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Conformal Mapping Methods and ZST Hele Shaw Flow 

Introduction 

The Hele Shaw problem has been studied using linear stability analysis and numerical methods, but a 

novel advantage of conformal mapping methods is that exact solutions are obtainable.  However much of 

the theory which deals with conformal mapping is concerned with the zero surface tension problem; as 

summarized in the end the non-ZST problem is much more intractable. My main goal this semester was to 

obtain an understanding of why the ZST solutions are not necessarily relevant, and surface tension plays a 

role in the problem. 

The following report makes use of the process from Chapter 2 in Dr. Cumming’s thesis. 

Basic Equations 

Using the process outlined in chapter one of Cummings (1996) we have the basic equations for one phase 

and Hele-Shaw flow: 

 

 

 

However, under the assumption that curvature is small (that is, the fluid domain ( )t is smooth and 

nowhere of order 1/T), and surface tension is negligible, we might conjecture that setting the right side of 

eq. (2) equal to zero is a valid approximation to the problem.  Thus we have the zero surface tension 

boundary condition: 0  on ( ) (4)p t   

Polubarinova/Galin Method 

Next, I outline what I will call the P-G approach.  The crucial factor which allows this method to be used 

is that equation (1) says pressure p is harmonic on the fluid domain.  Complex variables theory therefore 

implies that p is the real or imaginary part of some complex function which is analytic.  The key idea to 

this method is mapping a known region (in this report, we use the unit disc as this region, but for channel 

flows, the right half plane may be more convenient) into the evolving fluid domain via a time dependant 

conformal map.  We are at the liberty to choose the region and mapping, but for simplicity, mapping the 

origin to the pressure source is convenient.  If the fluid domain is simply connected, the existence of the 

map is known, by the Riemann mapping theorem (for this reason we also enforce that the map be 

univalent, which prevents the border of the fluid domain from crossing itself).  Furthermore, assuming 

that the derivative is real and positive gives us a unique map.   
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1 fig 2.1, Cummings (1996) 

Next, on the fluid domain in the z=x+iy plane we will define the complex potential of the flow to be: 

( , ) ( , ) ( , ), . . analytic within Ω(t) (except at sink/driving points)

and { ( , )} (5)

z t f z t i g z t s t
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Next, we describe the asymptotic behavior of the problem near singularities in the fluid domain by 

making assumptions about the behavior at the source or sink of the pressure field (or where fluid is 

injected or sucked from, in the problem).  Common assumptions for the suction or blowing problem 

include:
2 2 1/2~ log ( ) , as ( , ) (0,0), where 0 stands for source/sink strength
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Clearly pressure blows up as we near origin, matching the physical nature of the problem.   

From this assumption and using the definition of the complex potential, we can now obtain the following 

relation: 
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What we next consider below, is complex potential in the plane, and we define this function assuming 

that the behavior near origin in the  plane is identical to that in the z plane: 
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Moving on, we write the KBC (3) as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To summarize, we now have a relation which mappings must satisfy to be solutions to the ZST problem. 
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To reduce the above expression, on boundary =1, we have:
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Examples 

The P-G equation involves guessing the general form of a map, but a variety of mappings exist. 

Ex 1: Take our initial guess for the mapping to be the quadratic map, 
2

1 2, ) ( (( ) )t a tz w a t    , 

where 1 2,a a are real valued functions.  

Substituting into (7), and taking into account that the P-G eq. applies on or in polar form ,1,  ie     
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Using Matlab and random initial conditions, I solved this system (which can be manually integrated): 
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The previous plot shows behavior which makes the ZST problem not useful – the solutions break down at 

the cusp point (where the curvature blows up, and the mapping is no longer univalent). It is also worth 

nothing that various other maps work, making an arbitrary amount of solutions possible, and also making 

the problem not really seem applicable to the real life case (see figure below, which displays a cusp 

problem on the left from a polynomial map, and a logarithm map that is a slit/finger model).  The real life 

case also involves surface tension and units, so of course it makes sense that the ZST model may not 

accurately predict results. The ZST problem is also ill posed, because as stated in one thesis I read, 

solutions with close initial conditions can either break down in finite or infinite time. (Dallaston, 2013) 

 

2 Dallaston, (2013) 
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Conclusion 

To conclude, surface tension regularizes the Hele-Shaw problem, and makes it relevant – using the 

method we outlined, it is possible to obtain all sorts of interesting geometric solutions, but in reality these 

may not be useful.  Surface tension also prevents cusps from forming in experiments.  

Other complex variables methods for analyzing the Hele Shaw problem (both the ZST and NZST cases), 

such as the Schwarz function exist, but I have not included them, as they are much more involved.  

However, they confirm that the NZST problem is generally much less easy to solve than the ZST 

problem. Further research on the NZST problem is useful, because surface tension is what keeps the 

problem from being undetermined.   
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Code 

function Capstone1 
clc 
clear all 
integrationSpan=[0,0.6] 
ICs=[1,0.1] 

  
[t,P]=ode15s(@SystemofEqs,integrationSpan,ICs); 
a1=P(:,1); 
a2=P(:,2); 
s=size(a2) 
i=0:2*pi/(s(1)-1):(2*pi); 
q=size(i) 
circle=transpose(i); 
x1=cos(circle); 
y1=sin(circle); 
for k=1:1:38 
plot(a1(k).*x1+a2(k).*(x1.^2-y1.^2),2*a2(k).*x1.*y1+a1(k).*y1,'r') 
hold on 
end 
title 'Quadratic map: solutions break down at a cusp' 

  
 function aprime=SystemofEqs(t,a) 

  
Q=5; 

  
a1=a(1);a2=a(2); 
aprime=[(-1*a1*Q/(2*pi))/(a1^2-4*(a2^2)); 

  
-2*a2*(-1*Q/(2*pi))/(a1^2-4*(a2^2))]; 
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