CE 443 Final

Name						
------	--	--	--	--	--	--

For each problem work with the units given.

- 1. An 8m thick layer of fine sand overlies a 6m thick layer of normally consolidated clay. Water table is at 1m above the ground surface. Unit weight of saturated sand is 20.1 kN/m^3 . Unit weight of saturated clay is 18.9 kN/m^3 , its LL = 58 and PL = 21. Estimate undrained shear strength (c_u) of the clay at a depth of 12m below the ground surface (20)
- 2. A mat foundation is shown in Figure 11.31. (p441). The design considerations are L = 80', B = 60', D_f = 8', Q = 20,000 tons, x_1 = 4' (location of WT), x_2 = 0', x_3 = 12'. γ_{sand} = 122.4 lb/ft³. For the clay γ = 106 lb/ft³, e_0 = 0.95, C_c = 0.25, C_s = 0.08, and p_c = 1.25 t/ft²'. Calculate the consolidation settlement in the middle of the mat. Assume that $\Delta p_{av} = \Delta p_m$.(30)
- 3. Timber piles are driven in sand with N_{avg} = 20 in the upper 22' and N_{avg} = 26 below it. Pile length = 25', butt diameter = 18", and tip diameter = 10". Determine ultimate point resistance and skin resistance of the pile. Use Meyerhof's method. (20) 4. Refer to Fig 12.30 page 490.

Dimensions: $x_1 = 1'-6"$ $x_2 = 1'-6"$ $x_3 = 4'$ $x_4 = 9'-4$ $x_5 = 3'$ $x_4 = 9'-4$ $x_5 = 3'$ $x_5 = 3'$ $x_6 = 15^\circ$

Material properties: $\gamma_{\text{water}} = 62.4 \text{ lb/ft}^3$ $\gamma_{\text{concrete}} = 150 \text{ lb/ft}^3$ soil 1: $\gamma_1 = 112 \text{ lb/ft}^3$ $\phi_1 = 32^\circ$ soil 2: $\gamma_2 = 105 \text{ lb/ft}^3$ f $\phi_2 = 22^\circ$ $c_2 = 200 \text{ psf}$ angle of base friction = 18° base adhesion = 0.75 c_2

Assume that soil 1 is used as backfill and is placed in front of the toe as well. Rankine condition prevails and passive resistance can be counted upon.

- a. Show distribution of active pressure and passive resistance for the depth.(10)
- b. Determine factor of safety with respect to overturning (10)
- c. Determine factor of safety with respect to sliding (8)