
# Example 1

Check the retaining wall safety for overturning, sliding, and bearing capacity. Stem: top = 0.30 m, bottom = 0.45 m, length = 4.5 m. Base: thickness = 0.5 m, length = 3 m, front projection = 0.75 m, footing's bottom 1.2 m below ground,  $\gamma_{conc}$  = 23.58 kN/m³. For underlying soil and soil in front of the wall use  $\phi$  = 22°, c = 50 kPa, and  $\gamma$  = 19.3 kN/m³. Backfill  $\phi$  = 30°, c = 0,  $\delta$  = 0.67 $\phi$ , slope = 15°, and  $\gamma$  = 18.5 kN/m³.

## **Solution**



Use 1m length of wall. Consider vertical plane HH'. HH' = 5+1.8 tan 15 = 5.482 m



## Active forces

$${}^{\downarrow}K_a = 0.373$$

$$P_a = 18.5 \times 5.482^2 \frac{0.373}{2} = 103.7 \text{ kN}$$

$$P_h = 103.7 \times \cos 15 = 100.2 \text{ kN}$$

$$P_v = 103.7 \times \sin 15 = 26.8 \text{ kN}$$

Passive resistance

$$K_p = 2.2, \sqrt{K_p} = 1.48$$

$$P_p = 19.3 \times 1.2^2 \times 2.2 \div 2 + 2 \times 50 \times 1.2 \times 1.48 = 208.5 \text{kN}$$
  
Overturning

<sup>&</sup>lt;sup>1</sup> See tables in the book

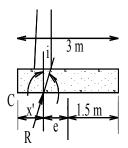
Resisting moments

| no          | force kN                                          | arm m          | M <sub>R</sub> about C |
|-------------|---------------------------------------------------|----------------|------------------------|
| 1           | 0.5×3×23.58=35.37                                 | 1.5            | 53.06                  |
| 2           | 0.15×4.5×23.58×0.5=7.96                           | 0.75+0.15×2/3  | 6.76                   |
| 3           | $0.3 \times 4.5 \times 23.58 = 31.83$             | 0.75+0.15+0.15 | 33.42                  |
| 4           | $1.8 \times 4.5 \times 18.5 \times 0.5 = 74.93$   | 1.2+0.6        | 134.9                  |
| 5           | $1.8 \times 4.982 \times 18.5 \times 0.5 = 82.95$ | 1.2+1.2        | 199                    |
| 6           | $0.7 \times 0.75 \times 18.5 = 9.71$              | 0.75/2         | 3.64                   |
| $P_{\rm v}$ | 26.83                                             | 3              | 80.49                  |
| $\Sigma V$  | 269.6                                             | $\Sigma M_R$   | 511.3                  |

#### Overturning moment

$$M_0 = 100.2 \times 5.482 \div 3 = 183 \text{ kN-m}$$

$$FS = 511.3/183 = 2.8$$


#### Sliding resistance

$$FS = \frac{\text{horizontal resisting forces}}{\text{horizontal driving forces}} = \frac{\Sigma F_R}{\Sigma F_d} \ge 1.5$$

$$\Sigma F_R = 269.6 \tan (22 \times 2/3) + 50 \times 3 + 208.5 = 429.0$$

$$FS = \frac{429.0}{100.2} = 4.28 \ge 1.5$$
 This includes passive resistance

### Base reaction



$$i = tan^{-1} \frac{100.2}{269.6} = 20.38^{\circ}$$

$$R = \sqrt{269.6^2 + 100.2^2} = 287.6 \text{ kN}$$

Take moment about 2 toe

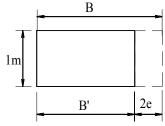
$$269.6 \times x' = {}^{3}\Sigma M_{R} - \Sigma M_{o} = 511.3 - 183 = 328.3 \text{ kN-m}$$

$$x' = 1.22 \text{ m}$$

# Bearing capacity

$$e = 3/2 - 1.22 = 0.28 \text{ m}$$

<sup>&</sup>lt;sup>2</sup> Note horizontal component of R has no moment about toe.


<sup>&</sup>lt;sup>3</sup> Net moment about toe

$$q = \frac{\sum V}{A} \left( 1 \pm \frac{6e}{B} \right)$$

$$q_{max} = \frac{269.59}{1 \times 3} \left( 1 + \frac{6 \times 0.28}{3} \right) = 140.2 \text{kPa}$$

 $q_{min} = 35.5 \text{ kPa}$ 

$$B' = 3 - 2 \times 0.28 = 2.44 \text{ m}$$



 $q_{ult} = cN_cF_{cs} \ F_{cd} \ F_{ci} + qN_qF_{qs}F_{qd}F_{qi} + 0.5\gamma BN_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}$ For continuous footings shape factors = 1

$$F_{cd} = 1 + 0.4 \frac{1.2}{3} = 1.16$$

$$F_{qd} = 1 + 2 \tan 22(1 - \sin 22)^2 \frac{1.2}{3} = 1.13$$

$$F_{\gamma d} = 1$$

$$F_{qi} = F_{ci} = \left(1 - \frac{20.37}{90}\right)^2 = 0.6$$

$$F_{\gamma i} = \left(1 - \frac{20.37}{22}\right)^2 = 0.01$$

$$N_c = 16.88$$
,  $N_q = 7.82$ ,  $N_{\gamma} = 7.13$ 

 $\begin{array}{ll} N_c = 16.88, & N_q = 7.82, & N_\gamma = 7.13 \\ q_{ult} = 50 \times 16.88 \times 1.16 \times 0.6 + 1.2 \times 18.5 \times 7.82 \times 1.13 \times 0.6 + 0.5 \times 19.3 \times 2.44 \times 7.13 \times 0.01 = \ 706.7 \end{array}$ 

3

 $q_0$  (on reduced area) =  $269.59/1 \times 2.44 = 110.5$  kPa

FS = 706.7/110.5 = 6.4

FS against  $q_{max} = 706.7/140.2 = 5$ 

 $<sup>^{4}</sup>$  e≤B/6, else there will be tension on the base, which is not recommended

## Semi-empirical Method

For wall heights 20' or less.

- 1. Determine H' as shown in 5Figures.
- 2. Select the appropriate backfill soil type. If not known use type 5.
- 3. Pressure on wall is assumed to vary linearly with depth

4. 
$$P_h = 0.5 K_h H'^2$$
  $P_v = 0.5 K_v H'^2$ 

- 5. For soil type 5 reduce H' by 4' to compute horizontal and vertical pressures. Resultant is assumed to act still at H'/3 above the base.
- 6. If wall is designed before backfill material is selected use the most unsuitable material or give alternate design.

# Walls on soft compressible layers

Wall settlement will reverse the direction of friction, and Pa will increase. For soils 1, 2, 3 and 5 multiply, Pa, by 1.5.

# Example 2

Use empirical method to determine active and passive forces for Example 1. Assume backfill Type 1

#### Solution

$$\begin{split} K_h &= 5.5 \text{kPa} & K_v = 1.5 \text{kPa} \\ P_h &= 0.5 \times 5.2 \times 5.482^2 = 78.14 \text{kPa} \\ P_v &= 0.5 \times 1.5 \times 5.482^2 = 25.60 \text{kPa} \\ \end{split} \tag{101.15 \text{kPa}}$$

-

<sup>&</sup>lt;sup>5</sup> 7.4