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Elasticity-Driven Nanoscale Electronic Structure in Superconductors
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The effects of long-range anisotropic elastic deformations on electronic structure in superconductors
are analyzed within the framework of the Bogoliubov–de Gennes equations. Cases of twin boundaries
and isolated defects are considered as illustrations. We find that the superconducting order parameter is
depressed in the regions where pronounced lattice-deformation occurs. The calculated local density of
states suggests that the electronic structure is strongly modulated in response to lattice deformations,
and propagates to longer distances. In particular, this allows the trapping of low-lying quasiparticle
states around defects. Some of our predictions can be directly tested by scanning tunneling microscopy
experiments.
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ping integral ~ttij is modified by the lattice distortion. The
electron-lattice coupling is approximated by tij � t0 
1�

temperature —a superlattice formed by twin boundaries
and a single defect. We measure the length and energy in
In many complex electronic materials such as cuprates,
manganites, ferroelastic martensites, and titanates, unex-
pected and puzzling multiscale modulations of charge,
spin, polarization, and strain variables have been re-
vealed by high resolution microscopy [1]. The non-
uniform textures found in these doped materials indicate
that their origin is intrinsic: They arise from coupling
between various degrees of freedom. The textures funda-
mentally affect local and mesoscopic electronic, mag-
netic, and structural properties, which are central to the
functionality of correlated electronic materials. There is
ample evidence for significant coupling among the elec-
tronic degrees of freedom with the lattice distortion in
cuprates and manganites. The charge carrier doping can
act as a local stress to deform surrounding unit cells [1,2].
We might employ a Landau-Ginzburg (LG) theory to
study the coupling between the electronic (Cooper pair)
and lattice (strain tensor) degrees of freedom in super-
conductors. However, the LG theory can describe only the
long wavelength behavior. The local electronic properties
and lattice distortion necessitate a treatment at the atomic
scale. Recently, we have developed an atomic scale theory
for determining lattice distortions by using strain related
variables and their constraint equations [2]. This now
enables a systematic study of the influence of strain on
electronic wave functions. Here we apply a microscopic
theory to study the order parameter and local quasipar-
ticle properties in both s- and d-wave superconductors.

We consider the following model on a square lattice:

H � �
X
ij;�

~ttijc
y
i�cj� �

X
i;�

�	i � 
�cyi�ci�

�
X
ij

��ijc
y
i"c

y
j# � �	

ijcj#ci"�: (1)

Here ci� annihilates an electron of spin � on site i. The
quantities 	i and 
 are the on-site impurity potential (if
any) and the chemical potential, respectively. The hop-
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�	ij�, where t0ij is the bare hopping integral, 	ij is the
lattice-distortion variable, and � is the coupling constant.
In our nearest neighbor realization, the bare hopping
integral t0ij is t for nearest neighbor sites and zero other-
wise. Specifically, we take the form of the lattice distor-
tion to be 	ij � 
j�Rj � dj� � �Ri � di�j=jRj �Rij�
1�, where fRig are the undistorted lattice coordinates
and fdig the lattice displacement vectors with respect to
fRig. We assume an effective superconducting gap func-
tion given by �ij � �Uij=2�hci"cj# � ci#cj"i, where Uij �
U�ij (i.e., attractive Hubbard-U model) for s-wave super-
conductivity and Uij � V�i��;j (with � specifying the
nearest neighbors to the ith site) for d-wave superconduc-
tivity. By performing a Bogoliubov-Valatin transforma-
tion, we may diagonalize our Hamiltonian by solving the
Bogoliubov–de Gennes (BdG) equation [3]:
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subject to the self-consistency conditions for the super-
conducting (SC) order parameter (OP):
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Here the single-particle Hamiltonian reads H ij �
�~ttij � �	i � 
��ij. The quasiparticle wave function, cor-
responding to the eigenvalue En, consists of electron (un

i )
and hole (vn

i ) amplitudes. The quasiparticle energy is
measured with respect to the chemical potential.

We solve the BdG equations self-consistently by start-
ing off with an initial gap function. After exactly diago-
nalizing Eq. (2), the obtained wave function is substituted
into Eq. (3) to compute a new gap function. We then use
this as an input to repeat the above procedure until a
desired convergence is achieved. Below, we report our
results for two types of local lattice distortions at zero
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units of a0 (the undistorted lattice constant) and t. The
chemical potential 
 � 0 and no extrinsic impurity scat-
tering is introduced (	i � 0). The pairing interaction for
both the s-wave (U) and d-wave (V) superconductors is
taken to be 3. The typical system size is NL � 32� 32
and periodic boundary conditions are applied. When the
local quasiparticle density of states (LDOS) is computed,
we implement a much larger system using the above small
system as a supercell. In the absence of distortions, Eq. (2)
is readily solved by resorting to translational invariance:
The resulting quasiparticle energy Ek �

�������������������
�2
k � �2

k

q
with

�k � �2�coskx � cosky� � 
, and the energy gap �k �
�s0 or �k � ��d0=2��coskx � cosky� for the s or the
d-wave superconductor, respectively. For the given pa-
rameter values, we obtain �s0 � 0:85 and �d0 � 1:7. In
both cases, the superconducting coherence length is
�2a0. These values are exaggerated when compared to
real materials: The choice of values is motivated by the
desire to enhance the effect of the lattice distortions.

Before proceeding to the BdG calculation sketched
above, we generate (following [2]) two atomic scale lat-
tice distortions. These distortions arise from long-range
anisotropic interactions between strains to maintain the
compatibility constraints. The e3 (square to rectangle)
strain mode for a periodic twinned microscopic structure
and the corresponding atomic displacements are depicted
in Figs. 1(a) and 1(b). The domain consists of rectangular
distortion (red and blue) separated by a domain wall
where e3 � 0. Note that similar but more ‘‘realistic’’
microstructures have also been obtained using Monte
Carlo techniques [4]. Similar quantities for a single defect
are displayed in panels 1(c) and 1(d). Near the defect, four
alternating distortions are formed in a (clover leaf)
‘‘d-wave-like’’ pattern.

In Fig. 2, we show the spatial variation of the SC OP
induced by the deformation of Fig. 1(a) in both s- and
d-wave superconductors. In both types of superconduc-
tors, the OP is lowered within the domain and is elevated
at the domain wall [Figs. 2(a) and 2(b)]. The magnitude of
the OP is depressed in comparison to an undistorted
square lattice since the lattice deformation changes the
band structure, leading to a reduction in normal density
of states at the Fermi energy. Even at the domain wall,
where the strain induced deformation is weakest, the
amplitude of the enhanced OP is smaller than its value
in an undistorted square lattice. This is due to the confine-
ment from the two neighboring domains. In an s-wave
FIG. 1 (color). Strain-e3 mode for a periodic twinned micro-
structure (a) and a single defect (c) together with their corre-
sponding displacement configurations [(b) and (d)] within the
highlighted window. NL � 32� 32.
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superconductor, the relative orbital motion between two
paired electrons has an angular momentum l � 0, which
has the highest symmetry and generates no subdominant
OPs with lower symmetries. However, for a d-wave super-
conductor, the relative motion between two paired elec-
trons has the angular momentum l � 2, which upon
scattering from any inhomogeneity can generate a sub-
dominant OP with symmetry not lower than that of
l � 2. The d-wave OP is defined by �d�i� � ��i;i�x̂x �
�i;i�x̂x � �i;i�ŷy � �i;i�ŷy�=4, whereas the extended
s-wave OP is �s�i� � ��i;i�x̂x � �i;i�x̂x � �i;i�ŷy �
�i;i�ŷy�=4. In a twinned domain of a d-wave SC, a sub-
dominant extended s-wave component is generated in a
real combination d � s. Because the symmetries of two
twinned domains are reflected into each other with re-
spect to the twin boundary, the relative phase between the
d- and s-wave components switches by ! when a twin
boundary is crossed [Fig. 2(c)]. It has been argued
phenomenologically [5] that a local time-reversal-
symmetry-breaking state exists at a twin or grain bound-
ary of YBa2Cu3O7��. Within numerical accuracy, our
result shows a real admixture of the d-wave and s-wave
components of the OP. A d � is pairing state was also
found at the f110g-oriented surface or interface of a
d-wave superconductor in early work [6]. A crucial differ-
ence between the twin boundary of Fig. 2 and the
f110g-oriented surface of earlier work is that the dominant
d-wave component reaches a maximum at twin bounda-
ries, whereas it is strongly suppressed at the f110g-oriented
surface or interface. Experimentally, the existence of
a time-reversal-symmetry-breaking pairing state in
high-Tc cuprates is the subject of current debate [7].

As another example, we show in Fig. 3 the spatial
variation of the superconducting OP around the single
defect [Fig. 1(c)] in both the s-wave and d-wave super-
conductor cases. The OP is depressed at the center of the
defect, and reaches its defect-free bulk value at the length
scale �0. Notice that, for a lattice-deformation defect,
which affects the local electron hopping integral, the
OP has a minimum at four sites surrounding the defect
center. It is different from the case of an externally sub-
stituted unitary impurity, where the minimum of OP is
located only at the impurity site itself [8]. The range of
influence of such a defect can be very large depending on
FIG. 2 (color). Spatial variation of the SC OP for periodic
twin boundaries displayed in Fig. 1(a). (a) The s-wave OP in an
s-wave superconductor, and (b) the d-wave, and (c) extended
s-wave components of the OP in a d-wave superconductor. The
electron-lattice coupling constant � � 3.
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FIG. 4 (color). The local density of states at a twin boundary
in s-wave (a) and d-wave superconductors. Also shown are the
LDOS (black lines) for a single domain. The electron-lattice
coupling constant � � 3.

FIG. 3 (color). Spatial variation of the SC OP for a single
defect displayed in Fig. 1(c). (a) The s-wave OP in an s-wave
superconductor, and (b) the d-wave and (c) extended s-wave
components (c) of the OP in a d-wave superconductor. The
electron-lattice coupling constant � � 3.
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the strength of electron-lattice coupling—the elasticity
propagates the electronic response. The d-wave energy
gap has a sign change at the nodal directions of the
essentially cylindrical Fermi surface, but the d-wave
OP does not exhibit such a sign change in real space.
When the defect is introduced, an extended s-wave com-
ponent of the OP is induced when the dominant d-wave
component is depressed at the defect. Strikingly, the
induced s-wave component has a sign change across the
diagonals of the square lattice, i.e., sgn
cos�2"��, where "
is the azimuthal angle with respect to the crystalline x
axis. This is a direct manifestation of the d-wave
pairing symmetry in real space. This feature can be
understood from a phenomenological LG free-energy
density functional with a two-component SC OP: F �
�sj�sj

2��dj�dj
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4�#3j�sj

2j�dj
2�

#4��
	2
s �2

d � �	2
d �2

s� � �sjr�sj
2 � �djr�dj

2 � �sd
@x�
�s@x�

	
d � @y�s@y�

	
d � c:c:�, where we take �s to be al-

ways positive while �d � �d0�T=Td0 � 1� such that there
exists only a single transition into a d-wave pairing state
in a homogeneous system. When a defect is introduced,
the d-wave component is depressed. Since the s-wave
component itself should be very small, the term �	2

s �2
d �

�	2
d �2

s is only a higher-order correction. Therefore, it is
the mixed-gradient term that induces the s-wave compo-
nent and also determines the relative phase to be 0 or !.
The sign change is also evident by exchanging the x and y
components of the position coordinate in the mixed-
gradient term.

Once the self-consistency for the order parameter is
obtained, we calculate the LDOS:

%i�E� � �
X
n


jun
i j

2f0�E � En� � jvn
i j

2f0�E � En��; (4)

where f0�E� is the derivative of the Fermi distribution
function with respect to the energy. The LDOS deter-
mines the differential tunneling conductance, measurable
by STM experiments [9]. Figure 4 shows the LDOS at a
domain wall for both types of superconductors, where the
modulation of the superconducting OP forms a super-
lattice, with its maximum at the domain wall playing
the role of an off-diagonal potential barrier [�ij in
Eq. (2)]. For an s-wave superconductor, the quasiparticles
are gapped away with their energy below the minimum
SC OP. Outside the minimum of the pair potential, energy
bands are formed by the quasiparticle scattering off the
057004-3
off-diagonal energy barriers at the domain walls. Except
for the gap about the Fermi energy (E � 0), this is remi-
niscent of the electronic structure in semiconductor
superlattices (e.g., alternating GaAs=GaAlAs layers).
Interestingly, the bottom of the oscillation pattern follows
the LDOS (black line) of a system formed by a single
rectangular domain. Similar oscillations are obtained for
the d-wave superconductor. However, the bottom of the
oscillations does not follow the single-domain DOS
(black line). In addition, weak subgap peaks [labeled by
arrows in Fig. 4(b)] appear symmetrically in the LDOS
on the domain wall but are absent in the single-domain
LDOS. We speculate that these resonant states are due to
the gradient of the s-wave gap component induced inside
the domain.

As shown in Fig. 5, we have also calculated the LDOS
near the center of a single defect. The depression of the
SC OP at the defect makes a quantum-well-like profile of
the energy gap. The size and depth of the well is deter-
mined by the electron-lattice coupling constant. Because
of the difference between the s-wave and d-wave pair-
ings, the s-wave potential well is closed everywhere,
whereas the d-wave well has four slits along the diagonals
of the square lattice. In the s-wave superconductor, the
well is shallow and small for weak coupling, which
cannot trap low-lying quasiparticle bound states; for
strong coupling constants, the well is deep and large so
that subgap quasiparticle bound states are induced [the
red and blue lines of Figs. 5(a) and 5(c)]. The energy of
these low-lying states must be in between the bottom and
edge of the well. Therefore, it is notable that the energy of
these subgap states is shifted toward the Fermi surface as
the electron-lattice coupling is increased [the blue line of
Figs. 5(a) and 5(c)]. The situation here is also different
from an s-wave vortex core, where the OP at the core
center must vanish such that the low-lying bound states
are always trapped [10]. The electronic structure at the
defect in a d-wave superconductor becomes even richer:
For � � 3 (weak coupling as compared to the bandwidth
of the nondeformed square lattice), the lattice-distortion
plays the role of a weak defect for the quasiparticle
scattering. In this case, a resonant peak with a dip exactly
057004-3
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FIG. 5 (color). The local density of states near the center of a
defect in s-wave (left column) and d-wave superconductors
(right column). The distance of the measured point away from
the defect is labeled by its coordinate. The electron-lattice
coupling constants are � � 3 (red lines) and 10 (blue lines).
Also shown is the defect-free LDOS (black lines).
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at the Fermi energy is seen [the red line of Fig. 5(b)]. The
overall peak comes from the scattering of quasiparticles
off the single-particle off-diagonal potential (i.e., local
change of the hopping integral as a response to the
lattice-deformation). This lattice-deformation induced
resonance state also exhibits Friedel oscillations.

Typically, the peak structure appears in the LDOS at
(0,0) and ��2;�2�. [We label the four sites surrounding
the defect center by (0,0), (1,0), (1,1), and (0,1).] In
contrast to the case of an extrinsic on-site potential-
scattering impurity [11], the LDOS spectrum is symmet-
ric since even the local particle-hole symmetry is
preserved here. For � � 10 (strong coupling), the
d-wave OP is almost fully depressed (less than 0.03),
while the maximum of the induced s-wave OP reaches
0.085. The local off-diagonal potential becomes more
finite ranged, which causes a local change of the band-
width. The ‘‘resonant’’ peaks are pushed to higher ener-
gies ( ’ �0:3) [the blue line of Fig. 5(d)]. Furthermore,
small shoulders appear close to the Fermi energy [the blue
lines of Fig. 5(b) and 5(d)], which are precursors of new
Andreev resonance states. We have also computed the
LDOS without imposing self-consistency on the OP and
found that the double-peak structure is V-shaped with no
existence of the shoulders. This leads us to speculate that
the new Andreev resonance states come from the confine-
ment of the induced s-wave OP. However, these states are
still delocalized because the quasiparticles can leak out
of the well through the slits along the diagonal directions
where the induced s-wave component vanishes. All these
features are unique to an elastic defect in a d-wave super-
conductor with short coherence length.

In conclusion, we studied the effects of elastic lattice
deformation on the nanoscale electronic structure in
057004-4
superconductors. We have shown that the SC OP is de-
pressed in the regions where the lattice-deformation
exists. The calculated LDOS suggests that the electronic
structure is strongly modulated in response to the lattice
deformation. In particular, it is possible to trap low-lying
quasiparticle states around the defects. Images of these
states will manifest the underlying long-range aniso-
tropic lattice deformation. These predictions can be di-
rectly tested by STM experiments in new functional
superconducting materials. Our approach is readily ex-
tended to other elastic textures and SC symmetries. Self-
consistent coupling of the elastic and SC textures on an
equal footing will be pursued elsewhere. It would also be
interesting to study the electronic response by using
Monte Carlo generated microstructures as input, which
constitutes future work.
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