u u u u ui
x

i
y

i
x

i
y

i
x

i
y

i

1

10 10 01 01

1
2 2

( )


      

=

− − + −( − + ++ + + + + 111 11
x

i
yu+ )+


12.
	

e i

u u u u u u ui
x

i
y

i
x

i
y

i
x

i
y

i

2

10 10 01 01

1
2 2

( )


      

=

− − − +( + − ++ + + + + 111 11
x

i
yu+ )+


13.

	

e i

u u u u u u ui
x

i
y

i
x

i
y

i
x

i
y

i

3

10 10 01 01

1
2 2

( )


      

=

− + + +( − − ++ + + + + 111 11
x

i
yu− )+


14.
	

s i u u u ux i
x

i
x

i
x

i
x( )



   = − − +( )+ + +

1
2 10 01 11

15.
	

s i u u u uy i
y

i
y

i
y

i
y( )



   = − − +( )+ + +

1
2 10 01 11

where 10, 01 and 11 represent the offset of the site index by (1,0), 
(0,1) and (1,1), respectively.

Instead of s
x
 and s

y
 modes, the following s

+
 and s

-
 modes can be 

also used.

16.
	

s i s i s ix y+ = +( ) [ ( ) ( )]
  1

2

17.
	

s i s i s ix y− = −( ) [ ( ) ( )]
  1

2

These five modes have been used to express various harmonic and 
anharmonic potential energy terms8,12,13 but are not sufficient to 
represent kinetic energy terms in a simple quadratic form.

In current work, the authors show that additional modes associated 
with the rigid motion of the motif, similar to the mode t in the one-
dimensional chain, allow formalism entirely based on symmetry 
modes without resorting to displacement variables. Three rigid 
modes for the two-dimensional square lattice are shown in Figure 5 
and are defined as follows:

18.
	

t i u u u ux i
x

i
x

i
x

i
x( )



   = + + +( )+ + +

1
2 10 01 11

19.
	

t i u u u uy i
y

i
y

i
y

i
y( )



   = + + +( )+ + +

1
2 10 01 11

20.

	

r i

u u u u u u ui
x

i
y

i
x

i
y

i
x

i
y

i
x

( )


      

=

− + + − − −+ + + + +

1
2 2

10 10 01 01 11 ++( )+ui
y


11

The first two modes, t
x
 and t

y
, correspond to rigid translations of 

the motif along x and y direction, and the mode r represents a rigid 
rotation of the motif. Following t

+
 and t

-
 modes can be also used as 

alternatives to t
x
 and t

y
.

21.
	

t i t i t ix y+ = +( ) [ ( ) ( )],
  1

2

22.
	

t i t i t ix y− = −( ) [ ( ) ( )]
  1

2

Straight-forward expansion shows that the kinetic energy of the 
lattice is expressed in terms of the eight symmetry modes in the 
following quadratic form, with M being the mass of the atom.

23.
	

T M u u
i

i
x

i
y

sq = +∑ 1
2

2 2



 

 [( ) ( ) ]

24.

	

T M

e i e i e i s i s
i

x y

sq = 





+ + + +

∑ 1
2 4

1
2

2
2

3
2 2



















[ ( ) ( ) ( ) ( ) (














i

t i t i r ix y

)

( ) ( ) ( ) ]

2

2 2 2+ + +

As discussed in previous work,12 constraint equations are found 
from the relations between symmetry modes and displacement 
variables in the reciprocal space. The authors first represent 
( , )u uk

x
k
y

   in terms of ( ( ), ( ))s k s kx y

 

 by inverting the linear relations 
between them and replace in the expressions with other modes, 
which lead to six constraint equations.

Figure 5. Rigid symmetry modes of the motif for the two-dimensional 

square lattice with a monatomic basis in Figure 3.
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25.

	

sin cos ( ) cos sin ( )

sin sin ( )

k k
s k k k

s k

i k k
e k

x y
x

x y
y

x y

2 2 2 2

2
2 2 1

 



+

− == 0

26.

	

cos sin ( ) sin cos ( )

sin sin ( )

k k
s k k k

s k

i k k
e k

x y
x

x y
y

x y

2 2 2 2

2
2 2 2

 



+

− == 0

27.

	

sin cos ( ) cos sin ( )

sin sin ( )

k k
s k k k

s k

i k k
e k

x y
x

x y
y

x y

2 2 2 2

2
2 2 3

 



−

− == 0

28.

	

cos sin ( ) sin cos ( )

sin sin ( )

k k
s k k k

s k

i k k
r k

x y
x

x y
y

x y

2 2 2 2

2
2 2

 



−

+ = 00

29.
	

cos cos ( ) sin sin ( ) ,k k
s k k k

t kx y
x

x y
x2 2 2 2

0
 

+ =

30.	
cos cos ( ) sin sin ( ) .k k

s k k k
t kx y

y
x y

y2 2 2 2
0

 

+ =

The eight symmetry modes shown in Figures 4 and 5 can 
be obtained by applying group theory to four atoms in square 
geometry in two-dimensional space, as done in quantum molecular 
chemistry.19 The same approach used for molecules can be applied 
to the motifs of the infinite lattices even though the neighboring 
motifs share atoms. The kinetic energy shown above does not 
include any double counting of the kinetic energies, in spite of 
the overlapping definition of the motifs. An important difference 
between the results for molecule and lattice is the presence of 
the constraint equations, equations 25–30, because, unlike in 
molecule, each atom is shared by multiple motifs in the lattice. 
These constraints generate an effective long range anisotropic 
interaction between distortions of motifs separated from each 
other, which has a far reaching consequence, for example, in 
solid–solid-phase transitions.8,10,11,12

With the constrain equations, the modified Lagrangian for the 
square lattice is now

31.	



 



L T V k f kn
kn

nsq sq= − + −∑∑
=

λ
1

6

( ) ( ),

where V is the potential energy, λn k( )


 are Lagrange multipliers 
and f kn ( )



= 0  are the six constraint equations 25–30. By solving 
the Lagrangian equations, the authors find dynamic properties of 
the lattice in terms of the symmetry modes. As with the Ginzburg-
Landau approach being useful for the description of mesoscale 
dynamics, the authors expect that this approach based on atomic 
scale symmetry modes would be useful for the description of 
atomic scale dynamics, particularly, when anharmonicity plays 
an essential role.

2.3	 Comparison with continuum 
description of lattice dynamics

The authors compare the atomic scale theory developed in the 
previous subsection with an existing continuum theory of lattice 
dynamics. Either by using the definitions, equations 11 and 13, or 
by using the constraint equations, the authors express the kinetic 
energy for the square lattice, equations 23 and 24, in terms of 
e

1
 and e

3
,

32.
	

T M k e k e k
ssk

ss s ssq = −
′==

′ ′∑∑∑ 1
21 31 3 ,,

( ) ( ) ( ),












γ

where

33.
	

γ γ11 33 2 2

1
( ) ( )

cos cos
sin sin

,
 

k k
k k

k k
x y

x y

= =
−

34.
	

γ γ13 31 2 2( ) ( )
cos cos
sin sin

.
 

k k
k k
k k
x y

x y

= =
−

To compare with a continuum theory, the authors take the long-
wavelength limit and obtain the following leading order term for 
γ ss ' ,

35.

	

γ ss

x y

x y

y x

x y

y x

x y

x

k

k k
k k

k k
k k

k k
k k

k′ =

+ −

− +
( ) ( )0

2 2

2 2

2 2

2 2

2 2

2 2

2

2 2

2



kk
k k

y

x y

2

2 22





















This term is identical to equation (3.12a) in a previous work11 
(e

3
 here corresponds to e

2
 in Lookman et al., 2003), where Lookman 

et al. have used as continuum kinetic energy to study underdamped 
dynamics of strains in proper ferroelastic materials. The authors 
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obtain the next order term to the above continuum limit as shown 
below.

36.

	

γ ss

x y

x y

y x

x y

y x

x y

k

k k
k k

k k
k k

k k
k k

′ =

+
+ −

−
( ) ( )1

4 4

2 2

4 4

2 2

4 4

2 2

1
12 8 8

8



11
12 8

4 4

2 2+
+





















k k
k k

x y

x y

This term or equations 33 and 34 can be used to study the 
dynamics of proper ferroelastic materials on the atomic scale. 
The following long-wavelength limit of the atomic scale modes 
shows directly what they correspond to in the continuum 
theory.

37.
	

e i u ux i
x

y i
y

1
1
2

( ) [ ]


 = ∇ + ∇

38.
	

e i u ux i
y

y i
x

2
1
2

( ) [ ]


 = ∇ + ∇

39.
	

e i u ux i
x

y i
y

3
1
2

( ) [ ]


 = ∇ − ∇

40.
	

r i u ux i
y

y i
x( ) [ ]



 = ∇ − ∇
1
2

41.
	

s i ux x y i
x( )



= ∇ ∇
1
2

42.
	

s i uy x y i
y( )



= ∇ ∇
1
2

43.	 t i ux i
x( )



= 2

44.	
t i uy i

y( )


= 2

In k → 0  limit, the correspondence of these modes to the 
displacements u is

45.

	

t t u
e e e r ku
s s k u

x y

x y

, ~

, , , ~

, ~
1 2 3

2

The comparison shows that the approach is a natural extension 
of the continuum theory to the atomic scale and is suitable for 
multiscale description of lattice dynamics.

3.	 Quantum mechanical formalism

3.1	 One-dimensional lattice with a monatomic basis
It is necessary to consider quantum mechanical aspects of lattice 
dynamics for phenomena such as low-temperature specific heat, 
electron–phonon interaction and polarons. In this section, the 
authors extend the symmetry-based atomic scale description 
of lattice dynamics to the quantum mechanical formalism. 
Commutation relations between the coordinate operators and 
their conjugate momentum operators lie at the core of quantum 
mechanics, which the authors establish here for the symmetry 
modes.

First, the authors consider the one-dimensional chain studied in 
section 2.1. The conjugate momenta for the two modes, P

e
(i) and 

P
t
(i), are

46.
	

P i L
e i

M e i p pe i i( )
( )

( ) ( )=
∂

∂
= = −+





2
1

2 2 1

47.
	

P i L
t i

M t i p pt i i( )
( )

( ) ( )=
∂

∂
= = ++





2
1

2 2 1

where p
i
 represents the momentum of the atom at site i. From known 

commutation relations between momentum and displacement 
operators, pi

  and u j
 , the authors find the following commutation 

relations between the operators for modes and their conjugate 
momenta with the same site index i,

48.
	

[ ( ), ( )]P i b i
ia ab=


2
δ

where a b e t, { , }∈ . The 1/2 factor is related to the number of atoms 
in each motif. Unlike displacement variables, the commutation 
relation between a mode at i and a conjugate momentum at i +1  or  
i −1 is not zero, since they share an atom, as shown below.

49.
	

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]P i t i P i t i P i e i
it e t± = + = − =1 1 1

4


Figure 6. Graph to find commutation relation, [Pe(i), t(i+1)] .

i

Pe (i) t(i+1)

i+1 i+2
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50.
	

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]P i e i P i e i P i t i
ie t e± = + = − =

−1 1 1
4


The commutation relations between the momentum and the mode, 
defined at sites further than the nearest neighbors, vanish.

The above relations are also established graphically. For example,  
[ ( ), ( )]P i t ie +1 is found from the drawing in Figure 6, where P ie ( )  
and t i( )+1  are represented with arrows. The authors treat the 
arrows as unit vectors and find the sum of scalar products of unit 
vectors defined at the same sites, which after being multiplied by 
 /( )22 i , lead to the commutation relation. From the graphical rule 
and the symmetry of the modes, the following commutations are 
obtained, where a b e t, { , }∈ .

51.	
P i b j P j a ia b( ) ( )  = ( ) ( ) , ,

52.
	

P i t j P i e je t( ) ( )  = − ( ) ( ) , ,

The commutation relations in reciprocal space are calculated from 
the relations,

53.
	

P k b k P i b j ea
j

k k a
ikj( ), ( ') [ ( ), ( )],[ ] = =′ − ∑δ 0

which are shown in Table 1. The results found here are applicable, 
for example, for the study of quantum mechanical dynamics of 
nonlinear excitations mentioned in section 2.1.

3.2	 Two-dimensional square lattice 
with a monatomic basis

Quantum mechanical nature of lattice is also important for two- or 
three-dimensional lattices, for example, near the structural phase 
transitions or complex emergent materials with competing structural 
phases. In this subsection, the authors find quantum mechanical 

commutation relations for the symmetry modes and their conjugate 
momenta for the square lattice studied in section 2.2.

Conjugate momenta for the atomic scale symmetry modes are as 
follows:
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From the fundamental commutation relations for displacement 
operators and momentum operators,

55.

	

[ , ] [ , ]
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= =

= =

δ

0

the commutation relations between modes and their conjugate 
momenta are calculated in a straight-forward way.

However, it is more convenient to use the graphical method, 
explained for the one-dimensional chain in the previous subsection. 
The above fundamental commutation relations for 

 

i j=  have the 
form of

i
h Pe(k)

i
h Pt(k)

e(–k) 1
2

1( cos )− k −
i k
2

sin

t(–k) i k
2

sin 1
2

1( cos )+ k

Table 1. Commutation relation, [iPa(k) / ħ, b(–k)], between 

symmetry modes and their conjugate momenta for the one 

dimensional chain in reciprocal space.
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56.
	

x x y y

x y y x

   

   

· ·

· ·

= =

= =

1

0

except for the factor  / i , where x  and y  represent unit vectors, 
not operators. Therefore, the commutation relation [ ( ), ( )]P i b ja

 

, 
where a and b represent the eight atomic scale modes, is found 
from the drawings of a and b modes on the square lattice. The 
sum of the scalar products of the unit vectors at the sites shared 
by the two modes, multiplied by 

 /( )42 i , gives the commutation 
of the two operators. (The multiplication factor after  / i  is 
associated with the number of atoms in the motif for the lattice 
with a monatomic basis, that is four for the square lattice and 
two for the chain.) For example, [ ( ), ( )]P i e ie1 2 11

 

+  is found from 
Figure 7, as follows:

57.
	

[ ( ), ( )] ( )P i e i
ie1 2 211

4
1

 



+ = −

Presented graphical method is also useful to find the following 
symmetry-related properties of the commutation relations, where a 
and b represent any of the eight modes, and even and odd represent 
the modes with even symmetry under point reflection, namely, e

1
, 

e
2
, e

3
, r, and the modes with odd symmetry, namely, s

x
, s

y
, t

x
, t

y
, 

respectively.
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The commutation relations in reciprocal space are found from the 
below relation, which are provided in Table 2.

59.	
[ ( ), ( )] [ ( ), ( )],

·P k b k P i b j ea k k a
ik j

j

 

 

 







′ = =′ − ∑δ 0

4.	 Example of the application of 
symmetry modes for lattice dynamics

As a simple demonstration for the application of symmetry modes, 
the analyze phonon modes in terms of atomic scale symmetry modes 
for the square lattice with a harmonic potential shown below.

60.

	

V Ae i A e i A e i

B s i s

i

x y

sq = + +

+ +

∑ 1
2

1
2

1
2

1
2

1 1
2

2 2
2

3 3
2

2

( ) ( ) ( )

[ ( ) (

  







i ) ]2

The phonon dispersion relation for this potential energy was presented 
previously.12 Furthermore, the phonon mode at 



k = ( )π π, , both in 
the upper and the lower branch, was shown entirely composed of 
short-wave length modes, s

x
 and s

y
, due to the constraints. In general, 

at other 


k  points, the contribution of different symmetry modes to 
the phonon mode depends not only on the constraint equations but 
also on the values of the elastic moduli in the energy expression. In 
this section, the authors present the study on how different symmetry 
modes generally contribute to phonon modes for the entire first 
Brillouin zone for the potential V

sq
 shown above.

The equation of motion using conventional displacement-
based approach leads the expression for the normal mode at



k ,  
[ ( ), ( )]u k u kx y

± ±
 

 except for an overall factor, where ± represents 
the upper and lower branches. By using the 



k-space relation 
between symmetry modes and displacements, which is obtained 
from equations 11–20, the authors obtained the expression of 
[ ( ), ( ), ( ), ( ), ( ), ( ), ( ),e k e k e k r k s k s k t k tx y x y1 2 3

± ± ± ± ± ± ±
      

±± ( )]


k  for the 
phonon modes at 



k , where ± again represents the upper and the 
lower branches. (This can be also performed without explicit use of 
displacement variables, as suggested by equation 31 and performed 
for the 1D chain.) The results are shown in Table 3, where 
β1 1= − cos cosk kx y , β2 = − sin sink kx y , β3 = −cos cos ,k kx y  
β4 1 1= − −( cos )( cos )k kx y , β5 1 1= + +( cos )( cos )k kx y , and 
a A A A A A A= − + + −( ) / ( )1 2 3 1 2 3 . In this result, the overall factor 
of the normal mode is determined by the normalization condition

61.
	

| ( ) | | ( ) |u k u kx y
± ±+ =
 

2 2 4

that is,

62.
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e k e k e k r k s k

s
x

y

1
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2
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3
2 2 2± ± ± ± ±
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+ + + +
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    

(( ) | | ( ) | | ( ) |
  

k t k t kx y
2 2 2 1+ + =± ±

To be specific, the authors show these expressions for a special case 
of a = 1, which corresponds to A

2
 = A

3
, in the last column of Table 3 

and plot them within the first Brillouin zone of the square lattice in 
Figure 8. The results show the anisotropic contributions of different 
symmetry modes to the upper- and the lower-branch phonon modes 

Figure 7. Graph to find commutation relation, [Pe1( i


), e2( i


+ 11)].
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within the first Brillouin zone. Some of the features are discussed 
in the figure caption.

5.	 Discussion
In this section, the authors briefly discuss how the approach can 
be used for complex materials in which nonlinearity in elastic 
energy is important. Because this approach uses modes based on 
the symmetry of lattice, it can be useful for atomic scale description 
of dynamics in solid–solid phase transitions.

For example, the following second-order-like double well potential 
energy introduced previously12 represents a system with degenerate 
ground states of rectangular lattices with different orientations,

63.
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2 2B s i s ix y[ ( ) ( ) ]
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+

Therefore, the following Lagrangian can be used to study atomic scale 
dynamics related to the square to rectangular lattice phase transition,

64.	
L T Vrec sq rec= −

As another example, the following first-order-like potential energy, 
introduced previously related to the phase coexistence in perovskite 
manganites,8 represents the competition between high-symmetry 
phase with undistorted square lattice and degenerate low-symmetry 
phases with rectangular and staggered lattice distortions for certain 
ranges of parameter values,

65.	
V V V Vmulti short long coupling= + +
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Table 2. Commutation relation, [iPa ( )k


 / ħ, b ( )−k


], between symmetry modes and their conjugate momenta for the two dimensional square 

lattice in reciprocal space. Cx, Cy, Sx  and Sy represent cos kx, cos ky, sin kx, and sinky, respectively.
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For ± and ∓, the upper sign corresponds to the upper branch, and the lower sign indicates the lower branch. β1 = 1 – cos kx 
cos ky, β2 = –sin kx sin ky, β3 = cos kx – cos ky, β4 = (1 – cos kx) (1 – cos ky), β5 = (1 + cos kx) (1 + cos ky),  and a = (A1 – A2 + A3) / 
(A1 + A2 – A3). Symmetry exists between upper and lower branches. For example, |e1 ( )k



|2 in upper branch has identical expression 
as |r ( )k



|2 in the lower branch. In fact, all eight modes can be related in similar ways. Special case of a = 1 corresponds to the case 
of A2 = A3.

Table 3. Normalized symmetry-mode squared amplitude for phonons within the first Brillouin zone of the square lattice.
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How the competition between the ground state and metastable local 
energy minimum states can influence the atomic scale dynamics 
of solid–solid phase transitions can be studied from the following 
Lagrangian,

69.
	

L T Vmulti sq multi= −

So far, the dynamics with the above potential energies has been 
studied with the steepest decent or the Euler method to find 
stable domain configurations.8,12 With the proper kinetic energy 
expression in symmetry modes presented in this article, more 
realistic dynamics related to the solid–solid phase transitions in 

complex materials can be simulated for both second-order-like 
and first-order-like potential energy expressions shown above. 
The phenomenological approach complements existing molecular 
dynamic approaches, which apply pair potentials, such as the 
Lennard-Jones potential.

6.	 Conclusion
In this article, the authors have presented mode-based atomic 
scale description of lattice dynamics. It is found that not only the 
potential energy but also the kinetic energy is described in terms 
of the atomic scale modes, for which the inclusion of the rigid 
modes is essential. This approach has been demonstrated for the 
one-dimensional chain and the two-dimensional square lattice with 
a monatomic basis. The comparison with a continuum model has 
shown that the approach is suitable for multiscale description of 
lattice dynamics. The approach has been extended to quantum 
mechanics, and the commutation relations have been obtained. As 
an example, the phonon modes are analyzed in terms of symmetry 
modes. The authors also discuss how the approach can be used to 
study atomic scale dynamics associated with solid–solid structural 
phase transitions in complex emergent materials, in which 
competition between phases with different lattice structures is 
important, and therefore, the nonlinearity of lattice energy needs to 
be considered properly.
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