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Problem 50
A function f : E → R is Lipschitz if ∃ c ≥ 0 for which |f(x)− f(y)| ≤ c|x− y|,∀ x, y ∈ E,

but whenever |x − y| < δ we have that |f(x) − f(y)| ≤ c|x − y| < cδ = ϵ,∀x, y ∈ E.
Therefore, f is uniformly continuous on E. In order to show that there are uniformly continuous
functions that are not Lipschitz we just have to find or create such a function. Consider
f(x) =

√
x, 0 ≤ x ≤ 1, which is uniformly continious, since every continuous function on a

closed and bounded interval is uniformly continuous, but we can also show that is actually
uniformly continuous, as ∀x, y ∈ [0, 1],

|f(x)− f(y)| = |
√
x−√y| =

√
|
√
x−√y||

√
x−√y|

≤
√
|
√
x−√y||

√
x+
√
y| =

√
|x− y|

Therefore, whenever |x− y| < δ we have that |f(x)− f(y)| ≤
√
|x− y| <

√
δ = ϵ. Since,

δ does not depend on x, y, f is uniformly continuous. Suppose, that f is Lipschitz then
∃ c ≥ 0 : ∀x, y ∈ E

|f(x)− f(y)| < c|x− y| ⇐⇒ c ≥ |f(x)− f(y)|
|x− y|

=
|
√
x−√y|
|x− y|

=
|
√
x−√y||

√
x+
√
y|

|x− y||
√
x+
√
y|

=
1

|
√
x+
√
y|

But the quantity 1
|
√
x+

√
y| is unbounded on [0,1] and thus we can make it as large as we

want so that there is no c that can exceed it. Hence, f is not Lipschitz.

Problem 53
→ From Heine-Borel theorem we know that if a set E is closed and bounded every open

cover of E has a finite subcover.
← Let H be any collection of open sets such that E ⊂ ∪H∈HH. We assume that ∃ n ∈

N : E ⊂ ∪ni=1Hi, Hi ∈ H, i = 1, 2, ..., n.. Define, H = {x ∈ E : x − ϵ < x < x + ϵ} which is
an open cover for E. By assumption, there is a finite subcover, Hi = {x ∈ E : xi − ϵ < x <
xi+ ϵ} : E ⊂ ∪ni=1{x ∈ E : xi− ϵ < x < xi+ ϵ}. Then, E ⊂ (minxi

i=1,..,n
− ϵ,maxxi

i=1,..,n
+ ϵ). Therefore,

∀x ∈ E minxi
i=1,..,n

− ϵ < x < maxxi
i=1,..,n

+ ϵ. Hence, E is bounded.

Suppose that E is not closed. Therefore, it doesn’t contain all its limit points. We
assume, without loss of generality that it doesn’t contain one limit point say x0. Let, H =
(−∞, x0 − 1

n
) ∪ (x0 +

1
n
,∞) be an open cover for E. Then, there is a finite subcover of H

such that E ⊂ ∪mn=1(−∞, x0 − 1
n
) ∪ (x0 +

1
n
,∞) =⇒ E ⊂ (−∞, x0 − 1

m
) ∪ (x0 +

1
m
,∞). By

the density of the reals in between (x0 − 1
m
, x0) ∃ α ∈ E which is not covered by the finite

subcover. Therefore, there is no finite subcover of E, a contradiction, because we assumed
that E is closed.

Hence, E is closed and bounded.
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Problem 1
The idea is to decompose B into a countable union of disjoint sets and at least one of these

set has to be A(so we can have m(A)), in order to use the countably additivity over countable
disjoint unions property. We can decompose B as B = A ∩ (B − A). The two sets A and
B − A are obviously disjoint and the union is countable therefore,

m(B) = m

(
A ∩ {B − A}

)
disj. count. union

= m(A) +m(B − A)
m(B−A)≥0

≥ m(A)

Problem 4
The counting measure is translation invarient because by shifting the elements on a set, by

a constant, doesn’t change the number of elements. Let, {En}∞n=1 be a countable and disjoint
collection of sets. Furthermore, we know that the union of a countable collection of countable
sets is countable and so ∪∞i=1En) is countable.

Case 1: If all of En are empty and so their union and trivially c(∪∞i=1En) =
∑∞

n=1 c(En) =
0.

Case 2: If at least one of the En has infinitely many memebers (c(En) = ∞) and so the

union. Then, c(∪∞i=1En) =∞ and
∑∞

n=1 c(En)
c(.)≥0
= ∞. Therefore, c(∪∞i=1En) =

∑∞
n=1 c(En).

Case 3: If all of the En are finite and non-empty then c(∪∞i=1En) = ∞ as ∪∞
i=1En is a

countably infinte set. Furthermore,
∑∞

i=1En = ∞ as a countable infinite sum. Therefore,
c(∪∞i=1En) =

∑∞
n=1 c(En).

Case 4: If {En}∞n=1 are finite and say, without loss of generality, the firstm out of them are
non-empty, and the rest empty, and let ni = number of elements of Ei. Then, the number
of elements of ∪∞i=1En = ∪mn=1En ∪∞n=m+1En are n1 + ...+ nm =⇒ c(∪∞

n=1En) = n1 + ...+ nm.

Furthermore,
∑∞

n=1 c(En) =
∑m

i=1 c(En) +
∑∞

n=m+1 c(En)
c(∅)=0
=

∑m
n=1 c(En) +

∑∞
n=m+1 0 =

n1 + ...+ nm. Therefore, c(∪∞i=1En) =
∑∞

n=1 c(En).
Hence, the counting measure is countably additive and translation invariant.

Problem 6
We know that the set of rational numbers Q is countable and Q ∩ [0, 1] ⊂ Q. Therefore,

Q∩ [0, 1] is countable. Furthermore, for any countable sets we know that its outer measure is
0. So, m∗(Q∩ [0, 1]) = 0. Also, we can decompose [0, 1] as [0, 1] = {Qc ∩ [0, 1]} ∪ {Q∩ [0, 1]}.
By the countable sub-additivity of the outer measure me have that

m∗([0, 1]) = m∗({Qc ∩ [0, 1]} ∪ {Q ∩ [0, 1]}) ≤ m∗({Qc ∩ [0, 1]}) +m∗({Q ∩ [0, 1]}) (1)

But the outer measure of an interval is its length and the outer measure of a countable set
is zero. Therefore, (1) takes the form

m∗({Qc ∩ [0, 1]}) ≥ 1 (2)
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Furthermore, Qc ∩ [0, 1] ⊂ [0, 1] and by the monotonicity of the outer measure

Qc ∩ [0, 1] ⊂ [0, 1] =⇒ m∗(Qc ∩ [0, 1]) ≤ m∗([0, 1]) = 1 (3)

Hence, combining (2) and (3) m∗(Qc ∩ [0, 1]) = 1

Problem 11
We know that σ-algebra is closed under compliments and countable unions. Let A be the

σ-algebra

(a,∞) ∈ A compliment
=⇒ (−∞, a] ∈ A count.union

=⇒
∞⋃
n=1

(
−∞, a− 1

n

]
= (−∞, a) ∈ A compliment

=⇒ [a,∞) ∈ A

(−∞, a), (b,∞) ∈ A count.union
=⇒ (−∞, a) ∪ (b,∞) ∈ A compliment

=⇒ [a, b] ∈ A

(−∞, a], (b,∞) ∈ A count.union
=⇒ (−∞, a] ∪ (b,∞) ∈ A compliment

=⇒ (a, b] ∈ A

(−∞, a), [b,∞) ∈ A count.union
=⇒ (−∞, a) ∪ [b,∞) ∈ A compliment

=⇒ [a, b) ∈ A

(−∞, a], [a,∞) ∈ A count.inters
=⇒ (−∞, a] ∩ [a,∞) = {a} ∈ A

Hence, if a σ algebra A containts intevrals of the form (a,∞) then it contains all type of
intervals.
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Problem 18
Let {Ik}∞k=1 be a countable collection of open intervals that covers E. Then, ∀ ϵ > 0

∞∑
k=1

l(Ik) < m∗(E) + ϵ

Define O =
⋃∞

k=1 Ik. Then, O is open set containing E. By the definition of the outer
measure of O,

m∗(O) ≤
∞∑
k=1

l(Ik) < m∗(E) + ϵ,∀ ϵ > 0 =⇒ m∗(O) ≤ m∗(E) (4)

Let {On}∞n=1 be a countable collection of such sets. Then we define G = ∩∞n=1On, which
is a Gδ set and so is measurable. Observe, that G is also an open covering for E. By the
monotonicity of the outer measure,

E ⊂ G =⇒ m∗(E) ≤ m∗(G) (5)

On the other hand G ⊂ O, because if x ∈ G then x is in every set ∪∞k=1Ik and so in O. By
monotonicity

m∗(G) ≤ m∗(O)
(1)

≤ m∗(E) (6)

Therefore, by (2) and (3) m∗(E) = m∗(G), where G is a Gδ set that contains E. From
the Inner approximation by closed and Fσ sets, E is measurable if ∃ F ∈ Fσ : F ⊂ E :
m∗(E−F ) = 0. Furhermore, F has a finite outer measure since by monotonicity F ⊂ E =⇒
m∗(F ) ≤ m∗(E) <∞. Therefore, by excision property

0 = m∗(F − E) = m∗(F )−m∗(E) =⇒ m∗(E) = m∗(F )
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Problem 24
We can decompose E1 and E2 as the union of disjoint set and because both of them are

measurable we can use the countable additivity proberty of the measure

E1 = {E1 − E2} ∪ {E1 ∩ E2} =⇒ m(E1) = m(E1 − E2) +m(E1 ∩ E2)

=⇒ m(E1 − E2) = m(E1)−m(E1 ∩ E2) (7)

E2 = {E2 − E1} ∪ {E1 ∩ E2} =⇒ m(E2) = m(E2 − E1) +m(E1 ∩ E2)

=⇒ m(E2 − E1) = m(E2)−m(E1 ∩ E2) (8)

Furthermore, because E1, E2 are measurable and so is their union and can decompose it
as the union of disjoint sets where we can apply also the countable additivity property of the
measure

E1 ∪ E2 = {E1 − E2} ∪ {E1 ∩ E2} ∪ {E2 − E1}
m(E1 ∪ E2) = m(E1 − E2) +m(E1 ∩ E2) +m(E2 − E1)

(1),(2)
=⇒ m(E1 ∪ E2) = m(E1)−m(E1 ∩ E2) +m(E2)

Note: Each of the decomposed sets belong to the σ-algebra as they can be formed by unions,
intersections and compliments of the measurable sets E1, E2 and so they are measurable.

Problem 26
We can write the set

{
A ∩

⋃∞
k=1Ek

}
as

⋃∞
k=1{A ∩ Ek}. Therefore, by the sub-additivity

property of the outer measure we have

m∗
(
A ∩

∞⋃
k=1

Ek

)
= m∗

( ∞⋃
k=1

{A ∩ Ek}
)
≤

∞∑
k=1

m∗(A ∩ Ek) (9)

On the other hand the finite union
⋃n

k=1{A ∩ Ek} is a subset of the countable union⋃∞
k=1{A ∩ Ek} and by the monotonicity property of the outer measure

n⋃
k=1

{A ∩ Ek} ⊂
∞⋃
k=1

{A ∩ Ek}

m∗
( ∞⋃

k=1

{A ∩ Ek}
)
≥ m∗

( n⋃
k=1

{A ∩ Ek}
)
, for each n

=
n∑

k=1

m∗(A ∩ Ek), for each n

(
{Ek}∞k=1 countable disjoint

)
The left hand side of this inequality is independent of n. Therefore,
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m∗
( ∞⋃

k=1

{A ∩ Ek}
)
≥

n∑
k=1

m∗(A ∩ Ek) (10)

Combining (6) and (7) we have

m∗
( ∞⋃

k=1

{A ∩ Ek}
)

=
n∑

k=1

m∗(A ∩ Ek)

Problem 28
Without loss of generality, let {Ak}∞k=1 be a collection of disjoint measurable sets, if they

were not disjoint we can always construct a disjoint collection. In order to use the continuity
of the measure we need somehow to contstuct either an ascending or descending set. Let,
Ck =

⋃k
i=1Ai, which is obviously ascending. Furthermore, the set

⋃∞
k=1Ck is equal to

⋃∞
k=1Ak.

Therefore,

m

( ∞⋃
k=1

Ak

)
= m

( ∞⋃
k=1

Ck

)
= lim

k→∞
m(Ck) (continuity of measure)

= lim
k→∞

m
( k⋃
i=1

Ai

)
= lim

k→∞

k∑
i=1

m(Ai) (finite additivity)

=
∞∑
i=1

m(Ai)
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Problem 27
Consider the sequence of measurable functions {fn} such that fn(x) = χ(n,∞)(x),∀x ∈ R.

Observe that {fn}
p.w.→ f where f(x) = 0, ∀x ∈ E = R. Then by Egoroff’s theorem ∀ϵ > 0

there is a closed set F contained in R for which

{fn}
u→ f on F and m(R− F ) < ϵ

From the uniform convergence of fn we have that ∀ϵ > 0, ∃N ∈ N : |fn − f | < ϵ, ∀n > N .
Choose m : m > N sufficiently large and because thats true for every ϵ > 0, choose ϵ : 0 <
ϵ < 1. So, χ(m,∞) < ϵ on F

χ(m,∞) < ϵ ⇐⇒ x ∈ (−∞,m)

Therefore, F must be a closed set subset of {x ∈ R : x ∈ (−∞,m)}.

F ⊂ {x ∈ R : x ∈ (−∞,m)} =⇒ {x ∈ R : x ∈ (m,∞)} ⊂ R− F

By the monotonicity of the measure and the result of Egoroff’s theorem we have

m

(
{x ∈ R : x ∈ (m,∞)}

)
≤ m(R− F ) < ϵ =⇒ ∞ < ϵ

a contradiction, because we choose E to be an unbounded set, with infinite measure.

Problem 9
For each c ∈ R consider the set

{x ∈ E : f(x) < c} ⊂ E =⇒ m

(
{x ∈ E : f(x) < c}

)
≤ m(E) = 0

=⇒ m

(
{x ∈ E : f(x) < c}

)
= 0

Every set of measure 0 is measurable. Therefore, {x ∈ E : f(x) < c} measurable =⇒ f
measurable. Consider, a finite collection of disjoint sets {Ei}ni=1 such that

⋃n
i=1Ei = E. Then,

0 = m(E) = m

( n⋃
i=1

Ei

)
=

n∑
i=1

m(Ei) =⇒ m(Ei) = 0 ∀i = 1, 2, ..., n

Since f is measurable and bounded on E the simple approximation lemma applies. So,
there are simple functions ϕ, ψ on E such that ϕ ≤ f ≤ ψ on E. Let αi, βi be the distinct
values that ϕ, ψ take in each Ei, respectively. Then,

8



∫
E

ϕ =
n∑

i=1

αim(Ei) = 0 and

∫
E

ψ =
n∑

i=1

βim(Ei) = 0

=⇒ sup

{∫
E

ϕ : ϕ simple and ϕ ≤ f

}
= 0 and inf

{∫
E

ψ : ψ simple and f ≤ ψ

}
= 0

So, the upper and lower Lebesgue integrals are equal and by definition f is Lebesgue
integrable and

∫
E

f = sup

{∫
E

ϕ : ϕ simple and ϕ ≤ f

}
= inf

{∫
E

ψ : ψ simple and f ≤ ψ

}
= 0

Problem 10
Since f is measurable and A is a measurable subset of E, fχA is measurable on A. Also,

E has a finite measure and so A has. Then, fχA is a bouded (since f is bounded), measurable
function on a set of finite measure and so is integrable on A. In addition, E has finite measure.
Consider, a finite collection of disjoint sets {Ei}ni=1 such that

⋃n
i=1Ei = E. From simple

approximation lemma we know that there exist simple functions ϕ, ψ such that ϕ ≤ f ≤ ψ on
E and let αi, βi be the distinct values that ϕ, ψ take in each Ei, respectively. Then,

ϕχA ≤ fχA ≤ ψχA on E =⇒
∫
E

ϕχA ≤
∫
E

fχA ≤
∫
E

ψχA (11)

We re-write ϕ and ψ in their canonical representation ϕ =
∑n

i=1 αiχEi
, ψ =

∑n
i=1 βiχEi

.
Then,

∫
E

ϕχA =

∫
E

n∑
i=1

αiχEi
χA =

∫
E

n∑
i=1

αiχEi∩A =
n∑

i=1

αim(Ei ∩ A) =
∫
A

ϕ

∫
A

f = sup

{∫
A

ϕ : ϕ simple and ϕ ≤ f

}
≤

∫
E

fχA from (1) (12)

∫
E

ψχA =

∫
E

n∑
i=1

βiχEi
χA =

∫
E

n∑
i=1

βiχEi∩A =
n∑

i=1

βim(Ei ∩ A) =
∫
A

ψ
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∫
A

f = inf

{∫
A

ψ : ψ simple and f ≤ ψ

}
≥

∫
E

fχA from (1) (13)

From (2) and (3)

∫
E

fχA ≤
∫
A

f ≤
∫
E

fχA =⇒
∫
A

f =

∫
E

fχA

Problem 12
Let E0 = {x ∈ E : f(x) ̸= g(x)} and E − E0 = {x ∈ E : f(x) = g(x)}, then m(E0) = 0.

Since, f = g a.e onE =⇒ g measurable. So, g is a bounded, measurable, on a set of finite
measure =⇒ g integrable. For the set of measure zero we have

∫
E0
f =

∫
E0
g = 0.

∫
E

f =

∫
E−E0

f +

∫
E0

f
f=g on E−E0

=

∫
E−E0

g + 0 =

∫
E−E0

g +

∫
E0

g =

∫
E

g

Problem 17
Let E : m(E) = 0 and define {fn} = n be an increasing sequence of measurable functions

on E, {fn}
p.w.→ f =∞ and so the Monotone Convergence Theorem applies

∫
E

f = lim
n→∞

∫
E

fn = lim
n→∞

∫
E

n = lim
n→∞

nm(E) = lim
n→∞

0 = 0 (14)
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Problem 23
f(x) = an, x ∈ [n, n + 1) on E = [1,∞). Then, we can write f(x) =

∑∞
n=1 anχ[n,n+1)(x)

where
{
anχ[n,n+1)

}
is a sequence of non-negative functions as an is a sequence of non-negative

real numbers. Then, from the corollary of the monotone convergence theorem we have

∫
E

f =
∞∑
n=1

∫
E

anχ[n,n+1)
int of simple function

=
∞∑
n=1

anm([n, n+ 1)) =
∞∑
n=1

an

Problem 27
From previous homework problem if fn is a sequence of measurable functions then inf{fk :

k ≥ n} is also measurable. Define gn := inf{fk : k ≥ n} and g := limn→∞ inf{fk : k ≥ n}.
Then, gn is an increasing sequence of non-negative measurable functions and

gn
p.w→ g

Therefore, the Monotone Convergence Theorem applies

∫
E

g = lim
n→∞

∫
E

gn ≤ lim
n→∞

inf

{∫
E

gk : k ≥ n

}
(15)

In addition,

gn = inf{fk : k ≥ n} ≤ fn =⇒
∫
E

gn ≤
∫
E

fn =⇒ inf

{∫
E

gn

}
≤ inf

{∫
E

fn

}
(16)

Hence, combing (1) and (2) we have

∫
E

lim
n→∞

inf{fk : k ≥ n} =
∫
E

g ≤ lim
n→∞

inf

{∫
E

gk : k ≥ n

}
≤ lim

n→∞
inf

{∫
E

fk : k ≥ n

}

Problem 28
Since, f is integrable so fχC is. Then, by definition

∫
E

fχC :=

∫
E

(fχC)
+ −

∫
E

(fχC)
− =

∫
E

f+χC −
∫
E

f−χC (17)

We only need to show that
∫
E
f+χC =

∫
C
f+ and

∫
E
f−χC =

∫
C
f−.
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∫
E

f+χC = sup

{∫
E

h : h bounded, measurable, with finite support : h ≤ f+χC on E

}
∗
= sup

{∫
C

h : h bounded, measurable, with finite support : h ≤ f+ on C

}
=

∫
C

f+ (18)

Similarly,

∫
E

f−χC = sup

{∫
E

h : h bounded, measurable, with finite support : h ≤ f−χC on E

}
∗
= sup

{∫
C

h : h bounded, measurable, with finite support : h ≤ f− on C

}
=

∫
C

f− (19)

Therefore, combining (3), (4) and (5) we have

∫
E

fχC :=

∫
E

f+χC −
∫
E

f−χC =

∫
C

f+ −
∫
C

f− :=

∫
C

f

* If h ≤ f+χC , h ≤ f−χC , on E then h ≤ f+, h ≤ f− on C.
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Problem 29
Consider the function f(x) = χ[n,n+1)(x)− χ[n+1,n+2)(x)

∞∑
n=1

∣∣∣∣ ∫ n+1

n

f(x)

∣∣∣∣ = ∞∑
n=1

∣∣∣∣ ∫ n+1

n

χ[n,n+1](x)− χ[n+1,n+2)(x)

∣∣∣∣
=

∞∑
n=1

∣∣∣∣ ∫ n+1

n

χ[n,n+1)(x)−
∫ n+1

n

χ[n+1,n+2)(x)

∣∣∣∣
=

∞∑
n=1

∣∣∣∣m([n, n+ 1])−m([n+ 1, n+ 2))

∣∣∣∣
=

∞∑
n=1

|0|

= 0

Hence, the series converges absolutely which implies convergence, too. But the function is
not integrable since

|f | = f+ + f−, wheref+ = χ[n,n+1)(x) andf
− = χ[n+1,n+2)(x)∫

[1,+∞)

f+ =

∫
[1,+∞)

χ[n,n+1](x)
∗
=

∞∑
n=1

∫
[n,n+1]

χ[n,n+1) =
∞∑
n=1

1 =∞

∗simple function is integrable and [1,∞) = ∪∞n=1[n, n+ 1)

Hence,
∫
[1,∞)
|f | = ∞ =⇒ |f | not integrable =⇒ f not integrable. So, both of the if

and only if statements are not true, as we found a counter-example that disaproves each of
one direction, which is enough.

Problem 37

We need to show that ∀ϵ > 0,∃N ∈ N :

∣∣∣∣ ∫En
f

∣∣∣∣ < ϵ ∀n ≥ N , which is equivalent of showing

that limn→∞
∫
En
f = 0. The countable collection of measurable set En = {x ∈ E : |x| ≥ n} is

descening and
⋂∞

n=1En = ∅ =⇒ m

(⋂∞
n=1En

)
= 0. In addition, f is integrable over E, so

is finite a.e. and so bounded. From a previous homework problem the integral of a bounded
function over a set of measure zero, is zero. So,

∫⋂∞
n=1 En

f = 0. Therefore, from the continuity

of integration

lim
n→∞

∫
En

f =

∫
⋂∞

n=1 En

f = 0 ⇐⇒ ∀ϵ > 0 ∃ N ∈ N :

∣∣∣∣ ∫
En

f

∣∣∣∣ < ϵ ∀ n ≥ N

13



Problem 9
Consider the sequence of measurable functions fn(x) = χ[n,n+1](x). Then, fn

p.w→ f = 0 in
E = R. Then in order fn to converge in measure on R to f , we need ∀ϵ > 0

lim
n→∞

m

(
x ∈ R : |χ[n,n+1](x)| > ϵ

)
= 0

Choose ϵ < 1 then,

lim
n→∞

m

(
x ∈ R : |χ[n,n+1](x)| > ϵ

)
= lim

n→∞
m([n, n+ 1]) = 1

Therefore, fn fails to converge in measure on R to f .
Another, counter example is by choosing gn(x) = χ[n,∞)(x), then, gn

p.w→ g = 0 in E = R
Choose ϵ < 1 then,

lim
n→∞

m

(
x ∈ R : |χ[n,∞)| > ϵ

)
= lim

n→∞
m([n,∞)) =∞
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