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A model for two-dimensional electronic, photonic, and mechanical metamaterial systems is presented, which
has flat one-dimensional zero-mode energy bands and stable localized states of a topological origin confined
within twin boundaries, antiphase boundaries, and at open edges. Topological origins of these flatbands are
analyzed for an electronic system as a specific example, using a two-dimensional extension of the Su-Schrieffer-
Heeger Hamiltonian with alternating shift of the chains. It is demonstrated that the slow group velocities of the
localized flat band states are sensitively controlled by the distance between the boundaries and the propagation
can be guided through designed paths of these boundaries. We also discuss how to realize this model in

metamaterials.
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Flat dispersionless energy bands with infinite effective
mass, either in electronic, photonic, or mechanical materials,
give unique properties to these materials, and have attracted
great attention in the recent past [1-4]. Prominent examples
include localized photons in the Lieb photonic lattice [5-7],
the Mott phenomena and unconventional superconductivity
in twisted bilayer graphenes [8,9], and the proposal of zero-
group-velocity mechanical metamaterials [10]. Another class
of materials attracting great attention lately are topological
materials, which include topological insulators and semimet-
als [11-14], phononic materials [15], and metamaterials
[10,16-24]. Since widely different systems could share phe-
nomena of the same topological origin, the tight-binding elec-
tronic Hamiltonian for the Haldane model of graphene [25]
has been translated to equations describing topological phe-
nomena in photonic, acoustic, and mechanical metamaterials,
as well as ultracold fermions [17,20,26-28], for example.

In this Rapid Communication, we propose a two-
dimensional (2D) model system, for which topologically pro-
tected flat energy bands arise within the twin boundaries (TBs)
or the antiphase boundaries (APBs), or at the open edges
(OEs). The flat bands are located in the energy gap between
bulk bands, which allows the formation of stable localized
states, different from the dispersive edge state bands for the
Haldane model [25] or the Kane-Mele model [13]. It is also
demonstrated that the group velocity is tunable by the distance
between the boundaries and the propagation can be guided
through zigzag paths, unlike other lattices with flat bands.
We use an electronic tight-binding Hamiltonian as a specific
model, and discuss how the same phenomena could be found
in metamaterials.

One of the earliest models of the topological insulators is
the one-dimensional (1D) Su-Schrieffer-Heeger (SSH) model
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[21,29,30], for which topologically protected zero-energy
states could be present at the OE or APB. Extension of the
SSH model to the 2D space has been studied by simply stack-
ing the 1D SSH chain in the direction perpendicular to the
chain [31], which results in dispersive topological edge states.
In our study, we extend the 1D SSH model to the 2D space in
a different way by shifting every other 1D SSH chain. To be
specific [32], a 2D square lattice is altered first by a uniform
square-to-rectangle distortion parametrized by e, and then
by staggered distortions parametrized by d, and d,, shown
in Fig. 1. The nearest-neighbor electron hopping amplitudes
depend linearly on interatomic distances, which results in
SSH chains in the x (y) direction, shifted and stacked along
the y (x) direction with the interchain coupling weaker than
the average intrachain coupling. The changes of the phase for
the staggered distortions give rise to APB, while the changes
of the orientations for uniform rectangular distortions result
in TBs. Coherence of the underlying lattice structure [33]
makes the topological analysis of the TBs and APB states
possible within conventional bulk-boundary correspondence,
unlike that of grain-boundary states, as recently studied for
graphenes and other topological insulators [34-39].

As shown in Fig. 1, a two-atom unit cell is chosen with
the unit cell index n = (ny, ny) representing the unit cell at
R = na; + npa, with primitive vectors a; and a,. Two atoms
in the unit cell are labeled as A and B. The parameters d,
and d, specifically represent the staggered components of the
distortion of the A atom. The primitive vectors and unit cells
are chosen so that one of the primitive vectors is parallel to the
boundary and unit cells are not cut through by the boundaries
[31]. By considering one spinless electron state at each site,
we obtain the following tight-binding Hamiltonian for the
lattice without APBs/TBs/OEs,

H=—(l—-e+2d)o,®I1—(1—e—2d)o_® S
—(I4e+2dy)o, ® S,
—(l4e—2dy)o_ ® S5 +He., (1)
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FIG. 1. The model system. The black arrows show the staggered
distortions parametrized by d. and d,, specifically for the A atom.
Uniform distortions are parametrized by e, so that 1 +e and 1 — e
are the distances between neighboring A and B sites in vertical and
horizontal directions, respectively, before staggered distortions are
introduced. The green arrows represent primitive vectors a; and a,,
and the gray ellipses indicate unit cells.

where S; =) In)(n+ej[,e; =(1,0), eo=(0,1),1 =
> . Im)(n|, oy and o_ are the raising and lowering matrices
of the Pauli matrices, and (1,0)T ® [n) = |4, n), (0, )T ®
n) = |B, n) are electron states at corresponding sites. The
hopping amplitude for an undistorted lattice and the linear
coefficient of the hopping amplitude versus the interatomic
distance are chosen as 1 and —1, respectively. In various con-
figurations with TBs/APBs/OEs, the coefficients in Eq. (1)
become site dependent,

I+ed2d,y — Y tyln)(n|. )
n

Either with or without TBs/APBs/OEs, the Hamiltonians
possess the chiral symmetry, (03 ® I)H (03 ® 1) = —H. For
the spinless electron system, the time-reversal symmetry and
the particle-hole symmetry are also present with each sym-
metry squaring to +1, which places the system in the BDI
class [40—43]. However, when the Hamiltonian is applied to
metamaterials, only chiral symmetry may be present, and such
systems would belong to the AIII class, and our discussion
here uses only the chiral symmetry. From the classification
table of topological condensed-matter systems [40—43], there
are no strong BDI topological insulators in 2D, although
weak topological insulators with nontrivial bulk-boundary
correspondence exist [44]. The latter are characterized in the
bulk by a directional 1D winding number, which depends
on the orientation of the chosen boundary. A nontrivial bulk
topological invariant prompts the emergence of flat edge
bands pinned at zero energy.

The Fourier transformation of the Hamiltonian for the
configurations without TBs/APBs/OE:s to k space leads to

H =" "[h(ki.ky)o_ + h*(ki. k)o@ K)(k|, (3
ki,ka

where = (k1 /27)by + (ky/27)b, with b; and b,
representing reciprocal lattice vectors, and h(k;, k;) =
—(1+e+2dy)e ™ — (1 + e —2dy)e!®ith)—(1 — e 4 2d,)
— (1 —e—2d,)e’™. The band structure is given by
ex(kl, k) = (=D h(ky, k)| with —7 <k <7, —7 <
k, < m, and the band index [ = 1, 2. For the lattice with a
horizontal (vertical) rectangular distortion and y-directional
(x-directional) staggered distortions, that is, e > 0, d, =0,
dy #0(e <0, de #0,d, = 0), agap opens between the two

TABLE I. Winding numbers v(135°) and v(0°) for boundaries
in 135° and 0° directions, respectively. The parameters e, d., and d,
characterize the lattice distortions, as shown in Fig. 1.

e d, d, v(135°) v(0°)
+ 0 + 0 1
+ 0 - 1 1
- + 0 0 0
— — 0 1 0

bands and the system becomes an insulator for the half-filling.
The topology of the system is characterized by the winding
number v [31,45] defined as

2
v(13500r00)——/ dkj_—lnh(klykz) )

where k, = k; and k, for boundaries in 135° and 0° direc-
tions, respectively. The calculated winding number v(135°)
and v(0°) are shown in Table I for four possible equivalent
distorted insulating states, which reveals that the winding
number depends on the signs of the distortions, and the
zero modes would be present for TBs/APBs/OEs separating
domains of different winding numbers, as discussed in more
detail below.

We present the results obtained by numerical methods for
various TBs/APBs/OEs. The distortion patterns are obtained
by relaxing atomic-scale model lattice energy expressions
with an anharmonic coupling between uniform and staggered
distortions, as described in the Supplemental Material [46].
Because flat energy bands of zero modes arise from topologi-
cal origins, the details of TB/APB/OE configurations do not
have much effect on the results presented here. Calculations
are carried out for systems of 32x32 unit cells with periodic
boundary conditions and four (two) boundaries in 135° (0°)
directions. Only parts of the distorted lattices are shown in
Figs. 2 and 3 for clarity, with the labels in each domain
representing the signs of e, d,, and d,.

First, we analyze the electronic properties of TBs. It is well
known that only TBs along either the 45° or 135° direction
with respect to the direction of rectangular distortion are stable
due to compatibility conditions [33,47]. Figures 2(c) and 2(d)
show TB along the 135° direction between domains with
horizontal and vertical rectangular distortions. The difference
between the configurations in Figs. 2(c) and 2(d) is that the
staggered distortions, d, in the e < 0 domain and d, in the
e > 0 domain, have opposite signs in Fig. 2(c) but the same
sign in Fig. 2(d). Therefore, the winding numbers v(135°)
for two domains separated by TBs are different by one for
Fig. 2(c), but identical for Fig. 2(d). By solving the electronic
Hamiltonian numerically, we obtain band structure &,,(k>)
withm =1, ..., 64, shown in Figs. 2(a) and 2(b). Zero-mode
bands are present in the bulk band gap for Fig. 2(a), while
absent for Fig. 2(b). The integrated electron density of the
zero-mode states is shown on the lattice in Fig. 2(c) in colors,
with red and blue colors indicating A and B sites, respectively.
The results show that these states are localized at TB, on
the A sites for the lower TBs and the B sites for the upper
TBs. The system has one TB state per TB at each k, point,
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FIG. 2. (a), (b) Band structures for the lattice with TBs shown
in (c) and (d), respectively. TB zero-mode bands are present in (a),
but absent in (b). (¢), (d) Lattices with TBs in the 135° direction.
Only parts of 32x32 unit cells with periodic boundary conditions
are shown for clarity. The labels in each of the domains represent the
signs of e, d,, and d,, which show the difference between (c) and
(d) in the sign of d, for the middle domain. Red and blue colors in
(c) represent the integrated electron density for the zero-mode band
states on the A and B sites, respectively.

and satisfies the topological bulk-boundary correspondence
of Ny — Ngp = Av, where Av is the difference in winding
number across the boundary, and N4 and N are the number
of boundary modes on A and B sites per unit cell. As the
distance between TBs increases, the energies of the TB states
in Fig. 2(a) approach zero and the zero-mode bands become
completely flat throughout the 1D Brillouin zone. Such zero-
mode flat bands disappear, if the staggered distortion flips
the phase in one of the two twin domains, as shown in
Figs. 2(b) and 2(d). With a half-filling, TBs would be 1D
metallic paths [48] in Fig. 2(c), while remain insulating in
Fig. 2(d).

The results for APBs are shown in Fig. 3. Unlike the TB,
the APB could be formed in any direction. For the 135° (or
equivalently 45°) direction APB, Table I shows that the wind-
ing number v(135°) changes by one whenever the staggered
distortion d, or dy changes its phase. This implies zero-mode
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FIG. 3. (a)-(c) Band structures for the lattices with APBs shown
in (d)—(f), respectively. APB zero-mode bands are present in (a) and
(b), but are absent in (c). Highly dispersive bands inside the gap in (c)
are not of topological origin. (d)—(f) Lattices with APBs in the 135°
direction for (d) and the 0° direction for (e) and (f). See the caption
for Fig. 2. In (f), the colors represent the integrated electron density
for the states within ¢,, = £0.1. (g) Average group velocity c, versus
the number of bonds § in the horizontal direction between the 135°
direction APBs.

flat bands are always present at 135° or 45° APBs, consistent
with the numerical results in Figs. 3(a) and 3(d). In contrast,
the winding number v changes by 2 across the 0° (90°)
direction APBs for domains with horizontal (vertical) rect-
angular distortions with e > 0 (e < 0), but does not change
for domains with vertical (horizontal) rectangular distortions
with e < 0 (e > 0), consistent with the presence or absence
of zero-mode flat bands at the APBs in Figs. 3(b), 3(c), 3(e),
and 3(f). Highly dispersive bands inside the gap for the 0°
APB with vertical rectangular distortions in Fig. 3(c) are not
of topological origin, and the integrated electron density for
states with |e,,| < 0.1 in Fig. 3(f) shows equal presence on A
and B sites at each APB, unlike the APB states of topological
origin. It is also found that the presence of zero-mode flat
bands localized at the OEs along the 0° and 135° directions
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follows the topological predictions with the winding number
outside the OE always zero.

As mentioned at the beginning, the flat bands found for
the system could be useful to create stable or slowly moving
localized states. While the 2D Lieb lattice provides bands that
are flat in the 2D Brillouin zone, our 2D lattice provides bands
that are flat in the 1D subspace of the 2D k-space zone for
states localized within TBs/APBs/OEs. Such difference gives
a unique possibility to our lattice, that is, the tunability of the
band dispersion or the group velocity of the localized states by
the distance between TBs/APBs/OEs. As a demonstration,
we consider a pair of 135° APBs, similar to Fig. 3(d) but
with a varying number of bonds & along the horizontal di-
rection between APBs, for 64 x 64 unit cells, and find that the
dispersion of the zero-mode bands increases as § decreases.
The approximate average group velocity is calculated as ¢, =
[ehpg (ko = 0) — elpg (ko = —m)]/m, where el (k2) is the
largest among the four zero-mode APB state energies. The
result of ¢, versus § is shown in Fig. 3(g), which reveals a
rapid increase of ¢, as § decreases below around 15. This
tunability originates from the hybridization between the states
localized around different APBs, like the edge states for the
1D SSH model [29], and could be useful to design devices
with controlled speeds of the propagations for the localized
states.

To examine whether the propagation of such localized
zero-mode states could change their directions without current
loss, a pair of zigzag APBs schematically shown in Fig. 4(a)
for 64 x 64 atoms are considered, where three domains with a
vertical rectangular distortion have the phase of the staggered
distortion d, positive, negative, and positive from left to right.
The actual distortion pattern near the kinks in the area marked
in Fig. 4(a) is shown in Fig. 4(c). The electronic energy
spectrum for the whole distorted lattice is found numerically
and energy eigenvalue ¢,, versus the index m is displayed in
Fig. 4(b), which shows that the zero-mode APB states are well
separated from bulk states in energy in spite of kinks. The
integrated electron density for these zero-mode states shown
in Fig. 4(c) in colors (see the caption for Fig. 2) indicates that
these modes are confined at one sublattice for each zigzag
APB and the current would not be lost at the kinks. Such
patterned metamaterials, for example, optical crystals, could
be used to guide slowly propagating localized states along
designed paths.

Although we have used an electronic Hamiltonian as a
specific example, our model can be applied to other systems,
such as photonic [23,24] or mechanical metamaterials or
ultracold fermions [49]. Because chirality symmetry is essen-
tial, the metamaterials should have identical on-site energies,
or resonances, at all sites, including TBs/APBs/OEs, and
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FIG. 4. (a) Schematic sketch showing a pair of zigzag APBs
with e < 0 and d, = 0 for 64x64 atoms with periodic boundary
conditions. From left to right, the phase of d, changes from positive
to negative back to positive for the three domains. (b) Plot of energy
for eigenstates, ¢,, versus the index m for the states in the order
of increasing energy. (c) Actual distortion and integrated electron
density of zero-mode states for the area marked in (a).

the nearest-neighbor coupling should have the variations of
weakly coupled shifted SSH chains as studied here.

In summary, using a 2D model in the weak AIII/BDI
topology class with topology-structure coupling, we have
demonstrated the presence of flat zero-mode energy bands
in the entire 1D Brillouin zone for states localized within
TBs/APBs/OEs. It has been found that the flatness of these
bands and the slow group velocities for the localized zero-
mode states could be controlled by the distance between the
boundaries and the slow motion of the localized excitations
can be guided through a zigzag path. We propose our model
can be realized in various metamaterials, which would open
possibilities for unique device applications.
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