PILE FOUNDATION.

One or more of the followings:

- (a)Transfer load to stratum of adequate capacity
- (b)Resist lateral loads.
- (c) Transfer loads through a scour zone to bearing stratum
- (d)Anchor structures subjected to hydrostatic uplift or overturning

$$Q_u = Q_p + Q_s$$

¹ Check setlements of pile groups

Do not use piles if:

Driving may cause damage to adjacent structures, soil may heave excessively, or in boulder fields.

Pile Installation

Hammers

Drop hammer

 $^{^1}$ Very noisy, simple to operate and maintain, 5-10 blows / minute, slow driving, very large drop, not suited for end bearing piles, used on Franki piles

Single acting hammer

Double acting:

Differential acting²

Diesel³

Vibratory⁴

Jacking

Predrilling or Jetting

3

¹ Uses pressure for up stroke and down stroke. Design limits prevent it to deliver as much energy as single acting, but greater speed, used mostly for sheet piles

² Has two pistons with different diameters, allowing it to have heavy ram as for single acting and greater speed as double acting

³ Difficult to drive in soft ground, develops max energy in hard driving

⁴ Rotating eccentric loads cause vertical vibrations, most effective in sand

PILE TYPE

- Timber
- Concrete
- Steel

Timber piles

Butt dia 12" to 20", tip 5" to 10". Length 30-60'

Bark always removed.

Concrete piles

Pre-cast

• Reinforce and prestressed

Cast in place

- With or without casing
- More common than precast.

Steel Piles

- Steel H-Pile
- Unspliced 140', spliced > 230', load 40 to 120 tons.

¹more economical but more risk in their installation.

PILES CLASSIFICATION

- 1. Material (wood, steel, etc.).
- 2. Method of installation
- 3. Effect on surrounding soils during installation².

Pile load capacity prediction

- Full-scale load test
- Static formulae
- Dynamic method

¹ (driven: blow of a hammer, vibrations, pressure from a jack, etc.; jetted, augured, screwing, etc.).

² displacement, non-displacement

Pile shape effect and pile selection

Shape characteristics	Pile type	placement effect	
Displacement	Closed ended steel	Increase lateral ground stress	
	Precast concrete	Densifies granular soils, weakens clays	
Tapered	Timber, monotube, thin- walled shell	High capacity for short length in granular soils	
Non-displacement	Steel H	Minimal disturbance to soil	
	Open ended steel pipe	Not suitable for friction piles in granular soils, often show low driving resistance, field varification difficult resulting in excessive pile length	

¹ Seup time for large groups upto 6-months

Load Transfer

Settlement for full load transfer

- $Q_p \rightarrow 0.1D$ (driven), 0.25 D (bored)
- $Q_S \rightarrow 0.2$ " 0.3"

End or Point Resistance

$$q_{ult} = cN^*_c + q'_oN^*_q + \gamma DN^*_\gamma$$

D = pile diameter or width

q'_o = effective overburden stress at pile tip

 $N^*_{c,} N^*_{q,} N^*_{\gamma}$ are the b.c. factors which include shape and depth factors

Since pile dia is small $\gamma DN^*\gamma \approx 0$

$$Q_{p} = A_{p}(cN_{c}^{*} + q_{o}^{'}N_{q}^{*})$$

 $A_p = pile tip area$

Meyerhof's Method

Point resistance increases with depth reaching a maximum value at $L_{\rm b}\!/\!D$ critical.

 $(L_b/D)_{crit}$ varies with ϕ and c. Fig 9.12

 L_b = embedment length in bearing soil

For values of N_{c}^* , N_{q}^* see Fig 9.13

Piles in Sand

$$Q_{p} = A_{p} \cdot q_{o} \cdot N_{q}^{*} \le A_{p} \cdot q_{l}$$

where $q_1(tsf) = 0.5N_q^* \cdot tan\phi$

φ in terms of 'N' or D_r

$$\phi = \sqrt{20N} + 15^{o}$$

$$\phi = 28^{\circ} + 15D_{r}$$

Point resistance from SPT

$$q_p(tsf) = \frac{0.4 \cdot N \cdot L}{D} \le 4 \cdot N$$

N = avg value for 10D above and 4D below pile tip

¹For a given initial ϕ unit point resistance for bored piles = 1/3 to 1/2 of driven piles, and bulbous piles driven with great impact energy have upto about twice the unit resistance of driven piles of constant section

Example 1

A pile with L = 65', x-section = 18"×18" is embedded in sand with $\phi = 30^{\circ}$, $\gamma = 118.3$ pcf. Estimate point bearing resistance.

Solution (Meyerhof)

$$Q_{p} = A_{p} \cdot q_{o}' \cdot N_{q}^{*} \le A_{p} \cdot q_{l}$$

$$Q_p = 1.5 \times 1.5 \times 118.3 \times 65 \times 55 \div 2000 = 476 \text{ tons}$$

$$Q_p = A_p \cdot q_1 = 1.5 \times 1.5 \times 0.5 \times 55 \times tan 30 = 36 tons$$

Upper weak lower firm soil

$$q_p = q_{l(l)} + \frac{L_b}{10D} (q_{l(d)} - q_{l(l)}) \le q_{l(d)}$$

 $q_{l(l)}$ = limiting point resistance in loose sand

 $q_{l(d)}$ = limiting point resistance in dense sand

Piles in Saturated Clay

If embedded length \geq 5D, $N_c^* = 9$

$$Q_p = 9 \cdot c_u \cdot A_p$$

Example 2

Timber piles, 25' log with 10" point diameter, were driven through a silty sand with $\phi = 25^{\circ}$ into undrelying dense sandy gravel with $\phi = 40^{\circ}$. Penetration into the sandy gravel was 3'. Determine point bearing capacity of a pile.

Solution

$$q_1 \text{ (silty sand)} = 0.5N_q^* \tan \phi = 0.5 \times 25 \tan 25 = 5.82 \text{ tsf}$$

$$q_1$$
 (sandy gravel) = 0.5×350× tan 40 = 146.8 tsf

$$q_p = 5.82 + \frac{36}{10 \times 10} (146.8 - 5.82) = 56.6 \text{tsf} < 146.8$$

$$Q_p = \left(\frac{10}{12 \times 2}\right)^2 \times \pi \times 56.6 = 30.9 \text{ tons}$$

Shaft Resistance

It is due to skin friction and adhesion

$$Q_s = \Sigma f \cdot A_s$$

 A_S = area of shaft surface

f = unit shaft resistance

$$f = K\sigma_o \tan \delta + c_a$$

 δ = soil-pile friction angle

c_a = is adhesion K = earth pressure coefficient

¹ which is difficult to evaluate between at-rest and passive state

Shaft Resistance in Sand

Since $c_a = 0$

$$f = K \cdot \sigma_o \cdot \tan \delta$$

Like tip resistance a critical depth is reached after which 'f' does not increase. Use $(L'/D)_{critical} = 15$

Values of K

Pile type	K		
Bored or jetted	$K_o = 1 - \sin \phi$		
low disp. driven	K _o to 1.4 K _o		
high disp. driven	K_o to 1.8 K_o or 0.5 +0.008 D_r^{-1}		

 $^{^{1}}$ Dr = relative density (%)

Pile material	δ
steel	20°
concrete	0.75 φ
wood	0.67φ

$$Q_s = \Sigma p \cdot f \cdot \Delta L$$

p = perimeter

 ΔL = incremental pile length for constant p and f.

16

SPT - basis for shaft resistance in sand

Meyerhof

$$f_{avg}(tsf) = \frac{\overline{N}}{50}$$
 high disp. driven piles

$$f_{avg}(tsf) = \frac{\overline{N}}{100}$$
 small disp. driven (H-pile)

$$f_{avg}(tsf) = 1.5 \cdot \frac{\overline{N}}{50}$$
 pile tapered > 1%

 $\overline{N} = avg'N'$ within embedded pile length

Skin Resistance in Clay

λ Method²

$$f_{av} = \lambda \left(\sigma_v + 2c_u \right)$$

 $\overline{\sigma}_{v}$ = mean effective vertical stress on pile length

 λ - given in Fig. 8.17

$$Q_s = p \cdot f_{av} \cdot L$$

For layered soils use mean values of c_{u} and σ .

¹ some problems 1. increase in pore water pressure 2. Low initial capacity 3. enlarged hole near ground surface-water may get in and soften clay. 4.ground and pile heaving. 5. Drag down effect from soft upper soils

²Short pile were driven in stiff clay OCR>1 but the long piles penetrated lower soft clay as well

$$\overline{\sigma}_{v}' = \frac{A_1 + A_2 + A_3 + \dots}{L}$$

 $A_1,\,A_2,\,...$ are areas of the effective stress diagrams

Example 3

A 12 m prestressed concrete pile 450 mm square is installed in a clay with water table at 5 m depth. Upper clay layer is 5 m thick, with $\gamma = 17.4$ kN/m³ and $c_u = 50$ kPa. Lower clay has $\gamma = 18.1$ kN/m³, $c_u = 75$ kPa. Determine pile capacity using λ - method.

Solution: (λ - method)

$$\sigma_5' = 17.4 \times 5 = 87 \text{ kPa}, \quad \sigma_{12}' = 87 + (18.1-9.81) \times 7 = 145 \text{ kPa}$$

$$c_u = \frac{50 \times 5 + 75 \times 7}{12} = 64.58 \text{kPa}$$

$$\sigma'_{v} = \frac{0.5 \times 87 \times 5 + 7 \times \frac{87 + 145}{2}}{12} = 85.79 \text{kPa}$$

$$a\lambda = 0.24$$

$$f_{avg} = 0.24(85.79 + 2 \times 64.58) = 51.6 \text{ kPa}$$

$$Q_s = 4 \times 0.45 \times 51.6 \times 12 = 1114 \text{ kN}$$

¹ Fig 9.17

Example 4. Redo Example 3 using α - method

$$f = F \cdot \alpha \cdot c_{\parallel}$$

Upper clay,
$$\frac{c_u}{\sigma_o} = \frac{50}{87} = 0.57$$

$$\alpha = 0.5 + \frac{1 - 0.5}{0.8 - 0.35}(0.8 - 0.57) = 0.756$$

$$L/D = 12/0.45 = 26.7,$$
 $F = 1$

Lower clay

$$\frac{c_u}{\sigma_o} = \frac{75}{145} = 0.517$$

$$\alpha = 0.814$$
.

$$f_1 = 1 \times 0.756 \times 50 = 37.8 \text{ kPa}$$

$$f_2 = 1 \times 0.814 \times 75 = 61.05 \text{ kPa}$$

$$Q_s = 4 \times 0.45 \times 5 \times 37.8 + 4 \times 0.45 \times 7 \times 61.05 = 1109 \text{ kN}$$

Example 5. Redo the Example 3 assuming 200 mm pipe L/D = 12/0.2 = 60

$$F = 0.7 + \frac{(1 - 0.7)(120 - 60)}{120 - 50} = 0.95$$

$$f_1 = 0.95 \times 0.756 \times 50 = 35.9 \text{ kPa}$$

$$f_2 = 0.95 \times 0.814 \times 75 = 58.0 \text{ kPa}$$

$$Q_s = \pi(0.2) \times (5 \times 35.9 + 7 \times 58.0) = 368 \text{ kN}$$

Example 6

Draw number of blows per inch versus R_u for the following conditions using EN formula, modified Engineering News formula, and Janbu formula. Steel HP10×57, coefficient of restitution (n) = 0.8, efficiency (E) = 0.85, Vulcan 08 hammer. C = 0.1". Use two pile lengths 20' and 80'. Elastic modulus = 29×10^3 ksi

Solution

Hammer energy 26 k-ft, Ram weight 8 kips. Area of steel = 16.8 in².

$$C_d = 0.75 + 0.15 \frac{57 \times 20}{8000} = 0.771$$

Assume S = 0.1"

$$\lambda = \frac{.85 \times 20 \times 12 \times 26}{16.8 \times 29 \times 10^3 \times (0.1)^2} = 13.06$$

$$K_u = 0.771 \left(1 + \sqrt{1 + \frac{13.06}{0.771}} \right) = 40.382$$

$$R_u$$
 (20 ft for S=0.1") = 657 kips

$$R_u$$
 (80 ft for S=0.1") = 354 kips

¹ For plotting graphs assume several R_u and compute set

Bearing Graph

Ru - Janbu 20', Ru1 - Janbu 80', Rmn = Modified EN 20', Rmn1 = Modified EN 80'

From Modified Engineering New Formula, the following results will be obtained.

$$R_u$$
 (20 ft for S=0.1") = 1266 kips

$$R_u$$
 (80 ft for S=0.1") = 1153 kips

Practical applications

Design

• Using laboratory and field soil data determine Q_u based on static formulae

Test pile

- Drive test piles using same equipment as proposed for production piles.
- If possible use pile driving analyser (PDA) incorporating strain and acceleration data on test pile. Prepare bearing graph.
- Make records of pile driving and correlate with boring logs to ensure that piles have penetrated the bearing soils.
- Load test the pile/s.
- If possible load to failure to establish actual factor safety.
- For small jobs load tests are not justifiable.
- When piles rest on sound bedrock load tests may not be necessary.
- Based on load test adjust design capacity, increase penetration depth, alter driving criteria as necessary.

Construction stage

- Record driving resistance for full depth of penetration
- Driving record must correspond to bearing graph of test pile.

26

•	If not additional penetration into bearing material or greater driving resistance may be necessary.						
D 1/2	TIED A	27	DilaEvern1Calu da 04/14/02	Dila Faranci (Calandar			

Wave Equation

- Hammer, cushions, pile cap, and pile are modeled as discrete elements.
- Each element has a mass and there are springs between element of appropriate stiffness
- Soil-pile interface modeled as spring-dash pot. Springs model resistance to driving as a function of displacement and dash pots as function of velocity.

Computations

- Ram of mass M_1 with velocity v_1 travels a distance $v_1 \times \Delta t$ compresses spring K_1 with the same amount.
- Force in K₁ actuates M₂ from which displacements are computed.
- Process is continued for all masses for successive time intervals until pile tip stops moving.
- Software TTI and WEAP (Wave Equation Analysis of Pile)

28

Pile Driving Analyser

- Two strain transducers and two accelerometers mounted near pile head
- A pile driving analyser (PDA)

PDA monitors strain and acceleration and yields:

- Force in pile from strain, E and pile x-sectopm
- Particle velocity from integration of acceleration
- Pile set from integration of velocity

CAPWAP(Case Pile Wave Analysis Program):

Hammer and accessories - replaced by force-time and velocity-time time data from PDA, thus eliminating deficiencies of wave equation.