A pile with L = 65', x-section = 18"×18" is embedded in sand with ϕ = 30°, γ = 118.3 pcf. Estimate point bearing resistance.

Solution (Meyerhof)

Timber piles, 25' log with 10" point diameter, were driven through a silty sand with $\phi = 25^{\circ}$ into undrelying dense sandy gravel with $\phi = 40^{\circ}$. Penetration into the sandy gravel was 3'. Determine point bearing capacity of a pile.

Solution

A 12 m prestressed concrete pile 450 mm square is installed in a clay with water table at 5 m depth. Upper clay layer is 5 m thick, with $\gamma = 17.4$ kN/m³ and $c_u = 50$ kPa. Lower clay has $\gamma = 18.1$ kN/m³, $c_u = 75$ kPa. Determine pile capacity using λ - method.

α-method

$$f = F \cdot \alpha \cdot c_u$$

 α = adhesion factor

F = length factor

 $\frac{c_u}{\sigma_o'} = \frac{undrained shear strength}{effective overburden stress}$

α for rigid piles

$\frac{c_u}{\sigma_o}$	α
0 to 0.35	1.0
0.35 to 0.8	11.0 - 0.5
0.8 to 3.2	0.5

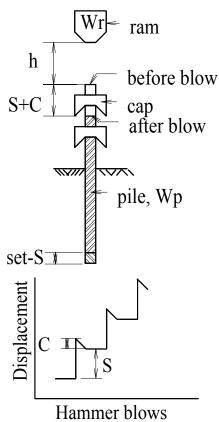
 $^{^{1}\}alpha$ decreases linearly

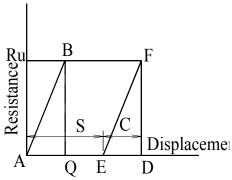
Example 4. Redo using α - method

Solution

Example 5. Redo the Example 3 assuming 200 mm pipe	
Solution	

Dynamic Formulae


Based on Newton's impact relationships which apply to two free massive bodies.


Ram is massive. Pile?

A blow of Hammer produces:

- 1. Permanent penetration of pile called 'set'
- 2. Elastic compression of:
- a) head assembly
- b) pile
- c) surrounding soil

Total work = work for driving pile + losses

Q - displacement called quake where resistance reaches Ru

Total work = area ABFD = ABFE + DEF

ABFE - is the set, DEF - is the elastic compression of cap block, pile, and soil.

$$W_{_{r}}h=R_{_{u}}\!\!\left(S+\frac{1}{2}C\right)$$

Ultimate resistance R_u is

Wellington, 18881.

$$R_u = \frac{W_r h}{S + \frac{1}{2}C}$$

¹ This formula was developed based on timber piles

Solution

Draw number of blows per inch versus R_u for the following conditions using EN formula, modified Engineering News formula, and Janbu formula. Steel HP10×57, coefficient of restitution (n) = 0.8, efficiency (E) = 0.85, Vulcan 08 hammer. C = 0.1". Use two pile lengths 20' and 80'. Elastic modulus = 29×10^3 ksi

¹ For plotting graphs assume several R_u and compute set

9