DATA FLOW DIAGRAMS

An Example

Remember during Composition

- a process should not have identical inputs and outputs
- all data flows must be labelled
- sources / sinks are not processes (=active)
- data stores should not be connected directly to sources / sinks
- there is no timing in a DFD

Suggestions for a Good Style

- organise diagram from left to right or top to bottom
- provide input and output “filters” for each major data flow
- keep sources / sinks on the left or right boundary of your diagram

Process Decomposition

- processes can be decomposed / refined
- one process ==> complete DFD
- interface flows must remain consistent
- lower level processes, data flows and data stores can be added on
- sources sinks remain on level-1
- a level-0 can be used as “abstract”

Process Decomposition

Interface Consistency

End of Section 4b

coming up:
data dictionaries
The DATA DICTIONARY
(for DFDs)

Concepts and Examples

Data Dictionary

- part of the specifications for a complete
 - Dataflow Analysis (DFD)
 - ER model
 - OOAD model
 - SADT
 - etc.

Data Dictionary for a DFD

- specifies data elements in a DFD:
 - data flows
 - simple data stores
- must be consistent with DFD
 - specification compatible with diagram
- must be complete with regard to the DFD
- consists of data item specifications

Data Item Specification

- name (and aliases)
- informal description
- purpose
- range of values
- related data items
- connections to processes (flow information)
- formal data structure specification

Patient Data Record

- name: patient data record (PDR)
- description:
 A PDR is produced by the Patient Monitoring System and includes information on the current status of a specific patient in the intensive care unit, e.g. blood pressure, temperature, etc.
 A PDR is produced every five minutes.

Patient Data Record

- purpose:
 Used to feed the Patient DB with up-to-date information on each patient.
PDRs are accumulated, i.e. the average value of all received readings during a full hour is stored.
- range of values:
 see specifications of PDR sub-elements
Patient Data Record

- related data items:
 - derived items:
 - PDR
 - Patient Input
 - is-part-of:
 N/A
 (PDR has no super-ordinate element)

- is-decomposed-into (continued):
 - status (critical or non-critical)
 - delta values for
 heart-rate, temperature, blood-pressure
 as calculated during the last hour
 comparing to the full hour value
 (minimum 1, maximum 12)

Patient Data Record

- related data items:
 - is-decomposed-into (sub-ordinate elem.):
 - patient-id
 - patient-name (first and last)
 - heart-rate
 - temperature
 - blood-pressure (optional)

- connections to processes:
 - comes from:
 Patient Monitoring System
 (external source)
 - goes to:
 check & accum. PDR
 (system internal process)

Formal Data Structure Definition?

- BNF - Backus-Naur-Form:
 - formal language
 - context free grammar
 - based on substitution rules
 - widely used to specify syntax of
 programming languages

BNF

- rules used to specify
 substitution/refinement/structuring:

 data-item ==> data-structure
 person ==> name + address
 name ==> first_name + last_name
BNF

- meta-symbols used to describe structure:

 + sequence

 [...][...][...] exclusive alternatives

 { ... } iteration (>=1 repetitions)

 (...) option

Patient Data Record - BNF

- formal structure specification:

 PDR ==> p_id + p_name + c_val + status + {d_val}
 p_name ==> first_name + last_name
 c_val ==> heart_rate + temp + (blood_pressure)
 status ==> ["critical" | "non-critical"]
 d_val ==> d_heart + d_temp + (d_blood)

End of Section 4c

coming up:
process specifications