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Abstrat

The time-dependent free boundary problems of Hele-Shaw ow and slow visous ow (Stokes ow)

are studied, using omplex variable methods.

The �rst hapter introdues the two problems; the mathematial models are presented, and

brief literature reviews are given. Chapter 2 is a review of known results for the Hele-Shaw

problem, and develops the onformal mapping ideas whih are entral to the thesis. In hapter 3,

existing work for the Stokes ow problem is reviewed and extended, and new results are presented,

prinipally for the (singularity driven) zero surfae tension problem on a bounded ow domain.

Chapter 4 disusses an extension of the work of the previous hapter, as applied to sintering

problems in the glass industry. Problems on unbounded uid domains are onsidered in hapter

5, for both Hele-Shaw and Stokes ow.

Chapter 6 is onerned with singularity-driven Stokes ow, in the limit of small positive surfae

tension. Established theory of so-alled \weak solutions" is reviewed, and applied to a new

example.

In hapter 7, the existing \rak" theory of Hele-Shaw ow is presented, and a new, omple-

mentary \antirak" model is developed. Finally, in hapter 8, we summarise and suggest ideas

for further work.



Aknowledgements

I would like to thank my supervisors, Dr S. D. Howison and Dr J. R. Okendon, for guidane

and enouragement over the past three years. I have had several helpful disussions with Professors

Yuri Hohlov, John King, and Andrew Laey, and Dr Peter Howell, to whom I am very grateful.

Many thanks to Brue and Viki for help with proof-reading, to James and Dan for tehnial

help, and to all the other friends at O.C.I.A.M. (espeially DH8 members, past and present) who

have made the past three years so enjoyable. I also thank my family and Giles, for their love and

support.

Finally, I gratefully aknowledge �nanial support from the E.P.S.R.C. in the form of an open

award, and from Smith System Engineering in the form of a sholarship and travel grant.

i



Contents

1 Introdution 3

1.1 Survey of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Hele-Shaw problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The basi equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Stokes ow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 The basi equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Literature Reviews and Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Hele-Shaw Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Stokes ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Complex variable methods for Hele-Shaw ow 12

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Polubarinova/Galin approah . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Shwarz funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Rihardson's \moments" and the Cauhy transform . . . . . . . . . . . . . . . . . 17

2.6 Transformation of the dependent variable . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Univaleny and onformality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Complex Variable methods for Stokes ow 27

3.1 Rihardson's approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Redution to a single equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Another global equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Method of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Zero surfae tension problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The onserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Polynomial mapping funtions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.2 Comparison with the Hele-Shaw problem | `Rihardson's Moments' and

other matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.3 Soure/sink systems | a warning example . . . . . . . . . . . . . . . . . . 40

3.7 The Shwarz funtion for the ZST problem . . . . . . . . . . . . . . . . . . . . . . 42

3.8 The \moments" for the ase �(0) 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 The stress funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9.1 The \Baiohi transform" for Stokes ow . . . . . . . . . . . . . . . . . . . 48

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Appliations to the glass industry 51

4.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The theory for a visous �bre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 \Conserved quantities" for �bres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Example|the sintering of a bundle of �bres . . . . . . . . . . . . . . . . . . 53

ii



4.3.2 Connetedness onsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Flow in unbounded domains 57

5.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 The Hele-Shaw dipole problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 The Stokes ow dipole problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Review of Jeong & Mo�att's steady solution . . . . . . . . . . . . . . . . . 70

5.4.2 The time-dependent problem . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Steady Stokes ow reonsidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Stokes ow with small surfae tension 83

6.1 Review of \weak" solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 The ubi polynomial map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Complex oeÆients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Crak and Anti-rak solutions to the Hele-Shaw model 97

7.1 Overview of raks and slits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Introdution to Antiraks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Exat ZST antirak solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 The \generi" antirak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.2 Solutions with many antiraks . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.3 Howison's radial \antirak" solutions . . . . . . . . . . . . . . . . . . . . . 113

7.4 The Shwarz funtion of an antirak . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Results from formal asymptotis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Paterson's analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6.1 The ase �� T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.6.2 The ase 1� � � T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6.3 The ase T � �� 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6.4 Conlusions for Paterson's antiraks . . . . . . . . . . . . . . . . . . . . . . 121

7.7 Fratal Hele-Shaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.8 Craks revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.8.1 The ase �� T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.8.2 The ases 1� � � T , 1� �� T . . . . . . . . . . . . . . . . . . . . . . . . 127

7.9 The \urvature onjeture" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.10 Extremal onformal maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Disussion and further work 137

8.1 Comparison of Hele-Shaw and Stokes ow . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Stability of blobs and bubbles in Stokes ow 140

A.1 The perturbed irular blob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 The perturbed irular bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B Results used for the ubi polynomial map 142

C The Stokes ow veloity �eld in terms of w(�; t) 146

iii



List of Figures

1.1 The two phase Hele-Shaw problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The mapping from the unit dis onto the uid domain. . . . . . . . . . . . . . . . . . . . . 13

2.2 The mapping from the right-half plane onto the uid domain. . . . . . . . . . . . . . . . . . 14

2.3 The initial and �nal domains for the quadrati polynomial mapping. . . . . . . . . . . . . . . 17

2.4 Shemati diagram of a system of sinks Q

1

; : : : Q

6

at points z

1

; : : : z

6

within 
(t). . . . . . . . . 19

2.5 The univaleny domain V , and phase trajetories, for the \lima�on" example of x2.4. With a

point sink, the phase paths are followed in the diretion of the arrows (the nonunivalent region);

with a point soure, the diretion is opposite. Intersetion with the boundary of V is assoiated

with the usped ardioid geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Typial ross-setions generated by the map (4.6) when n = 6. Piture (a) is the usped on�gu-

ration, while (b) is the kind of smooth ross-setion we might expet to observe in pratie. . . 54

5.1 Shemati diagram showing how a \ontinuable 5/2-power usp" solution looks in phase trajetory

spae within the univaleny domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 The geometry for the problem of a dipole plaed o�-entre in a irle. . . . . . . . . . . . . . 60

5.3 The geometry for the dipole-in-a-half-spae problem. . . . . . . . . . . . . . . . . . . . . . 62

5.4 The univaleny domain in (b; )-spae for the mapping funtion (5.19). . . . . . . . . . . . . . 64

5.5 Typial free boundaries generated by points (b; ) on the boundary of the univaleny domain

(�gure 5.4). The dipole is situated at the origin in eah ase, and is suh that the x-axis is a

streamline in the positive sense. (1) has a = 1, b = 1,  = 4, and has a single usp in the free

boundary; (2) has a = �1, b = 1,  = �5, and has two usps in the free boundary, and (3a)

has a = �1, b = 4,  = �9, and shows the free boundary beginning to overlap itself. (3b) is an

enlargement of the trapped air bubble in (3a). . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 The phase diagram (within the univaleny domain) for the Hele-Shaw dipole problem. . . . . . 67

5.7 Enlargement of the transient 5/2-power usp formation. Pitures (a), (b) and () illustrate how

the free boundary passes through the 5/2-power usped on�guration (a), to a smooth boundary

(b), before ultimately blowing up with two 3/2-power usps (). . . . . . . . . . . . . . . . . 68

5.8 Typial free boundary shapes desribed by the mapping (5.44). Case (a) has � = �0:4; � =

�5;  = 0:5, and orresponds to a dipole suh that the x-axis is a streamline from negative to

positive. Case (b) has � = 1; � = 1:4;  = 0:8, and has the x-axis as a streamline from positive

to negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Typial free boundary shape desribed by the mapping (5.58). The parameter values used here

are � = �1; � = 3:5;  = 0:65. The dipole at the origin is suh that the x-axis is a streamline

from negative to positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 The di�erent regions in the small surfae tension \lima�on" problem, using mathed asymptotis. 84

iv



6.2 Free boundary shapes desribed by the map (6.5) for various points (b; ) on the boundary �V

of the univaleny domain. The values used are: (b

1

; 

1

) = (0; 1), (b

2

; 

2

) = (1; 1), (b

3

; 

3

) =

(4

p

2=3; 1), (b

4

; 

4

) = (1:8; 0:8461), (b

5

; 

5

) = (8=5; 3=5), (b

6

; 

6

) = (1; 0), and (b

7

; 

7

) = (1=5;�4=5).

Pitures (3b) and (4b) are magni�ations of the nonunivalent region, showing how the free bound-

ary begins to overlap itself; the former ase is usped and self-overlapping, while the latter is

smooth. The value a = 1 was used to generate eah piture, hene the shapes do not have equal

areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 The funtion F (b) governing evolution on the part b = 1+  of �V . (Note the di�erene in sales

between the two plots.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 The univaleny diagram (restrited to the right-half (b; )-plane) for the ubi polynomial mapping

funtion. The shaded region orresponds to a nonunivalent map. . . . . . . . . . . . . . . . . 91

6.5 The three-dimensional univaleny domain V

z

� V

4

, and its two-dimensional ross-setions V , V

y

and V

o

. The arrows on V

y

indiate how the point fb = 0;  = �1g destabilises (f. �gure 6.4). . . 95

7.1 The geometry of (a) a �nite rak; (b) a semi-in�nite rak, along the x-axis (driven by a sink at

in�nity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Shemati diagram showing how a general slit solution works. . . . . . . . . . . . . . . . . . 101

7.3 Examples of the radial �ngering solutions of [45℄, together with a photograph of one of Paterson's

experiments [73℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Phase-�eld omputations of the \free boundary" (atually a level set of the phase parameter �

ourring in the phase �eld model) for the growth of a seed of solid into a superooled liquid.

This piture was kindly supplied by Dr A. R. Gardiner [23℄. . . . . . . . . . . . . . . . . . . 105

7.5 A typial \generi antirak" solution. The free boundary is shown for times t = t

1

; t

2

; t

3

, with

t

3

> t

2

> t

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6 A typial solution generated by (7.15), showing 4 well-developed antiraks. Here, ��

i

= 0:5; 1; 0:8; 0:4;

for i = 1; 2; 3; 4; respetively; �

i

= �3; �2; 0:5; 1:5, and �

i

= 0:5 for eah i. . . . . . . . . . . . 110

7.7 Sketh showing the geometry when we have an array of \fat antiraks" with narrow spaing

generated by (7.15). The gaps between the \antiraks" may be viewed as raks. . . . . . . . 111

7.8 Solution of the form (7.15) exhibiting what we interpret as rak and antirak formation. The

values �

1

= 0:1 (the antirak), and �

2

= �3 were used. . . . . . . . . . . . . . . . . . . . . 112

7.9 The loal geometry with a orner of internal angle � in the uid. . . . . . . . . . . . . . . . . 115

7.10 Graph showing the relative sizes of the oeÆients of the terms sinn� (in the �R

1

term of R) and

os 2n� (in the �

2

R

2

term of R) as funtions of time, in the � � T r�egime. The sinn� oÆient

is the upper urve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.11 Evolution of the free boundary of Paterson's expanding bubble for dimensionless times t =

1; 1:15; 1:3. This plot applies to the r�egime in whih the amplitude of the perturbations is muh

greater than T , so that the ZST perturbation theory is appliable. . . . . . . . . . . . . . . . 122

7.12 Graph showing the oÆients of the terms sinn� (in the �R

1

term of R) and os 2n� (in the �

2

R

2

term of R) as funtions of time, for the �� T r�egime. The sinn� oeÆient is the one with initial

value 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.13 The evolving anti-slit struture at the stage n = 2, with 2 anti-slits of length L

0

, 2 of length L

1

,

and 4 new anti-slits about to form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.14 Evolution of the free boundary of the ontrating visous blob in the r�egime � � T , so that the

ZST theory is appliable. The early stages of rak formation are apparent prior to breakdown of

the linear theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.15 A free boundary with rak and antirak development. . . . . . . . . . . . . . . . . . . . . 129

7.16 The \Ivantsov" antirak solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.17 Antirak-type struture generated by the map (7.57) with N = 4, � = 0:2, b(0) = 0:755,

(0) = 0:887. We see the onset of uspidal blow-up, after whih we expet ontinuation by rak

or slit evolution towards the point sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.18 The rak (a) and antirak (b) geometries generated by maps (7.58) and (7.59) with � = 0:1. . 132

7.19 The \open sets" interpretation of the slit geometry. . . . . . . . . . . . . . . . . . . . . . 133

7.20 The \open sets" interpretation of the anti-slit geometry. The `set of boundary points' is not open

in the topology of X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

1



7.21 The free boundary for a general sution problem (with small surfae tension). . . . . . . . . . 136

2



Chapter 1

Introdution

1.1 Survey of the thesis

This thesis is onerned with two di�erent free boundary problems: the Hele-Shaw problem, and

the problem of two-dimensional slow visous ow, or Stokes ow, as it is ommonly known. Most

of the new results we present are for the latter; however, the (omplex variable) methods of

attak we use for both have many similarities, and sine historially the use of suh methods for

the Hele-Shaw problem predates their use for Stokes ow, we shall review the Hele-Shaw problem

�rst. The omplex variable methods used are, in any ase, probably more straightforward when

applied to Hele-Shaw ow, so this approah has the added advantage of introduing the ideas to

the reader as gently as possible.

Our aim throughout the thesis is to present as uni�ed an aount as possible; hene wherever

pratiable we shall keep the same notation for the two problems, this being largely that used by

Rihardson [82℄ for the Stokes ow problem. Also in the interests of oherene and ontinuity,

we do not stritly segregate the two problems, but highlight similarities and ontrasts between

the two as these arise. Sine so muh more literature exists for the Hele-Shaw problem, suh

questions of similarities or di�erenes generally arise as we �nd a result for Stokes ow whih has

a Hele-Shaw \analogue", or whih is quite di�erent from the existing Hele-Shaw result.

The remainder of this hapter is devoted to introduing the two problems, giving a little

physial bakground for eah. The governing equations and boundary onditions are derived, and

brief literature reviews are presented.

In the next two hapters solution methods for both problems are desribed, using tehniques

from omplex variable theory. The Hele-Shaw work of hapter 2 is basially review; we present

it �rstly as neessary bakground, and seondly beause our results for Stokes ow provide in-

teresting analogues, and the possible link between the two problems has, exept for the work of

Howison & Rihardson [49℄, been largely ignored in the literature. Chapter 3, whih onerns

Stokes ow, ontains mainly new work. With the exeption of xx3.1 and 3.3 (whih review the

work of Rihardson [82℄, but whih present a new perspetive on it), and x3.9 (whih is based on

an idea due to King [58℄), the work is original (unless otherwise stated). Work whih is losely

related to that of hapter 3, but whih would break the ow if inluded there, is presented in

hapter 4. This onerns models of slender visous �bres experiening tration, and is partly a

review of the work of [42℄, and partly new.

The examples onsidered in hapter 3 are all for �nite domains. Chapter 5 extends the disus-

sion to unbounded uid domains, to reveal possible ompliations that an arise with the Stokes

ow problem, but not in Hele-Shaw. Apart from the review material in x5.2, and x5.4.1, all the

work in this hapter is original. Both hapter 3 and hapter 5 are largely (though not exlusively)

onerned with the zero-surfae tension problems. The limiting ase of small, positive surfae

tension in Stokes ow is the subjet of hapter 6, using ideas developed by Howison & Rihardson

[49℄. After reviewing these ideas, a new example is given, and disussed at some length. From

x6.2 to the end of the hapter is new work.

3



The perspetive shifts somewhat in hapter 7, whih disusses \rak" and \antirak" so-

lutions to the Hele-Shaw model. Setion 7.1 reviews the established theory of raks, while the

remainder of the hapter is a blend of review, and original work (the distintion is made lear in

the text). The work that is reviewed, however, is presented in a di�erent ontext in the light of

our rak/antirak theory.

Finally, we disuss our results, and suggest some possible diretions for further work in hapter

8.

1.2 The Hele-Shaw problem

We begin by giving a short introdution to Hele-Shaw ow, the �rst of our free boundary problems.

A Hele-Shaw ell onsists of two rigid parallel plates some small distane (b say) apart, between

whih is sandwihed one or more (immisible) Newtonian inompressible visous uids whih an

be injeted, suked out, or subjeted to pressure gradients. The problem is to model the ow of

the uid within the ell. It dates bak to Hele-Shaw's original paper [31℄, published in 1898. The

emphasis there was on the ability of the Hele-Shaw ell to reprodue faithfully the streamlines for

invisid irrotational ow past obstales plaed in the ell, providing remarkable visual veri�ation

of theoretial results. We shall be onerned with the evolution of a uid domain with a free

boundary (adjaent to a zero pressure region), under the ation of presribed pressure gradients.

The problem has been extensively (though not ontinuously) studied sine Hele-Shaw's time.

The slender geometry of the ell means that the problem is e�etively two-dimensional, being

independent of the o-ordinate normal to the plane of the ell, whih greatly simpli�es matters;

partiularly fortuitous is the onsequene that omplex variable tehniques (suh as onformal

mapping) an be applied with onsiderable suess. We shall be using omplex variable methods

almost exlusively throughout the thesis.

The problem is of inherent theoretial interest, but there are various other reasons for wanting

to study it: the mathematial model is the same as that for many important physially-ourring

moving boundary problems, inluding ow in porous media [75℄, �ltration [28℄, pollution of ground-

water [76℄, problems in oil and gas reovery [75℄, [41℄, eletrohemial mahining [61℄, rystal

growth [72℄, injetion moulding, and so on. In partiular, it is a speial ase of the one-phase

Stefan model for phase-hange [86℄, the two models oiniding in the limit as the spei� heat of

the medium tends to zero.

1.2.1 The basi equations

Consider �rst the more general two-phase (or \Muskat") problem of �gure 1.1, where the gap

between the plates is �lled with two uids of di�erent, onstant visosities �

1

, �

2

, oupying

regions 


1

, 


2

respetively (see for example [22℄ for a disussion). If b is the gap width and l the

linear dimension of the Hele-Shaw ell then under the assumption that b � l the Navier-Stokes

equations redue

1

to

u

i

= �

b

2

12�

i

rp

i

; r:u

i

= 0 ; i = 1; 2 ;

where p

i

is the pressure in uid i and all quantities depend only on the o-ordinates in the plane

of the ell, (x; y), and time, t. Hene the pressure is a veloity potential for the ow, and

r

2

p

i

= 0 in 


i

(t) ; i = 1; 2 :

There are two onditions holding on the free boundary �
 between the two uids. Firstly we have

the dynami boundary ondition (DBC), whih omes from a fore balane at the free boundary,

and is usually taken to be

p

2

� p

1

= �T� : (1.1)

1

See for example [71℄ for the details.
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Figure 1.1: The two phase Hele-Shaw problem.

Here, T is the surfae tension oeÆient and � is the urvature in the (x; y)-plane (positive when

the domain 


1

is onvex). This form of the DBC ignores any three-dimensional e�ets due to the

urvature of the free boundary in the plane of the ell. A more aurate ondition is given by

MLean & Sa�man [65℄, namely

p

2

� p

1

= �T

�

��

2

b

os�

�

; (1.2)

where � is the ontat angle between the menisus and the ell plates at the free boundary. If, as

in [65℄, � is assumed to be onstant, we again arrive at (1.1) without loss of generality; however

if � is not onstant then (1.2) and (1.1) are very di�erent, so aution is learly advisable. Even

(1.2) is not exat, sine it relies on the assumption that the advaning visous uid ompletely

expels the reeding uid (i.e. there is no `wetting' of the plates), whih is not the ase in general

(this is disussed in [74℄). Nonetheless, it is usual in the literature to adopt either (1.1), or the

simpler \zero surfae tension" boundary ondition (see below) when solving problems.

We also have the kinemati boundary ondition (KBC), enoding the fat that uid partiles

whih are initially on the boundary must remain there (that is, �
 is a material urve),

v

n

= �

b

2

12�

i

�p

i

�n

; i = 1; 2 ;

whih is derived by equating the normal omponents of the uid veloity to the normal veloity

v

n

of the boundary. To lose the system we need to speify 
(0), and some driving mehanism

for the ow; for instane, if we have a point sink of strength Q > 0 at the origin, the singularity

in the pressure is p � (Q=2�) log r as r ! 0; for a point soure of strength Q, the sign is reversed

in this singular behaviour.

From now on we assume that uid 2 has negligible visosity (air, or vauum). In the limit

�

2

! 0, the solution in region 


2

tends uniformly to p

2

= onstant, where the value of the onstant

may vary for di�erent omponents of 


2

(we do not yet know that 


2

is onneted). If we take 


1

to be simply onneted, then 


2

(if it is �nite) will be onneted, and p

2

must assume the same

onstant value throughout 


2

; without loss of generality we take this to be zero. Then, dropping

suÆes, and making a trivial nondimensionalisation, we arrive at the simpler one-phase model:

r

2

p = 0 in 
(t) ; (1.3)

p = T� on �
(t) ; (1.4)

�p

�n

= �v

n

on �
(t) ; (1.5)
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with presribed pressure driving mehanism. Without the assumption of simple onnetedness we

would need boundary onditions analogous to (1.4) on eah separate portion of the free boundary,

but with extra arbitrary additive onstants on the right-hand sides, and with the restrition that

p be single-valued. Multiply-onneted uid domains are onsidered in detail in [84℄.

We shall in the main onsider situations where T is small, and replae (1.4) by the approximate

\zero-surfae tension" (heneforth \ZST") ondition,

p = 0 on �
(t) : (1.6)

This may be justi�able provided the urvature of the free boundary is nowhere of the order of 1=T

(that is, as long as the boundary is reasonably smooth), and is ertainly desirable, sine the ZST

problem is very muh more tratable. Caution is neessary, however, sine we have no guarantee

that an initially \reasonably smooth" boundary will remain so for the duration of the motion.

We defer further disussion of these matters until x1.4.

1.3 The Stokes ow problem

We now introdue the seond of our two free boundary problems: the problem of two-dimensional

slow visous ow, or Stokes ow, with time-dependent geometry. Despite the undeniably three-

dimensional nature of most real-world low Reynolds number

2

ows, the two-dimensional prob-

lem is invaluable as an aid to understanding many physial phenomena, either as a preliminary

\paradigm" problem, or beause the geometry is slender in some sense, so that asymptoti meth-

ods may be applied to yield a two-dimensional problem at �rst order. Being so muh simpler than

the three-dimensional problem whih generally requires heavy omputation, it is often worthwhile

doing a two-dimensional version of the problem �rst, providing a sensible one exists.

Real-world situations whih an be modelled by Stokes ow are numerous. The dynamis of

bubbles and drops trapped within a low Reynolds number ow [1℄, [77℄ is one very general example,

relevant to many physial proesses. The rheology of emulsions, mixing in multi-phase visous

systems, and bubbles trapped within a visous uid suh as molten glass, are all desribable by this

model. Fully three-dimensional (unsteady) geometries are diÆult to desribe mathematially;

however, two-dimensional drops and bubbles are easily modelled [78, 80℄, [96℄, and whilst learly

physially unrealisti,

3

suh models provide a useful guide before embarking on the full problem.

Axisymmetri geometries are also reasonably simple [101℄, [70℄, partiularly if, as mentioned above,

the drop or bubble is slender (suh as may our in an extensional ow), so that asymptoti

methods may be used to simplify the problem [7℄, [43℄.

The dynamis of two-dimensional visous blobs (surrounded by invisid uid) is also of rel-

evane [38℄, [82℄. This an model visous sintering, a phenomenon ruial to many physial

proesses. A review of its appliations is given in [100℄; a spei� example whih we shall onsider

in hapter 4 is the sintering of visous �bres, suh as arises in optial �bre manufature [42℄, [85℄.

Finally, we mention another interesting real-world example whih an (at least in ertain ow

r�egimes) be modelled by two-dimensional Stokes ow. This is the struture of foams, whih may

be thought of as thin visous sheets (the lamellae) joined together along \Plateau borders", whih

are basially `tubes' of visous uid, and are where most of the liquid of the foam resides.

1.3.1 The basi equations

Before making any more general remarks, we derive the equations and boundary onditions whih

govern slow visous ow. In this thesis we are onsidering the two-dimensional motion of a simply-

onneted domain of uid (again denoted by 
(t) and taken to lie in the (x; y)-plane), whih we

2

This dimensionless parameter is de�ned by Re=�UL=�, where U is a typial ow speed, L is a typial length-

sale of the ow, � is the uid density, and � is the visosity. It is a measure of the ratio of inertial e�ets to

visous e�ets in the ow.

3

But see Rihardson [80℄: \. . . the [two-dimensional℄ solutions derived show remarkable similarities with the

observed behaviour of [the three-dimensional bubbles enountered in pratie℄. . . , suggesting that often the essential

physis is retained, even if one is solving the `wrong' problem!"
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assume is dominated by visous, rather than inertial e�ets. The Reynolds number of the ow

will thus be small, and so we use the Stokes ow equations (see for instane [6℄ or [71℄ for the

details),

rp = �r

2

u; r � u = 0; (1.7)

holding within 
(t). All notation here is as for the Hele-Shaw problem. We also need boundary

onditions on the free boundary �
(t). There are two stress boundary onditions, or SBC's,

(derived from an elementary fore balane) the �rst of whih requires the shear stress to be

ontinuous aross the free boundary, and the seond of whih says that the jump in the normal

stress (as we pass from the uid to the air) is given by T�, where T is the onstant oeÆient

of surfae tension and � is the urvature of the free boundary (measured as before). These two

onditions may be written as a single vetor equation,

�

ij

n

j

= �T�n

i

i = 1; 2; (1.8)

where �

ij

is the usual Newtonian stress tensor,

�

ij

= �pÆ

ij

+ �

�

�u

i

�x

j

+

�u

j

�x

i

�

;

and n = (n

i

) is the outward normal to �
. If U is some typial ow speed, it is lear from (1.8)

that an important parameter of the ow is the Capillary number, Ca = �U=T , whih measures

the relative e�ets of visosity and surfae tension. We also have the usual kinemati boundary

ondition (KBC),

u � n = v

n

; (1.9)

v

n

being the outward normal veloity of the free boundary. Sine the ow is two-dimensional and

inompressible, there exists a streamfuntion  (x; y; t) suh that

u =

� 

�y

; v = �

� 

�x

:

To lose the problem, any singularities in the ow (suh as soures, sinks, dipoles, et.) must also

be spei�ed. Most of our solutions will involve suh driving singularities.

Taking the url of the �rst of equations (1.7) reveals that  must satisfy the biharmoni

equation in the ow domain,

r

4

 = 0:

Like (1.3), this equation has the extremely useful property that its solutions are expressible as

funtions of omplex variables (the so-alled Goursat representation of solutions) so that again

many powerful results from omplex variable theory an be drawn upon. We return to this point

in hapter 3.

1.4 Literature Reviews and Disussion

1.4.1 Hele-Shaw Flow

Any review of Hele-Shaw ow, unless it is to be a thesis in itself, must be highly seletive beause

of the vastness of the existing literature. The problem has been studied using omplex variable

theory (see for example the work of Rihardson [79, 81, 84℄, or Howison [48℄ for a review); numerial

methods [65℄, [98℄, [54, 55℄; rigorous existene-uniqueness theory [18℄, [26, 27℄, [12℄, [56℄ (via a weak

formulation of the problem); \phase �eld" theory [9℄; exponential asymptotis [94℄; not to mention

of ourse a large body of experimental work (see for instane [87℄, [59℄, [73℄). The referenes given
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here are very restrited; one ould easily give ten or more for eah item of the list above. We

simply hose a representative few, to give an idea of the wide spread of work that has been done.

Muh of the Hele-Shaw literature deals exlusively with the ZST Hele-Shaw problem. As we

ommented in x1.2.1, this is muh more tratable than the NZST problem, but there are potential

diÆulties whih it is appropriate here to expand upon.

Firstly, a simple linear stability analysis for a sinusoidally-perturbed planar travelling wave

front may be arried out for the ZST, two-phase (Muskat) problem. This reveals that a free bound-

ary advaning into a more/less visous uid is always unstable/stable, respetively. With non-zero

surfae tension (NZST) the same is still true; however, higher wavenumbers (shorter wavelengths)

are stabilised. For the one-phase ZST problem the net result is that an advaning/retreating

visous front is stable/unstable respetively, with an analogous result for the NZST problem (see

x7.3.2). We refer to these two ases as \blowing"/\sution" (or \injetion"/\sution") problems,

respetively, there being a fundamental di�erene between the two.

Seondly, we note that the ZST Hele-Shaw problem is time reversible: if we hange the signs

of p and t in (1.3), (1.6), (1.5), and reverse the driving singularity, the problem is unhanged.

Consider the paradigm problem in whih the ow is driven by a single point soure of strength

Q > 0 at the origin. If we start from an initially empty uid domain, the solution is easily seen

to be an expanding irle of visous uid, with radius R(t) =

p

Qt=�. It follows that, for ow

driven by a point sink of strength Q at the origin, only if 
(0) is a irle entred on the origin will

we be able to extrat all the uid from the ell. Any other initial domain must lead to �nite-time

blow-up of the problem. This is an example of a more general result: the ill-posedness of the ZST

Hele-Shaw problem with a retreating free boundary (the \sution" problem). Only those solutions

whih are time-reversals of well-posed problems with advaning free boundaries (\injetion" or

\blowing" problems), whose analyti behaviour an be traed bak to time t = �1 or whih

started from initially empty uid domains, will avoid �nite-time blow-up.

This breakdown of solutions is often via the formation of a usp in the free boundary (whih

the theory assumes to be analyti).

4

For T � 1 the assumption is that the ZST theory holds good

until times very lose to breakdown, at whih point the high urvature at a single point means that

surfae tension e�ets must beome important|mathematially, the boundary ondition p = 0 is

no longer a valid approximation to p = T� when � beomes large.

The NZST Hele-Shaw problem is notoriously diÆult (muh more so than the NZST Stokes

ow problem, as we will see). This diÆulty is tied in with the ill-posedness referred to above;

taking the NZST boundary ondition (1.4) amounts to a perturbation of the boundary data,

whih is well known to often have disastrous onsequenes for an ill-posed problem|even a tiny

hange in the data is liable to ause a large hange in the solution.

A signi�ant body of literature is onerned with the idea of regularising the ill-posed ZST

\sution problem". We have already noted that suh ZST solutions invariably break down within

�nite time, often via usp formation in the free boundary, whih is physially unaeptable. The

problem must learly be modi�ed in some way if this breakdown is to be avoided, but hopefully

without having to onsider the full NZST problem, although this seems the obvious thing to do.

Other types of regularisation whih have been studied (none very suessfully) inlude employ-

ing a \kineti underooling" boundary ondition, where the jump in pressure aross �
 is taken

to be proportional to the normal veloity v

n

of �
, or a \visosity" type of regularisation

5

, whih

gives rise to a phase-�eld model. Both of these ideas are onsidered in Hohlov et al. [33℄. In a

series of papers [36, 62, 33℄, these authors develop a novel kind of possible regularisation for the

small surfae tension problem. Supposing one has a ow driven by a point sink, then their idea

is that ZST theory will apply until times lose to blow-up (so an almost usped on�guration has

formed), at whih point a thin \rak" of air will enter the uid domain and propagate rapidly

towards the sink. Whilst this is happening, the rest of the free boundary remains smooth, and

4

Cuspidal blow-up is not the only possibility; for instane, solutions an break down via orners forming in the

free boundary [56℄. Breakdown may also our via the free boundary beginning to \overlap" itself (see x2.7), so

that at the instant of breakdown, the uid domain hanges from simply to multiply onneted. With the urrent

theory the solution annot be ontinued; however if one has a theory appliable to multiply onneted domains,

the possibility exists of ontinuing the solution beyond blow-up time|see Rihardson [84℄.

5

The term \visosity" refers to the kind of solution, and should not be onfused with physial visosity.
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hardly moves at all. This has an interesting ZST limit; ZST theory applies until the lassial solu-

tion breaks down with usp formation, then a slit (i.e. a rak of zero thikness) propagates into

the uid, its evolution being on a timesale suh that the smooth part of the boundary atually

remains stati. Suh solutions are \weak", in the sense that the free boundary is nonanalyti. It

is onjetured that the solution would still break down in �nite time though, when the rak or

slit reahes the sink (the models, and this onjeture are supported by the numeris of [69℄, [55℄).

These ideas are disussed further in hapter 7.

Other weak solutions have been found by King et al. [56℄, who study uid domains that

initially have nonanalyti free boundaries ontaining orners. Both the sution (ill-posed) and

injetion (well-posed) problems are onsidered, and loal similarity solutions are onstruted near

the orners, in a wedge geometry. Surprisingly, their work reveals that solutions to both the

injetion and sution problems exist whih have persistent orners, ontrary to the usual onjeture

that `injetion always smooths' (that is to say, that the free boundary for t > 0 will be analyti,

even if �
(0) is not).

In x1.2.1, we ommented on the diÆult nature of the NZST boundary ondition. Remarkably,

when one onsiders how extensively the Hele-Shaw problem has been studied, the NZST problem

is still largely intratable, with very few �rm analytial results existing. Duhon & Robert proved

the existene of lassial solutions to the NZSTmodel, and Esher & Simonett [26℄ proved existene

and uniqueness for the same problem, with general initial onditions. Chen et al. [12℄ did the

same for the zero spei� heat Stefan problem (note that these results are all loal in time).

Steady expliit solutions have been presented in [24℄, [99℄ (although those of [99℄ are in a highly

arti�ial geometry). Modern omputing power, and fast, e�etive numerial shemes mean that

an ever-inreasing number of NZST numerial solutions are available (see [54, 55℄, [65℄, [69℄, [98℄,

for instane).

No review of the Hele-Shaw problem would be omplete without some mention of the famous

Sa�man-Taylor \�ngering" problem. In 1958 Sa�man & Taylor [87℄ onduted experiments in

whih regular, evolving \�ngers" of air were observed penetrating a hannel of visous uid. For

small values of the surfae tension parameter the width of these �ngers was almost exatly half

the hannel width, and the authors onstruted exat travelling-wave solutions [87℄ (and later,

exat time-evolving solutions, [88℄) to the ZST problem, whih gave free boundary shapes remark-

ably similar to the (large-time) experimental observations. However, their solutions ontained an

arbitrary parameter, the �nger width �. It was believed that the addition of small positive sur-

fae tension to the model would resolve this indeterminay, but all early attempts to do this

via perturbation analysis failed, the limit T ! 0 being singular. Numerial results were more

satisfatory [65℄, [98℄, but the analytial explanation de�ed researhers until the so-alled `mi-

rosopi solvability' hypothesis [13℄, [34℄, [91℄, whih laims that the \seletion" of a partiular

value of � is governed by terms in the perturbation expansion whih are transendentally small

in the surfae tension parameter T . Rather than the ontinuum of solutions found for the ZST

problem, solutions in fat exist only for a disrete set of values of (�� 1=2). For T � 1, or large

Capillary number, (� � 1=2) approahes zero, in agreement with the observations of [87℄. For a

omprehensive review of the Sa�man-Taylor problem, see [89℄.

Relatively reent experiments (Kopf-Sill & Homsy [59℄ (1987)) show that, under arefully

monitored onditions, narrow, evolving �ngers may be observed in low surfae tension ows.

These �ngers are stable exept at very low surfae tension, when they destabilise via dendriti

side branhing and tip splitting. Suh observations may provide evidene for the \rak" theory

mentioned above. Radial �ngering has also been observed experimentally [73℄, [12℄ and fami-

lies of ZST solutions onstruted [45℄ whih give boundary shapes in good agreement with the

experiments|we return to these solutions in hapter 7.

1.4.2 Stokes ow

We now turn our attention bak to our seond free boundary problem. The two-dimensional

Stokes ow problem has generated a good deal of mathematial interest from the 1960's onwards,

the last few years in partiular providing a wealth of new results, stimulated primarily by Hopper
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[37, 38, 39℄ and Rihardson [82℄ (where he generalises his steady-state work of [78, 80℄). This new

spate of ativity in the 1990's stems from the independent disovery of the above two authors that

many families of exat, time-dependent solutions to the problem an be found in losed form.

This is a remarkable fat, given the apparent awkwardness of the boundary onditions for

positive surfae tension. It is perhaps even more surprising when we onsider how little progress

has been made on the orresponding NZST Hele-Shaw problem, whih at �rst glane one feels

ought to be the simpler of the two, being governed by only a seond order (Laplae) rather than

a fourth order (biharmoni) p.d.e.. Of ourse, steady solutions to the NZST Stokes ow problem

have been around for years, many authors having published papers in the 1960's and 1970's (for

example, in roughly hronologial order, Garabedian [29℄, Rihardson [78, 80℄, Bukmaster [7℄,

Youngren & Arivos [101℄).

More reently still, Howison & Rihardson [49℄ have onsidered time-evolving problems (for

both the NZST and ZST ases) inorporating a driving mehanism at a �nite point within the

uid domain. Suh problems have already been extensively studied for ZST Hele-Shaw ow, and

there are very many results available for omparison in this ase. Of partiular interest for Stokes

ow is the ase where the surfae tension parameter is small and positive, sine experiments with

real, high-visosity uids (in approximately two-dimensional geometries) demonstrate that the

liquid-air free boundary an adopt an almost usped on�guration. In fat to the naked eye the

boundary appears to have an atual usp, with magni�ation needed to disern the �nite urvature

at this point|see for example Jeong & Mo�att [52℄, or Joseph et al. [53℄. We onsider Jeong &

Mo�att's work further in hapter 5.

We shall see that, if we approximate this physial situation with the assumption that surfae

tension is zero we have the situation that arose for Hele-Shaw ow; solutions for the \sution

problem" almost invariably break down within �nite time. Like the ZST Hele-Shaw problem,

the ZST Stokes ow problem is time-reversible, so, as there, we expet ontrating visous blobs

to break down within �nite time (exept in the trivial ase of a ontrating irular dis with a

sink at the origin). This breakdown an our in the same ways as those listed for Hele-Shaw in

footnote (4). The distintion here between \sution" and \injetion" is not so lear, however. For

the Hele-Shaw problem it is a simple matter to demonstrate the instability of a retreating visous

front (see x7.3.2, for example), and both expanding bubbles and ontrating blobs are therefore

unstable. Stokes ow, on the other hand (in the absene of singularities) is invariant under rigid-

body motions (see x3.1), so a travelling wave planar front is neutrally stable, whether advaning

or retreating. Contrating or expanding bubbles and blobs an be analysed, however, and it is

found that, in ontrast with Hele-Shaw, ontrating irular blobs and bubbles are unstable, while

expanding blobs and bubbles are stable (this is shown in appendix A). For Stokes ow we tend to

reserve the term \sution problem" (with its onnotations of instability) for the unstable problem

driven by a sink at a �nite point within the uid, and not for the stable situation of an expanding

bubble with a sink at in�nity.

Given the experimental observations ited above, it seems fair to assume that the ZST theory

holds good until times very lose to breakdown, at whih point the high urvature at a single

point brings surfae tension e�ets into play, preventing atual breakdown. Analogous to the

\p = 0 on �
" approximation beoming invalid for Hele-Shaw, here, the boundary ondition

[�

nn

℄

�


= 0 is no longer a valid approximation to the ondition [�

nn

℄

�


= T� when � beomes

large. Antanovskii ([2, 3℄ and several other papers) has also studied usped on�gurations in slow

ow, using omplex variable tehniques to obtain steady solutions to the NZST problem.

The introdution of small positive surfae tension into the ZST problem (with driving meh-

anism) may be regarded as a regularisation of this problem, suh as we disussed in x1.4.1 for

the Hele-Shaw problem, only not so diÆult. The T ! 0 limit of this regularisation has been

onsidered, and solutions having persistent usps in the free boundary have been found to exist

(see [49℄; also hapter 6). Suh solutions may be ontrasted with the \slit" limit of the Hele-Shaw

\rak" model, indiating perhaps that we do not expet to �nd the phenomenon of �ngering in

slow visous ow. We return to this point in x8.1.

It may be obvious, but we should point out that it is only for problems with a driving singularity

that the ZST problem is nontrivial; if no driving singularity was present then any initial domain
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(0) would be an equilibrium domain in the absene of surfae tension. When we do have a

driving mehanism, it is often the ase in pratie that this is the dominant e�et in the ow,

hene the ZST approximation. The NZST solutions of [49℄ demonstrate the ompeting e�ets of

a ow singularity and surfae tension.

Despite our opening remarks about the existene of many exat (time evolving) solutions to

the NZST problem, the fat remains that the ZST problem is very muh simpler, and admits

very many exat, losed-form solutions, whih would be just too messy to attempt analytially

for positive surfae tension. Moreover, all is not lost when ZST solutions break down via usps,

sine as mentioned above we an use diret asymptoti methods to examine the e�et that surfae

tension will have as we approah a usped on�guration, and the T = 0 approximation beomes

invalid. These observations, together with the independent mathematial interest of our �ndings,

justify our lose study of the singularity-driven ZST Stokes ow problem.

For ompleteness, we also mention work that has been arried out on solutions for bubbles in

in�nite uid domains (we shall return to unbounded ow domains in hapter 5). Many of the

early steady solutions for Stokes ow were for bubbles, for example the papers of Youngren &

Arivos [101℄ (1976), Bukmaster [7℄ (1972) and Rihardson [78, 80℄ (1968, 1973). More reently,

time-dependent analytial solutions have been presented for two-dimensional bubbles (Tanveer &

Vasonelos [95, 96℄ (1994, 1995)), and numerial solutions for three-dimensional axisymmetri

bubbles (Nie & Tanveer [70℄ (1996)). All of these bubble solutions are for the NZST Stokes ow

problem; however like the ases mentioned earlier, many of the solutions exhibit \near usps"

in the free boundary, so that ZST theory ould be used for times less than the predited ZST

breakdown time. The last three ited works also allow for the interesting possibility that bubbles

may \pinh o�", with two sides of the bubble meeting in the middle, and onsequent hange of

topology.
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Chapter 2

Complex variable methods for

Hele-Shaw ow

2.1 Preliminaries

In this hapter we introdue the idea that will be followed throughout the thesis: the appliation

of omplex variable methods to solve the free boundary problem. The work we present is spei�

to the Hele-Shaw problem, but the general approah is widely appliable, and this hapter will

familiarise the reader with key onepts suh as onformal mapping, analyti ontinuation of

identities holding on some boundary, univaleny onerns, and so on. There are several di�erent

possible approahes to the ZST problem; we present a few of the better-known. The aim of this

hapter is not to present new work, but to give a review of well-doumented methods, and our

disussion is largely theoretial, with few examples of the appliation of the methods. For further

examples, the referened texts are more than adequate. Unless we state otherwise, it should be

understood that the work of this hapter pertains to the ZST ase, and heneforth the omplex

variable z is taken to be x+iy, where (x; y) are o-ordinates in the (two-dimensional) uid domain.

The ruial fator whih allows us to apply suh omplex variable methods to the Hele-Shaw

problem is that the pressure p is harmoni within the uid domain 
(t), so there exists a funtion

W(z; t) (the omplex potential of the ow), analyti within 
(t) (exept at driving singularities

of the ow), suh that

p = �<fW(z; t)g: (2.1)

We will suppress the time dependene of the various funtions exept where neessary for emphasis.

One of the earliest methods of solution is due to Polubarinova-Kohina [75℄ and Galin [28℄,

and the method desribed in the following setion is based on their work.

2.2 The Polubarinova/Galin approah

The main diÆulty in solving free boundary problems is fairly obvious; it is that we do not know,

at the outset, the position of the boundary on whih we must apply our boundary onditions|

it must be determined as part of the solution proess. In fat, our investigations are almost

solely onerned with this determination of the free boundary. Given that we are using a omplex

funtion representation of the pressure �eld, it seems a sensible thing �rst to transform to a simple,

known domain on whih we an solve the �eld equations. We thus introdue a time-dependent

univalent

1

map z = w(�; t), from the unit dis in �-spae (� = � + i�) onto 
(t) (�gure 2.1).

1

We refer forward to x2.7 for more disussion of what exatly we mean by \univaleny"; for the moment it is

enough to note that we require w(�; t) analyti (exept possibly at a single point whih maps to in�nity in the ase

that we have an unbounded uid domain), and that the free boundary it desribes must be smooth and simple.
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(t)

�1

z = w(�; t)

�

0 0

y

x

i

Figure 2.1: The mapping from the unit dis onto the uid domain.

The existene of suh a map is guaranteed by the Riemann mapping theorem (see for example

[68℄), and the map is uniquely determined if we insist that w(0; t) = 0 and w

0

(0; t) is real and

positive. Sine we now have two omplex planes to onsider, we shall often refer to the z-plane

as the physial plane. The method is well-illustrated if applied to the problem we have already

mentioned, that is, the ase where the ow is driven by a single point sink of strength Q > 0

situated at the origin. In this ase the asymptoti behaviour of the pressure near the origin is

known, and is idential to the asymptoti behaviour in the �-plane (as an be seen by performing

a trivial Taylor expansion). The omplex potential in the �-plane an then be written down as

�(�) =W(z(�)) = �

Q

2�

log � ; (2.2)

sine this has the orret singularity, and its real part vanishes on the unit irle.

The KBC (1.5) an be written in terms of the pressure p as

�p

�t

� jrpj

2

= 0 on �
 , (2.3)

using (1.6) plus the fat that the veloity �eld u = �rp in our dimensionless variables. We also

have

z = w(�; t) ) 0 = w

0

(�)�

t

+ w

t

(�) ) �

t

= �

w

t

(�)

w

0

(�)

:

Then, using (2.2) and (2.3) and noting that �

�

� = 1 on j�j = 1, we arrive at

<f�w

0

(�) �w

t

(1=�)g = �

Q

2�

on j�j = 1 ; (2.4)

a result known as the Polubarinova-Galin (P-G) equation. In some problems we �nd it easiest to

map from the right-half plane onto the physial domain (�gure 2.2). In this ase the free boundary

is the image of the imaginary axis, � = i�, under the onformal map, and the boundary ondition

on the omplex potential in the �-plane is

<(�(�)) = 0 on � = i�:

One solution for � is learly then

�(�) = A�; (2.5)

for some real onstant A (the negative pressure gradient at in�nity in the �-plane). The driving

mehanism in the physial plane to whih this orresponds depends on the partiular mapping
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(t)

� x

z = w(�; t)

0

�

y

0

Figure 2.2: The mapping from the right-half plane onto the uid domain.

funtion proposed; for instane, if w(�) is linear in � at in�nity then we have a onstant pressure

gradient at in�nity, exatly as in the �-plane, but if w(�) is quadrati in � at in�nity (as in the

famous Ivantsov paraboli travelling wave solution [51℄) then the pressure only has square-root

growth at in�nity in the physial plane. The P-G equation for this mapping funtion is readily

found to be

<fw

0

(�) �w

t

(��)g = A on � = i�; (2.6)

in the same way that (2.4) was obtained.

These results enable many exat Hele-Shaw solutions to be onstruted, by \guessing" the

form of an appropriate mapping funtion w(�; t) with time-dependent oeÆients. Substitution

in (2.4) with � = e

i�

(or (2.6) with � = i�) leads to a system of ordinary di�erential equations for

these oeÆients, whih an (hopefully) be solved, yielding the time-dependent map, and hene

the evolution of the uid domain. The solution thus found will be valid until suh time as the

mapping funtion eases to be univalent on the unit dis.

An analogous equation arises in our study of the Stokes ow problem (equation (3.13)); there

however our approah is to make the equation global by analytially ontinuing away from the

unit irle. We ould follow this approah here, but it would be rather umbersome in pratie

beause suh an analyti ontinuation annot be general, but must be spei� to eah ase. We

�rst need to propose a spei� form for the mapping funtion, sine only then do we know the

singularities of the ombination in urly brakets within the unit dis (whih will be due only

to the singularities of �w

t

(1=�), the other parts being analyti on j�j � 1). These singularities

would learly need to be known, sine any equation holding globally would need to have these

same singularities on the right-hand side. We do not pursue this point, sine the Stokes ow work

exploits it muh more satisfatorily (we disuss why this is so in x3.6.2). For a detailed disussion

of the proedure of analyti ontinuation the reader is referred to [10℄ or [20℄.

2.3 The Shwarz funtion

Equivalent to the analyti ontinuation of the P-G equation, but muh simpler in pratie, is the

Shwarz funtion approah whih we now outline. The Shwarz funtion of the free boundary,

whih exists if and only if the boundary is an analyti urve, is the unique funtion g(z; t), analyti

in some neighbourhood of �
, suh that the equation

�z = g(z; t)

de�nes �
. If we have a Cartesian equation, F (x; y; t) = 0, for �
, the Shwarz funtion may

be obtained by substituting for x = (z + �z)=2, y = (z � �z)=(2i), and solving for �z. Note that
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most analyti funtions of z will not be Shwarz funtions, as they will not satisfy the onsisteny

ondition,

z = g(g(z; t); t) � �g(g(z; t); t):

It an be shown (see for instane [17℄) that with notation as de�ned in this hapter, the following

identities hold at a point z on �
:

�z

�s

= (g

0

)

�1=2

; (2.7)

� = �i

h

(g

0

)

�1=2

i

0

=

i

2

g

00

(g

0

)

3=2

; (2.8)

v

n

= �

i

2

g

t

(g

0

)

1=2

; (2.9)

where s is arlength along �
 and prime denotes d( � )=dz. Then on �
,

dW

dz

=

�W

�s

�

�z

�s

= �

�

�p

�s

+ i

�p

�n

�

(g

0

)

1=2

sine p = �<(W) ,

= iv

n

(g

0

)

1=2

using (1.5), (1.6),

=

1

2

�g

�t

using (2.9) .

Sine both sides of this last equality are analyti in some neighbourhood of �
, we may analytially

ontinue away from �
 to dedue that it holds wherever both sides exist, that is,

dW

dz

�

1

2

�g

�t

: (2.10)

Important onlusions may be drawn from this identity, about the nature of the possible singu-

larities of the Shwarz funtion. The singularities of W(z) within 
(t) are given as part of the

problem spei�ation (the driving singularities of the problem), hene the singularities of g(z) are

also spei�ed at suh points. It is also possible that g(z) may have other singularities than these

within the uid domain, but suh singularities, by (2.10), must remain �xed both in position and

strength within the physial domain. The singularities whih are external to 
(t), on the other

hand, may move around, and vary in strength. We note that, sine the Shwarz funtion of an

analyti urve must itself be analyti in some neighbourhood of the urve, and sine analytiity

of the free boundary is a mathematial requirement of our Hele-Shaw theory, it follows that if a

singularity of the Shwarz funtion reahes the free boundary (or vie-versa), this must oinide

with solution breakdown. Expliit alulation shows that uspidal blow-up of the ZST problem is

assoiated with a moving, external singularity of the Shwarz funtion reahing the free boundary

within �nite time; in the example to follow (x2.4), a square-root singularity of g(z) reahes the

boundary simultaneously with blow-up. It is also oneivable that blow-up ould our with the

free boundary moving inwards and reahing one of the internal singularities; although no expliit

examples of this are known, they ould, in priniple, be onstruted as time-reversals of solutions

to the well-posed injetion problem, with appropriate singularities in the initial data. See for

example [48℄ for further disussion of this point.

A version of equation (2.10) may also be obtained for the NZST problem, making use of

identities (2.7)-(2.9), and the boundary onditions (1.4) and (1.5). This has been ited many

times (see for example [48℄), and is

dW

dz

=

1

2

�g

�t

�

iT

2

d

dz

�

g

00

(g

0

)

3=2

�

; (2.11)
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the unpleasant form of the extra surfae tension term on the right-hand side here gives warning

of how diÆult the NZST problem will be. An analogous result an be found if one employs the

\kineti underooling" regularisation mentioned in x1.4.1, with the boundary ondition

p = �v

n

on �
,

(for some positive underooling parameter �) replaing (1.4); this is

dW

dz

=

1

2

�g

�t

�

i�

2

d

dz

 

g

t

p

g

0

(z)

!

;

whih is onsidered briey in [48℄.

Returning to the ZST problem, in terms of the mapping funtion w(�; t), we have

g(z) = �z = w(�) = �w(1=�); on j�j = 1.

The �rst and last terms in the above are analyti in some neighbourhood of the free boundary (in

the z- and �-planes respetively); we may then analytially ontinue away from j�j = 1 to dedue

that they are equal wherever they are de�ned, hene

g(z) � �w(1=�): (2.12)

These ideas an be used to provide an alternative method of solution for the problem, whih we

now outline. For de�niteness, and to failitate omparison of the two approahes, we assume the

ow is driven by a single point sink at the origin. We again onsider guessing a suitable form for

the mapping funtion to ater for a partiular problem, but rather than using the P-G equation,

we use (2.12) to evaluate the Shwarz funtion as a Laurent series in z about z = 0 (the sution

point). (2.10) then yields a Laurent expansion for dW=dz about z = 0. However, we know that

near z = 0, dW=dz � �Q=(2�z), and so we an in priniple solve the full problem by equating

oeÆients in the prinipal parts of the Laurent expansions|all oeÆients must vanish exept

that of 1=z.

2.4 A simple example

To illustrate the appliation of the two solution methods outlined in xx2.2 and 2.3, we present a

simple (well-known) example. The simplest nontrivial mapping funtion to try is the quadrati

map,

z = w(�; t) = a

1

(t)� + a

2

(t)�

2

; (2.13)

with a

1

and a

2

taken to be real and positive without loss of generality, (a

1

> 0 by the normalisation

ondition of x2.2).

2

For the initial map w(�; 0) to be onformal, we require ja

1

(0)j > 2ja

2

(0)j.

First onsider the \P-G" method. Writing � = e

i�

in (2.13) and substituting diretly into (2.4),

we are able to equate terms having the same �-dependene to obtain the system of equations

a

1

_a

1

+ 2a

2

_a

2

= �

Q

2�

;

a

1

_a

2

+ 2_a

1

a

2

= 0;

whih are easily integrated to give the evolution until the solution breaks down. For this simple

ase, this happens when a

1

(t

�

) = �2a

2

(t

�

), at whih point a 3/2-power usp forms in �
, with

w

0

(�1; t

�

) = 0. The free boundary is initially a lima�on, (�gure 2.3 (a)) with sution from some

point on the axis of symmetry, evolving into a ardioid, (�gure 2.3 (b)) at whih time the solution

breaks down.

2

If the oeÆients a

1

, a

2

are non-real initially, we an always rotate the o-ordinates so that the uid domain

is symmetri about the x-axis, whih will ensure that the map relative to the new o-ordinates has real oeÆients

(with the singularity still at the origin); this symmetry will learly then persist for t > 0. Moreover, if we have

a

2

< 0, then the transformation � ! ��, a

1

! �a

1

sets both oeÆients to be of the same sign, so that we may

assume them both to be positive without loss of generality.
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Figure 2.3: The initial and �nal domains for the quadrati polynomial mapping.

Using the Shwarz funtion approah, (2.12) gives

g(w(�)) =

a

1

�

+

a

2

�

2

:

Inverting z = w(�; t), noting that the origin must map to the origin when hoosing the branh of

the square root, gives

� =

a

1

2a

2

"

�1 +

�

1 +

4a

2

z

a

2

1

�

1=2

#

:

Near � = 0 = z,

1

�

�

a

1

z

�

1 +

a

2

a

2

1

z + � � �

�

; and

1

�

2

�

a

2

1

z

2

�

1 +

2a

2

a

2

1

z + � � �

�

:

Hene, near z = 0,

g(z) =

a

2

1

a

2

z

2

+

a

2

1

+ 2a

2

2

z

+ O(1) ;

and from (2.10) we dedue that

d

dt

(a

2

1

a

2

) = 0 ; (2.14)

and

d

dt

(a

2

1

+ 2a

2

2

) = �

Q

�

; (2.15)

exatly as before, but without having to integrate a system of ordinary di�erential equations. Of

ourse in this simple ase, \spotting" integrals of the o.d.e.'s resulting from the P-G equation is

trivial, but for more ompliated maps this may not always be the ase. Likewise, the Laurent

expansions involved in the Shwarz funtion approah may not always be so painless, but in

general, this is the superior method. We shall see further appliations of both methods in hapters

5 and 7.

2.5 Rihardson's \moments" and the Cauhy transform

We now review some useful ideas whih are due to Rihardson ([79, 81℄ and subsequent papers).

The moments of the (bounded) uid domain 
(t) with respet to the origin are de�ned by the
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formula

M

k

=

Z Z




z

k

dx dy k = 0; 1; 2; : : : ; (2.16)

and depend only on time t. Using Green's theorem in the omplex plane,

3

an alternative repre-

sentation is

M

k

(t) =

1

2i

Z

�
(t)

z

k

�z dz : (2.17)

Consider �rst the familiar ase of a single sink of strength Q at z = 0 (a soure if Q < 0). We

want to know how the moments evolve in time; using (1.5) we see that

dM

k

dt

=

Z

�


z

k

v

n

ds = �

Z

�


z

k

�p

�n

ds :

Now, on the free boundary, if � is the angle made by the tangent to �
 with the x-diretion and

s denotes arlength along �
, then

dW

dz

=

�W

�s

=

�z

�s

= �e

�i�

�

�p

�s

+ i

�p

�n

�

= �ie

�i�

�p

�n

;

where we have used the Cauhy-Riemann equations, together with the fat that �p=�s = 0 on

�
(t) (whih follows from (1.6)). It then follows, using the relation dz = e

i�

ds on �
(t), that

dM

k

dt

= �i

Z

�


z

k

dW

dz

dz : (2.18)

For this ase of the point sink singularity, dW=dz is analyti in 
(t) exept at z = 0, near whih

dW=dz � �Q=(2�z). Using the Cauhy theorem of omplex variable theory on (2.18) to deform

the ontour of integration �
(t) to a small irle about the origin, we see that

dM

k

dt

=

8

<

:

�Q k = 0 ;

0 k = 1; 2; : : : :

(2.19)

The result for k = 0 is simply an expression of onservation of mass, whilst the k = 1 equation

states that the entre of mass of the uid domain remains �xed. (This latter result tells us that

a neessary ondition for omplete extration of all the uid is that the sink be situated at the

entre of mass of 
(0)). We mention here that the results for the k = 0 and k = 1 moments

an also be shown to hold for the NZST problem (see for example [69℄, where a NZST evolution

equation for the Cauhy transform (2.21) is formulated, and used to prove this).

Equations (2.19) are readily generalised to the ase of sution with rates Q

i

(t) at points z

i

(1 � i � N) in 
(t), (�gure 2.4) with the result that [81℄,

dM

k

dt

= �

N

X

i=1

Q

i

(t)z

k

i

k = 0; 1; 2; : : : : (2.20)

We may see this by onsidering the ase of a single sink Q at z = a. Then, using (2.18) and

deforming the ontour �
(t) to a small irle about z = a, gives

dM

k

dt

= lim

�!0

�Q

2�i

Z

jz�aj=�

z

k

z � a

dz = �Qa

k

;

3

This theorem states that for a funtion f analyti on a domain D,

R R

D

f(z) dx dy =

1

2i

R

�D

�zf(z) dz, and is a

trivial onsequene of the usual Green's theorem in the plane.
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Figure 2.4: Shemati diagram of a system of sinks Q

1

; : : :Q

6

at points z

1

; : : : z

6

within


(t).

by Cauhy's integral formula. Equation (2.20) is then a trivial extension of this result to the ase

of many (possibly time-dependent) sinks.

4

We next introdue the losely related onept of the Cauhy transform [81, 83℄, de�ned by

#(x; y; t) =

1

�

Z Z




dx

0

dy

0

z � z

0

; (2.21)

(where z

0

= x

0

+ iy

0

) the improper integral being understood when z 2 
. For z outside (`exterior'

to) 
, the right-hand side of (2.21) de�nes an analyti funtion of z, denoted by #

e

(z) (`e' for

`exterior'); expanding in a Laurent series gives

#

e

(z) =

1

�

1

X

k=0

M

k

z

k+1

: (2.22)

Writing A

i

(t) =

R

t

0

Q

i

(�) d� , (2.22) and (2.20) together imply

#

e

(z; t) = #

e

(z; 0) �

1

�

N

X

i=1

A

i

(t)

z � z

i

: (2.23)

The funtion #

e

(z) may be analytially ontinued inside 
; this ontinuation will in general have

singularities within 
. In [83℄ it is shown that

#(x; y) =

8

<

:

�z � #

i

(z) z 2 
(t) ;

#

e

(z) z 2 
(t)



;

for some funtion #

i

(z) analyti inside 
(t). From its de�nition, #(x; y) is learly ontinuous

throughout R

2

and hene

#

e

(z) = �z � #

i

(z) on �
(t) :

4

These ideas are also generalised to the ase of a multipole singularity at the origin by Entov et al. in [24℄.
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In terms of the mapping funtion, this implies

#

e

(w(�)) = w(�) � #

i

(w(�)) ;

and, using �

�

� = 1 on �
 and analytially ontinuing, we �nd

#

i

(w(�)) + #

e

(w(�)) = �w(1=�) : (2.24)

Sine w(�; t) is analyti in j�j � 1, the singularities of the right-hand side lie in j�j < 1 and, sine

#

i

(w(�)) is analyti there, (2.24) tells us that these singularities must be idential with those of

#

e

(w(�)).

Given #

e

(z; t) then (for whih we only need know #

e

(z; 0), by (2.23)), we are able to write down

the general form of the mapping w(�; t), then make a quantitative omparison of singularities in

(2.24) to �x w uniquely (bearing in mind the normalisation onditions of x2.2). A detailed example

of this proedure is given in x5.3.

The Cauhy transform is also related to the Shwarz funtion of the free boundary, g(z; t). In

general, g(z) will have singularities both inside and outside 
, and (with subsripts as before) we

may deompose it uniquely as

g(z) = g

e

(z) + g

i

(z) ; (2.25)

if we insist g

e

(z)! 0 as z !1. This deomposition is often obvious, but if not, it an be arried

out using the Plemelj formulae (see for instane [10℄),

g

e

(z) =

1

2�i

I

�


g(�) d�

� � z

; for z 62 
; (2.26)

with an idential expression for g

i

(z) when z 2 
. (These expressions rely on the analytiity of

g(z) in a neighbourhood of the free boundary.)

Hene (2.12) may be written

g

i

(w(�)) + g

e

(w(�)) = �w(1=�) : (2.27)

Comparison with (2.24), appealing to the uniqueness of the subsripted funtions|learly, #

e

(z)!

0 as z !1 from the de�nition (2.21)|reveals that

g

i

(z) � #

i

(z) ;

g

e

(z) � #

e

(z) :

Hene the time evolution of g

e

(z; t) is known (exatly as in (2.23)) and the method just desribed

of deduing the right form of the mapping funtion may again be used if we know the Shwarz

funtion of �
(0), and the sinks and soures driving the ow. In fat, it is not neessary to

demonstrate the above identities to see this; the same method using the Shwarz funtion (instead

of the Cauhy transform) may be dedued from the identity (2.10) of x2.3, one we know we an

deompose the Shwarz funtion in the manner of (2.25). We shall onsider similar \dedutive

methods" of �nding the mapping funtion for the Stokes ow problem in x5.4.

2.6 Transformation of the dependent variable

Some of the preeding ideas may be linked to an alternative approah, whih uses a transformation

of the dependent variable. This is often alled the Baiohi transform, after Baiohi [5℄, who �rst

introdued it to solve for steady ow in a porous medium through a retangular dam (whih is

equivalent to a Hele-Shaw ow, as we remarked in x1.2). The transformation has been applied to

Hele-Shaw problems in, for example, [21℄, [60℄, [56℄, [57℄; we follow [57℄. It is not itself a omplex

variable method, but we inlude it in this hapter beause it an be related to suh methods, and

beause it is of independent interest. We shall onsider an analogous formulation for the Stokes
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ow problem in x3.9.1. The transformation is important in that it gives a weak formulation of the

problem, enabling non-lassial situations to be dealt with (see for instane King et al. [56℄).

The approah di�ers slightly aording as to whether the problem is well-posed (the so-alled

\injetion" or \blowing" problem, with an advaning free boundary) or ill-posed (the so-alled

\sution" problem, with a retreating free boundary). We are able to lassify the problems in this

way beause of the maximum priniple for harmoni funtions; for the ZST problem with (for

example) a point sink, p = 0 on �
 must be the global pressure maximum, so the pressure is

everywhere negative within 
, and the free boundary must always retreat. A similar argument

applies for the point soure problem. A onsequene of this \monotoni" behaviour of �
(t) is

that the free boundary may be represented in the form

5

t = �(x);

for x in regions rossed by the free boundary. (For the injetion problem this region is 
(t)\
(0);

for the sution ase it is 
(0)\
(t).)

We �rst de�ne the funtion u

0

(x) to be the solution to the (ill-posed) Cauhy problem,

r

2

u

0

= 1 in 
(0); (2.28)

u

0

= 0 =

�u

0

�n

on �
(0);

u

0

must in general have singularities within 
(0) sine we are imposing two boundary onditions,

whereas only one is needed for a well-posed problem. The Baiohi transform variable u(x; t) is

then de�ned as follows:

1. Injetion Problem:

u = u

0

+

Z

t

0

p(x; �) d� x 2 
(0);

u =

Z

t

�(x)

p(x; �)d� x 2 
(t)\
(0):

2. Sution Problem:

u = u

0

+

Z

t

0

p(x; �) d� x 2 
(t): (2.29)

For x in regions that the free boundary rosses (so that �(x) is de�ned), u may also be

onsistently de�ned as

u = �

Z

�(x)

t

p(x; �)d� x 2 
(t)\
(t

�

); (2.30)

where t

�

is an upper limit for the existene in time of the solution to the sution problem.

In either ase we then have the following free boundary problem for u:

r

2

u = 1 in 
(t); (2.31)

with

u = 0 =

�u

�n

on �
(t). (2.32)

5

The free boundary an always be written as f(x; t) = 0. In priniple, this an be solved to give t as a funtion

of (x; y), but this funtion will only be single-valued provided the free boundary never \moves bak on itself", and

also, will only be de�ned on the set of points rossed by the free boundary.
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Di�erentiating the de�nition of u with respet to time, it is lear that for both injetion and

sution ases,

p =

�u

�t

in 
(t): (2.33)

The problem (2.31), (2.32) for u(x; t) must be solved on 
(t) with presribed singularities within


(t), whih are of two distint types:

1. Constant (in spae and time) singularities of u

0

(x), and

2. Those within 
(t) whih are time integrals of the known (driving) singularities of p (�xed

in spae).

Hene the basi \reipe" for solving problems is (see [35℄):

� Find the singularities of u

0

� u(x; 0) by solving the ill-posed Cauhy problem (2.28);

� Find the interior singularities of u(x; t) using the omments above;

� Solve the free boundary problem (2.31) and (2.32) for u(x; t) with these singularities.

We an also link u to the Shwarz funtion g of the free boundary. r

2

u = 1 and so the funtion

f de�ned by

f = u�

1

4

z�z

is harmoni, whih implies f = <(F ) for some analyti funtion F . F

0

(z) � u

x

� iu

y

�

1

2

�z

is then also analyti, away from singularities of u. Now, ru = 0 on the free boundary, so

F

0

(z) = �

1

2

�z = �

1

2

g(z) there. But g is analyti in a neighbourhood of �
 and hene by analyti

ontinuation we may dedue that

u

x

� iu

y

=

1

2

(�z � g(z)) ; (2.34)

wherever either is de�ned. Hene, using (2.29) and (2.1) we see that

g(z; t) = g(z; 0) + 2

Z

t

0

dW

dz

(z; �) d� ;

whih is exatly the result (2.10) obtained in x2.3 by more diret methods. Statements analogous

to (1), (2) and (3) hold for the Shwarz funtion, as was noted there.

Suh methods an also be used to treat modi�ations of the lassial Hele-Shaw problem, for

instane squeeze �lms, where the walls of the ell are moved normally relative to eah other, or

ells with porous plates through whih sution an be applied; see for example [35℄.

It is also interesting that the problem satis�ed by the Baiohi transform variable u is a version

of the so-alled obstale problem of the variational alulus, if we impose the extra ondition that

u be positive everywhere on 
(t). This is the (well-posed) problem of determining the ontat

region when an elasti membrane is strethed over some irregular rigid surfae or `obstale', so

that the membrane is in ontat with only part of the obstale (see for example [22℄). The Baiohi

variable u may be identi�ed with the membrane displaement.

It follows [46℄ that if we have a family of obstale problems parametrised by, and suÆiently

regular in, t, we may reover a Hele-Shaw problem by forming p = �u=�t. This is very useful, sine

the obstale problem has been widely studied, and there exist many rigorous results whih an

be arried over for the Hele-Shaw problem. Of partiular interest is the question of singularities

in the free boundary. For the obstale problem on a simply-onneted domain, it an be shown

[90℄, [64℄ that the free boundary is a pieewise analyti urve, the only possible singularities being

usps of power (4n+ 1)=2, for integer n, i.e. having the loal behaviour

Y � O(X

(4n+1)=2

):
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In x5.3 we will see an example of a Hele-Shaw ow in whih the free boundary evolves (otherwise

smoothly) through a singularity of this kind, having a 5/2-power usp forming in the free boundary

whih then immediately disappears (see also [46℄, [50℄ in this ontext); presumably similar exam-

ples exist with the free boundary evolving through 9/2, 13/2,: : : power usps, although none has

yet been presented. Cusps of power 3/2, 7/2,: : : are not possible singularities of the free boundary

in the obstale problem, and hene represent terminal blow-up in the Hele-Shaw problem.

As a �nal point, we remark that the restrition u � 0 on 
(t), whih the Baiohi transform

variable u is not subjet to, is ruial to the well-posedness of the obstale problem. For the

ill-posed Hele-Shaw sution problem it an be shown that, although u must be positive in some

neighbourhood of �
(t) (indeed, the de�nition (2.30) requires u � 0 in the region 
(t)\
(t

�

)

whih �
(t) rosses, sine the pressure is everywhere negative for a sution problem), the time

integrals of the negative pressure singularities may lead to u being negative at some points within


(t). If suh a \negativity region" appears, it must grow, beause, by (2.33), u is a dereasing

funtion of time. Hene it will eventually meet the ontrating free boundary, at whih point the

solution must break down.

2.7 Univaleny and onformality

We have referred several times in this hapter to the need for univaleny and/or onformality of

the mapping funtion w(�; t). We now explain more preisely what we mean by these terms.

Definition (univaleny/onformality): A single-valued, analyti funtion w(�)

is said to be onformal in a domain 
 � C if its derivative never vanishes (or beomes

unbounded) on 
. If, in addition, w never takes the same value twie, that is, if

w(�

1

) 6= w(�

2

) for all points �

1

and �

2

in 
, then w is said to be univalent on 
. It an

be shown (see [20℄) that onformality at a point �

0

is equivalent to loal univalene at

�

0

.

Univaleny of the map is neessary on both theoretial and physial grounds. Theoretially, the

proedure of analyti ontinuation, whih has been used several times throughout the hapter

(and will also be used extensively in the next hapter for the Stokes ow problem), ertainly

requires onformality of w(�).

6

Physially, if the map did assume the same value twie, this

would orrespond to two distint partiles of uid oupying the same spot in two-dimensional

spae, whih is not possible. Hene we require univaleny aording to the de�nition above. All

of the general omments in this setion will pertain to both the Hele-Shaw and the Stokes ow

problems; where omments are partiular to only one of the problems, we make this lear.

The above justi�es our statement at the end of the last setion, that solutions found by the

method outlined there will be tenable \until suh time as the mapping funtion eases to be

univalent on the unit dis". This ould happen in several ways: for instane, by a zero of w

0

(�)

approahing the boundary j�j = 1 from outside (orresponding to formation of an inward-pointing

usp or reex-angled orner in the free boundary); by a singularity of w

0

(�) reahing the boundary

(whih ould imply an obtuse or aute-angled orner, or an outward-pointing usp), or by loss

of the 1-1 harater of the map (so that physially the uid domain intersets itself). In all the

examples we onsider, univaleny an be lost only by usp formation or by self-overlapping, and

the following disussion is restrited to these possibilities.

The map w will be a funtion of � and t, with the time dependene oming in via various

parameters in the map; for example if w is a polynomial then these parameters will just be the

oeÆients of the polynomial. We have already seen one simple example of this type in x2.4. In

a general ase, if the map ontains N omplex parameters, then we have 2N real parameters.

Assuming that the map satis�es w(0; t) = 0, we are still free to hoose the orientation of the axes

within the uid (usually done by ensuring w

0

(0; t) > 0), whih redues the number of parameters

by two, and if we wish, we an eliminate a saling fator from the problem (a measure of the area

6

If we are mapping to an unbounded uid domain then we will have a single point �

1

, within the unit dis,

mapping to in�nity, i.e. an isolated singularity of w(�), but this is a speial ase and the theory still holds.
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V

a

1

= 2a

2

a

1

= �2a

2

Figure 2.5: The univaleny domain V , and phase trajetories, for the \lima�on" exam-

ple of x2.4. With a point sink, the phase paths are followed in the diretion of the arrows

(the nonunivalent region); with a point soure, the diretion is opposite. Intersetion

with the boundary of V is assoiated with the usped ardioid geometry.

of the uid domain) by suitably resaling time. Thus we will have 2N � 3 real, time-dependent

parameters to onsider.

Only for ertain values of these parameters will the map be univalent on j�j � 1. There will

be some subset of the (2N � 3)-dimensional (or (2N � 2)-dimensional, if we do not eliminate the

saling fator) parameter spae, V � R

2N�3

, suh that if the parameter values lie within V then

we have univaleny. We refer to V as a univaleny domain. For the map of x2.4 with a

1

> 0

(a suÆiently simple example to make the resaling of time unneessary), V is the union of the

two domains a

1

> 2a

2

(in a

2

> 0), and a

1

> �2a

2

(in a

2

< 0). A valid solution to the problem

an then be represented as a trajetory within V , with solution breakdown ourring when the

trajetory reahes the boundary, �V ; here, the solution trajetories within V are given by (2.14)

as the urves

a

2

1

a

2

= k;

for onstants k (see �gure 2.5). The sense in whih (and the speed with whih) the paths are

followed is determined by (2.15).

In general �V will omprise di�erent regions, orresponding to the di�erent ways in whih

univaleny an be lost; with obvious notation we an write

�V = �V

usp

[ �V

overlap

:

In all the ases we onsider, only at the boundaries between �V

usp

and �V

overlap

, or at isolated

\extremal" points of �V

overlap

, do we get types of usp other than 3/2-power (although more

ompliated senarios an easily be envisaged). In fat, for all the maps in this thesis, the only

possibilities are 3/2-power and 5/2-power usps. Examples of univaleny domains arise in x5.3

(see �gures 5.4, 5.6 and 5.7) and in x6.2 (see �gure 6.4); the ase of the quadrati map ited above
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is not a very good illustration sine it a�ords only the possibility of breakdown via a 3/2-power

usp.

For a general polynomial mapping funtion it an be shown [32℄ that blow-up in the Hele-Shaw

sution problem an our only by usp formation or self-overlapping; by far the most ommon

way for univaleny to be lost is via formation of a 3/2-power usp. Polynomial mapping funtions

are dense in the set of onformal maps, in the sense that an arbitrary initial boundary shape

�
(0) an be approximated arbitrarily losely by a polynomial map (and hene, hopefully, the

evolution for t > 0 will be well-desribed by the solution for this map). For these reasons, 3/2-

power uspidal blow-up is sometimes referred to as the \generi" situation for ZST Hele-Shaw

(or Stokes ow) solution breakdown. It has not been rigorously proved, but it is widely believed

that a positive surfae tension parameter T (however small), will prevent this generi solution

breakdown, for both problems. As a highly-urved (near-usped) on�guration is approahed,

large surfae tension fores are generated, whih at to balane the stresses due to the driving

mehanism, keeping the boundary smooth at that point. Experiments suh as Jeong & Mo�att's

[52℄ for Stokes ow show, however, that the radius of urvature at the point where the ZST

usp would form may need to be extremely small for a fore balane to be ahieved. Solution

breakdown an ertainly still our by the ow domain beginning to overlap itself, or possibly by

the formation of other types of usp. In partiular, solutions of the NZST Stokes ow problem

exist whih form atual 5/2-power usps in the free boundary within �nite time [85℄. Suh usps

may be viewed as \geometrially neessary", in that they are a limiting ase of a set of solutions

whih blow up via self-overlapping, for whih positive surfae tension is not a means of preventing

blow-up, in the urrent theory.

For the NZST Hele-Shaw problem it is thought that solution breakdown may also our via

the free boundary reahing the driving singularity (the \rak" and \slit" theories; see x7.1). For

the NZST Stokes ow problem, at least for the ase of a point sink singularity, this last suggestion

may not be possible|this is disussed in xx6.3 and 8.1.

For both problems then (leaving aside the possible ompliation of the free boundary reahing

the singularity, and types of usp other than 3/2-power), we expet that only in the ZST problem

do we only have to worry about breakdown via usp formation, whilst breakdown due to self-

intersetion an our in both the ZST and the NZST problems. 3/2-power usp formation in the

ZST Stokes ow problem an be avoided if, near breakdown time, we abandon the ZST assumption

and onsider some simple asymptotis (see hapter 6); as we have already noted though, this

perturbation of the problem is not so simple for Hele-Shaw ow. Dealing with self-intersetion

is not easy for either of the ZST problems, sine we are then dealing with a multiply-onneted

uid domain. To map to, for instane, a doubly-onneted domain, we need to map from a

doubly onneted domain, suh as an annulus. Moreover, with the presene of more than one

free boundary we have to allow di�erent boundary onditions to hold on eah boundary (this

ompliation was noted in x1.2.1 before deriving (1.4) and (1.6), and a similar situation arises

with the boundary ondition (3.4) in x3.1 for the Stokes ow problem). We do not onsider suh

ompliations in this thesis; it was mentioned in x1.4.1 that Rihardson [84℄ has arried out an

extensive study of the multiply-onneted Hele-Shaw free boundary problem.

2.8 Summary

In this hapter we have reviewed a seletion of well-known results for the Hele-Shaw problem,

with the dual aims of familiarising the reader with the Hele-Shaw problem, and of presenting

a oherent introdution to the appliation of omplex variable methods to the free boundary

problem. The order of presentation was roughly hronologial, beginning in x2.2 with the ideas of

Polubarinova-Kohina [75℄ and Galin [28℄. This introdued the onept of mapping onformally

from some simple geometry onto the unknown uid domain, an idea whih is entral to the thesis.

The work of [75℄ and [28℄ (dating bak to 1945) was of immense historial importane for a wide

range of free boundary problems (in partiular, porous medium and �ltration problems, as well

as the Hele-Shaw problem). The key \P-G" equations (2.4) and (2.6), satis�ed by the onformal
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mapping on the unit irle and on the imaginary axis respetively, were derived, whih provided

one of the earliest methods of �nding solutions to the pressure driven Hele-Shaw problem.

More reent onepts were then introdued (the Shwarz funtion, Rihardson's moments, the

Cauhy transform, the Baiohi transform), and possible appliations to the solution of the free

boundary problem were disussed. These onepts were shown to be losely linked; Rihard-

son's moments are the oeÆients of the prinipal part of the Laurent expansion of the Cauhy

transform, and the Cauhy transform is essentially equivalent to the Shwarz funtion of the free

boundary. The Baiohi transform is related to the Shwarz funtion through (2.34). The link

between the Shwarz funtion and the omplex potential of the ow was also demonstrated (x2.3),

a muh deeper result than the P-G equation, sine it holds not just on the free boundary, but

globally.

We onluded the hapter with a disussion of the univaleny of the mapping funtion w(�; t),

whih is ruial if the theory outlined in the previous setions is to be valid.

This hapter lays down the groundwork for the rest of the thesis. Similar omplex variable

methods are to be employed throughout, and we �nd many results for the Stokes ow problem in

hapter 3 whih parallel those listed above. On the other hand, some of the Stokes ow results

may be ontrasted with the orresponding Hele-Shaw results; these are disussed as and when

they arise, and summarised in x8.1.
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Chapter 3

Complex Variable methods for

Stokes ow

In the previous hapter we gave an overview of some of the ways in whih omplex variable methods

may be applied to solve the Hele-Shaw problem. The important onept of time-dependent

onformal maps from some known, simple domain onto the uid domain was introdued, so that

the problem redues to solving for the time-dependent oeÆients of this map. We saw how

useful the proess of analyti ontinuation an be in transforming boundary onditions to global

equations (an idea whih will be used even more extensively throughout this hapter). We de�ned

the Shwarz funtion of the free boundary, found the relation with the mapping funtion, and

showed how (at least for the zero-surfae tension problem) it is simply related to the omplex

potential of the ow. An in�nite set of onserved quantities was found to exist for the ase of

ow driven by a single point sink at the origin, and the analogous result for more than one sink

was given. Also, dedutive methods for �nding the orret funtional form for the onformal map

were desribed.

A natural question to ask now, sine we are using similar omplex variable methods to attak

the Stokes ow problem, is: \an we �nd Stokes ow analogues of any of these Hele-Shaw results?"

Thus, in this hapter, we are mainly onerned with the ZST, singularity-driven, Stokes ow

model. Provided the Capillary number of the ow is large (that is, the surfae tension parameter

is small), the driving singularity may be supposed to dominate the evolution, and the ZST model

should provide a good approximation to the motion. The two examples of driving mehanisms we

onsider are a point soure (or sink) within the ow, and a dipole. As for the Hele-Shaw problem,

the ZST model has the advantage of being muh easier to deal with analytially, but also the

disadvantage that solutions of interest often blow up within �nite time.

3.1 Rihardson's approah

The idea of applying omplex variable methods to two-dimensional slow visous ow is not a new

one. The formulation we use losely follows that of Rihardson [82℄, and we use almost idential

notation.

1

Sine Stokes ow is quasistati, we suppress time dependene in the notation, exept

where needed for emphasis. As mentioned in x1.3.1, biharmoni funtions may be expressed

in terms of omplex-valued funtions, using the Goursat representation (see for example [10℄).

Writing z = x+ iy, the biharmoni streamfuntion an thus be written as

 (x; y) = �=f�z�(z) + �(z)g; (3.1)

for funtions �; � analyti on the ow domain exept at driving singularities of the ow. All

physial quantities of interest an be written in terms of these \Goursat funtions" � and �, for

1

The main di�erene in notation is that we de�ne X (�) = �(w(�)) (equation (3.5)), whereas in [82℄, X(�) :=

�

0

(w(�)), whih we onsider onfusing.
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instane the (omplex) veloity �eld is easily veri�ed to be

u+ iv = �(z)� z�

0

(z)� �

0

(z); (3.2)

and the pressure is

p = �4�<f�

0

(z)g: (3.3)

The two SBC's (1.8) an be ombined to give a single omplex boundary ondition. We note that

if s is arlength along �
, then the normal n to the uid domain is given by n = (dy=ds;�dx=ds),

and also that if � is the angle made by the tangent to �
 with the x-axis, then the urvature �

is given by d�=ds. Hene on �
,

dz

ds

= e

i�

)

d

2

z

ds

2

= i�e

i�

= i�

dz

ds

:

Then, writing (1.8) as separate omponents, adding the seond to i times the �rst, and taking

the omplex onjugate, yields

�4�i

�

2

 

��z

2

d�z

ds

+ p

dz

ds

= T�

dz

ds

;

so we an substitute for �(dz=ds) from above, and for the pressure from (3.3) and �nally integrate

with respet to arlength s along �
 to obtain

�(z) + z�

0

(z) + �

0

(z) =

T i

2�

dz

ds

on �
(t): (3.4)

It should be pointed out that, although we stated earlier that we were onsidering 
(t) to be simply

onneted, (3.4) above is the �rst point at whih we have used this assumption. In performing the

integration along �
, we dropped an arbitrary onstant of integration. Provided we have only one

free boundary present, this is justi�able; however, if we have more than one free boundary (i.e. a

multiply onneted domain), we will have independent arbitrary onstants of integration for eah

one, only one of whih an then be taken to be zero without loss of generality. This assumption

greatly simpli�es the following analysis.

We again introdue a time-dependent onformal map, z = w(�; t), from the unit dis in �-

spae onto 
(t), whih is uniquely determined if we impose the usual normalisation onditions,

w(0; t) = 0 and w

0

(0; t) > 0 (see �gure 2.1).

Rihardson [82℄ derives two key equations ((2.18) and the unlabelled equation preeding (2.19)

in his paper) governing the ow evolution. To simply present these without justi�ation would

be unduly onfusing, so we give a ondensed aount of the derivation of that paper, with full

aknowledgement.

If we de�ne

�(�) := �(w(�)); X (�) := �(w(�)); (3.5)

then transformation of the left-hand side of (3.4) to the �-plane is straightforward. For the right-

hand side we need an expression for the omplex (antilokwise) tangent vetor dz=ds in terms

of �; for this we note that on �
 (so � = e

i�

for some � 2 (0; 2�)) we have

dz

ds

= w

0

(e

i�

)

d(e

i�

)

ds

= i�w

0

(�)

d�

ds

= i�

w

0

(�)

jw

0

(�)j

= i�fw

0

(�)=w

0

(�)g

1=2

; (3.6)

in the third equality here we used the fats that jdz=dsj = 1 and that d�=ds is real and positive for

the antilokwise tangent. We shall want to analytially ontinue (3.4) in the �-plane, a proess

whih is ompliated by the presene of the square-root branh-point on the right hand side of
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(3.6). The troublesome term may be split up into parts analyti inside and outside the unit dis,

writing

1

[w

0

(�) �w

0

(1=�)℄

1=2

=

1

jw

0

(�)j

= f

+

(�)� f

�

(�); (3.7)

where f

+

(�) and f

�

(�) are funtions analyti on j�j � 1; j�j � 1 respetively. This deomposition

is unique if we also insist f

�

(�)! 0 as � !1. The funtions f

�

(�) have expliit representations

obtained via the Plemelj formulae (f (2.26); see [10℄),

f

�

(�) =

1

2�i

I

j�j=1

1

jw

0

(�)j

d�

(� � �)

; (3.8)

for j�j < 1 and j�j > 1 respetively, and f

+

(0) is easily seen to be real. These identities rely on

the assumption that w

0

(�) is nonvanishing in a neighbourhood of �
 (onformality). A simple

argument reveals that the following identities are satis�ed:

f

+

(�) = f

+

(0)�

�

f

�

(1=�) and f

�

(�) = f

+

(0)�

�

f

+

(1=�): (3.9)

We now have all the information we need to formulate the SBC (3.4) in the �-plane. On the

right-hand side we use (3.6), (3.7) and (3.9), with the result (after a trivial rearrangement, and

use of the identity � = 1=

�

� on j�j = 1) that

�(�) +

T

2�

f

+

(�)�w

0

(�) = �w(�)

�

�

0

(1=�)

�w

0

(1=�)

�

�

X

0

(1=�)

�w

0

(1=�)

+

T

2�

f

�

(�)�w

0

(�) ; (3.10)

this is the �rst of the \key equations" and will hold not just on j�j = 1, but also elsewhere by

analyti ontinuation.

We also need to formulate the KBC (1.9) in the �-plane. Firstly, note that (3.2) and (3.4)

ombine to give

(u+ iv)

�


= 2�(z)�

iT

2�

dz

ds

: (3.11)

Consideration of the motion of a general partile at the point w(e

i�(t)

; t) on the boundary gives

(u+ iv)

�


= i�w

0

(�; t)

d�

dt

+

�w

�t

(�; t);

equating these two expressions, we �nd that

1

�w

0

(�; t)

�

2�(�)�

�w

�t

(�; t)

�

+

T

2�

1

fw

0

(�) �w

0

(1=�)g

1=2

= i

d�

dt

on j�j = 1. (3.12)

Clearly, the real part of the left-hand side must then vanish on j�j = 1. Using (3.7) and (3.9) this

an be rewritten as

<

�

1

�w

0

(�; t)

�

2�(�)�

�w

�t

(�; t)

�

+

T

�

f

+

(�)

�

=

T

2�

f

+

(0) on j�j = 1; (3.13)

whih is the seond of our key equations, and is analogous to the Galin equation (2.4) of x2.2.

Rihardson spei�ed �(0) = 0 (so �(0) = 0 too), a onvenient hoie whih ensures a unique

solution to the problem (providing, of ourse, one exists). In this ase, [ � ℄ in (3.13) has a simple

zero at � = 0, as does its denominator (w

0

(0) 6= 0 sine the map is onformal). Hene the

ombination in urly brakets in (3.13) is analyti on the unit dis, and sine it is also real at

� = 0, we may ontinue analytially, removing the \<" from the left-hand side to get an equation

whih holds wherever the quantities are de�ned ((2.19) in [82℄). A trivial rearrangement then

gives

2�(�)�

�w

�t

(�; t) =

T

2�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t): (3.14)
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In many ases this assumption is reasonable, giving physially aeptable solutions; however in

ases where we have a driving singularity at the origin we may need to allow �(0) to be �nite but

nonzero, or possibly even in�nite, and the above proedure is not so simple.

Consider a Stokes ow driven solely by surfae tension, with no driving singularity in the

ow domain. It an be shown [82℄ that, where a solution exists, the equations and boundary

onditions for the problem speify the solution only up to an arbitrary rigid-body motion, i.e.

there is nonuniqueness of the solution. A family of possible solutions to the problem then exists,

and an be obtained from any one solution by adding on arbitrary translations and/or rotations

to the veloity �eld.

To illustrate, suppose we have a Goursat solution pair (�

1

(z); �

1

(z)), satisfying all physial

requirements for a given problem; in partiular, we expet that the total momentum of the uid

domain should be zero.

2

Suppose also that �

1

(0) = A(t) 6= 0, where we assume A 2 R for

simpliity. Consider the seond Goursat pair,

�

2

(z) = �

1

(z)�A;

�

2

(z) = �

1

(z) +Az:

Clearly, the pressure �elds for these two Goursat pairs are idential by (3.3), and it is easily

heked that if the �rst pair satis�es the fore balane ondition (3.4), then so does the seond

pair. However, the veloity �elds di�er aording to

u

2

+ iv

2

= u

1

+ iv

1

� 2A;

in obvious notation.

The pair (�

2

(z); �

2

(z)) has the feature that �

2

(0) = 0, whih as we shall see, simpli�es

the solution proedure onsiderably (in partiular, a polynomial mapping funtion will yield a

solution if and only if this ondition holds); however if the �rst solution is the physially realisti

one, then this seond solution will have a nonzero net momentum (along the x-axis, in the ase

A 2 R). If there is no driving singularity in the ow, this is irrelevant; we may solve for the easier

ase �

2

(0) = 0, and subtrat o� the appropriate veloity ontribution a posteriori, if neessary.

However, if we do have a �xed driving mehanism suh as a soure or sink in the ow, then doing

this gives rise to a solution whih is still ontrived, sine it will have a singularity translating in

some spei�ed way within the ow domain.

If we are only interested in solutions to the mathematial model then this is of little onse-

quene, sine mathematially, the solutions are perfetly valid. However, if we are solving with

a partiular physial situation in mind, it is important to solve for the orret Goursat pair; we

annot then adjust the �nal form of the solution. Of ourse, if it were the ase that �(0) = 0

always gave the \orret" solution this would not be an issue, but this is not so, as we shall see

in x5.4.2. Similar remarks apply to the nonuniqueness of solutions up to rigid-body rotation;

however, in all the situations we onsider, net angular momentum vanishes automatially, and

this is not a problem. We therefore onsider the theory for the more general ase �(0) 6= 0.

If �(0) = A(t) then the ombination in urly brakets in (3.13) is no longer analyti on the

unit dis, but has a simple pole at the origin. The \analyti ontinuation" for this ase must

therefore have a simple pole on the right-hand side, and it is relatively easy to write down the

global equation (after multiplying through by �w

0

(�)) as

2�(�)�

�w

�t

(�; t) =

T

2�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t)

+

2w

0

(�)

w

0

(0)

(A�

�

A�

2

): (3.15)

2

There may be ertain unusual problems where we wish to speify a given, nonzero momentum for the uid

domain; this does not invalidate our disussion, sine the hoie �(0) 6= 0 may not give us the desired value for

the momentum. We emphasise the zero-net-momentum ase only beause this is most likely to be the physially-

relevant one.
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Note that, for this ase, the expression (3.2) reveals that �(0) represents a uniform stream su-

perimposed on the ow at the origin. Taking A =

�

A in the above then orresponds to hoosing

a diretion for this uniform stream (along the x-axis, here), whih will often be justi�able on

symmetry grounds. If �(�) has a simple pole at the origin, so that

�(�) �

B

�

+A+O(�) as � ! 0;

then if A and B are both real the analogous analyti ontinuation of the KBC is

2�(�)�

�w

�t

(�; t) =

T

2�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t) +

2Bw

0

(�)

�w

0

(0)

(1� �

4

) +

2w

0

(�)(1� �

2

)

�

A

w

0

(0)

�

Bw

00

(0)

w

0

(0)

2

�

; (3.16)

with a somewhat more unwieldy expression if A and B are omplex. We ould learly go on to

onsider higher-order singularities of �(�) at the origin, but we do not do this; for the work of

this thesis it is enough to note that we are able to deal with suh situations, should the need arise.

Note that by means of equations (3.10) and (3.14) (or (3.15), or (3.16)), we are, in priniple,

able to express all physial quantities in terms only of the mapping funtion w(�; t). Suh an

expression for the veloity �eld, whih is sometimes useful, is given in appendix C.

An alternative perspetive is given by writing the momentum in integral form. If P = (P

1

; P

2

)

is the dimensionless momentum of the uid domain then we have

P := P

1

+ iP

2

=

Z Z




(u+ iv) dx dy

=

1

2i

Z

�


�z(u+ iv) dz ;

using the omplex form of Green's theorem (see footnote (3) in hapter 2). Now, (u + iv)

�


is

given by (3.11) and so

P =

1

2i

Z

�


�

2�(z)�

iT

2�

dz

ds

�

�z dz ;

whih, formulated in the �-plane, beomes

P =

1

2i

Z

j�j=1

 

2�(�) +

T

2�

�

�

w

0

(�)

�w

0

(1=�)

�

1=2

!

w

0

(�) �w(1=�) d� : (3.17)

We do not expet surfae tension to alter momentum onsiderations, and we will be studying the

ZST problem in detail in any ase, so we onsider the ZST version of this momentum expression.

The integrand is suh that we an apply the Residue Theorem, one we know the singularities

within the unit dis. We assume that �(�) is regular exept possibly at the origin (sine at present

we are allowing a driving singularity only there). Hene the possible singularities are at � = 0, and

at the singularities of �w(1=�) (whih will be the inverse omplex onjugates of the singularities of

w(�) in j�j � 1). From this it is lear that momentum onservation is intriately tied up with the

behaviour of �(�) at the origin.

3.2 Redution to a single equation

We would like to simplify the problem to a single funtional equation, whih may also permit us

to see what kinds of mapping funtions w(�; t) will give solutions in partiular situations. To this

end, we note that the analyti ontinuation of the KBC (either (3.14), (3.15), or (3.16), depending

on what kind of asymptoti behaviour we want �(�) to have near � = 0) gives �(�) in terms of the
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mapping funtion. We an then substitute for �(�) in (3.10) and rearrange slightly (replaing �

by 1=� and taking the omplex onjugate) to get a single equation for X

0

(�) whih holds globally.

We refer bak to equations (3.1) and (3.5) for the de�nitions of �(�) and X (�). For the ase in

whih �(0) = 0 the result is espeially simple, being

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ ; (3.18)

(the funtion f

+

(�) is de�ned by (3.7) and (3.8)); this equation is equivalent to equation (21) of

[38℄. If �(0) = A(t) (real and nonzero) the result is

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) +

2A

w

0

(0)

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

=

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ : (3.19)

Clearly, these equations

3

are muh simpler if we take T = 0, and in this ase we �nd some rather

interesting results, whih we disuss in subsequent setions of this hapter. For the general ase,

one �rst has to speify the singularity in the ow, whih we take to be at the origin. From the

expressions for the veloity and streamfuntion in terms of �(z) and �(z), we then know what

the behaviour of �(�) and X (�) near � = 0 must be. If �(�) is bounded at the origin then we

have to deide whether or not we are able to insist �(0) = 0, sine this will hange the governing

equations. In [82℄ and [49℄, the net momentum of the ows is disussed. This ertainly ought

to be onserved, and for most physially-realisti ows it should be zero, whih, as ommented

earlier, is not always the ase with the assumption �(0) = 0. We ould onsider a blob of visous

uid with nonzero net momentum, but this will usually be an arti�ial situation. In general, the

veloity �eld in the neighbourhood of a singularity at the origin will have the form

u+ iv = [presribed singularity℄ + [O(1) uniform stream℄ +O(z);

and in [49℄, it is onjetured that a possible alternative ondition to impose is that the O(1)

uniform stream in this expression should vanish, for a physially realisable ow.

By way of illustration, suppose we have a point sink of strength Q > 0 at the origin. It is easy

to see (by onsidering the loal veloity �eld or streamfuntion) that the behaviour of �(z) and

�

0

(z) must be

�(z) = �(0) +O(z); �

0

(z) =

Q

2�z

+ �+O(z); as z ! 0, (3.20)

(sine �(0) � �(0)) where � is some O(1) quantity. Then near z = 0,

u� iv = �

Q

2�z

+ [�(0)� �℄ +O(z);

so �(0) is only one of two terms in this uniform stream superimposed on the point sink. Assuming

the onjeture of [49℄ to be true, then, it is not immediately obvious in any given situation whether

we have suÆient freedom to take it to be zero. We ould also onsider the veloity �eld in the

neighbourhood of other types of driving singularities suh as vortex dipoles. This gives the same

inonlusive result; a pure vortex dipole of strength M at the origin (with no auxiliary soure or

sink) requires

�(z) = �(0) +O(z); �

0

(z) = �

M

z

2

+ �+O(z); as z ! 0,

3

It is interesting to note that these evolution equations have the form of a general onservation law, that is,

�P=�t+�Q=�� = 0 (a fat whih has also been noted by [16℄). The weak formulation of suh a law takes the form

R

S

(P d� �Qdt) = 0, where the region of integration S will be the surfae of some ylinder in (�; t)-spae (P and

Q are evident from (3.18), (3.19)).

32



for some (di�erent) O(1) quantity �, and so the veloity �eld near z = 0 is

u� iv =

M

z

2

+ [�(0)� �℄ +O(z):

In either ase, with the above onjeture, solutions with �(0) = 0 an only be found if � = 0 in

the loal expansion for �

0

(z).

3.2.1 Another global equation

We an derive another global equation using a slightly di�erent approah, whih is similar to that

adopted by Jeong & Mo�att [52℄ for the steady problem. The derivation relies on writing the

KBC in a di�erent way to that of x3.1.

Using u

t

(z), u

n

(z) to denote the tangential and normal omponents of the uid veloity

4

(both

real), at a point z on �
, and (u; v) to denote the usual (x; y) omponents of veloity, we have

(u+ iv)j

�


= (u

t

� iu

n

)

dz

ds

:

Hene from (3.2) we see that

�(z)� z�

0

(z)� �

0

(z) = (u

t

(z)� iu

n

(z))

dz

ds

on �
; (3.21)

and this boundary ondition holds together with the fore balane ondition (3.4),

�(z) + z�

0

(z) + �

0

(z) =

T i

2�

dz

ds

on �
(t):

Rewriting these onditions in terms of � (this was done in x3.1 for the fore balane ondition)

and using the expression (3.6) for the omplex tangent dz=ds, they beome:

�(�) � w(�)

�

0

(�)

w

0

(�)

�

X

0

(�)

w

0

(�)

= i�(U

t

(�) � iU

n

(�))

w

0

(�)

jw

0

(�)j

; (3.22)

�(�) + w(�)

�

0

(�)

w

0

(�)

+

X

0

(�)

w

0

(�)

= �

T

2�

�

w

0

(�)

jw

0

(�)j

; (3.23)

both holding on j�j = 1. We use the notation U

t

(�), U

n

(�) to denote the the tangential and

normal omponents of the uid veloity in the �-plane. Adding (3.22) and (3.23) gives

2�(�)

�w

0

(�)

=

1

jw

0

(�)j

(U

n

(�) + iU

t

(�) �

T

2�

) on j�j = 1:

We also have equation (3.12) from x3.1,

1

�w

0

(�; t)

�

2�(�)�

�w

�t

(�; t)

�

+

T

2�

1

jw

0

(�)j

= i

d�

dt

on j�j = 1.

Comparing these two equations we see that

U

n

jw

0

(�)j

= <

�

w

t

(�)

�w

0

(�)

�

; (3.24)

U

t

jw

0

(�)j

= =

�

w

t

(�)

�w

0

(�)

�

+

d�

dt

: (3.25)

4

These are measured so that u

n

> 0 if the motion is along the outward normal, and u

t

> 0 if the veloity is

along the antilokwise tangent vetor.
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Addition of equations (3.21) and (3.4) yields

2=

�

�(z)

d�z

ds

�

=

T

2�

� u

n

;

whilst (3.4) alone gives

�(z)

d�z

ds

+ z�

0

(z)

d�z

ds

+ �

0

(z)

d�z

ds

=

iT

2�

:

Elimination of the quantity T=(2�) between these two equations gives

�(z)

d�z

ds

+ �z�

0

(z)

dz

ds

+ �

0

(z)

dz

ds

= �iu

n

)

d

ds

(�z�(z) + �(z)) = �iu

n

:

Clearly, for the steady problem, in whih u

n

� 0, this will just redue to the \streamline ondition"

that both the streamfuntion and its biharmoni onjugate (the Airy stress funtion; see x3.9)

may be taken to be onstant on the free boundary. For the time-dependent problem, we may

reast this equation in terms of � using the hain rule for the derivative with respet to �, and

equation (3.24); we �nd, after some rearrangement, the ondition:

�

��

�

X (�) + �w(1=�)

�

�(�)�

1

2

w

t

(�)

��

+

1

2

�

�t

(w

0

(�) �w(1=�)) = 0; (3.26)

holding on j�j = 1, and elsewhere, by analyti ontinuation. This equation may be ompared with

those derived earlier, namely (3.18)

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ ;

(in the ase �(0) = 0), and (3.19)

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) +

2A

w

0

(0)

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

=

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ ;

(in the ase �(0) = A(t), real and nonzero). The main point to note about (3.26) is that it is

independent of the surfae tension parameter T , so has the same form for both ZST and NZST

problems; however, it does ontain both the unknown Goursat funtions, whih makes it less

onvenient to work with. It is a time-dependent generalisation of the \streamline ondition" for

the steady problem. If we wish to use (3.26) to solve problems, we must use it in onjuntion

with the relevant expression for �(�) (examples of whih are given by (3.14), (3.15), (3.16) in

x3.1). Note that �(�) only appears in the partiular ombination �

�

(�) := �(�)�w

t

(�)=2, whih

simpli�es things a little. We shall return to this form of the equations in hapter 5.

3.3 Method of solution

We now reonsider equations (3.18) or (3.19). The funtion f

+

(�) is de�ned in (3.8), albeit

awkwardly, in terms of the mapping funtion w(�), so one we have proposed a form for this

map (typially a rational funtion of � with time-dependent oeÆients), the only unknown in

the evolution equation is the funtion X (�). For a partiular problem we know exatly what the

singularities of X (�) within the unit dis are (the \driving singularities", some examples of whih

were given above); elsewhere on the dis X (�) must be analyti. This is what enables us to solve

the problem; we must math singularities in equation (3.18) or (3.19).
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Suppose we rewrite the relevant equation, plaing X

0

(�) on the left-hand side and everything

whih depends only on w(�) on the right. Firstly, we must ensure that we hoose a funtional

form for w(�) whih will give a singularity of the right order (and in the right plae) to math with

that in X

0

(�) on the left-hand side. We onsider systemati proedures for doing this later on, but

often trial and error, or an \eduated guess" is good enough. The presene of the messily-de�ned

f

+

(�) on the right-hand side is not a problem at this stage, sine it is analyti on the unit dis.

One we have deided on a partiular form for w(�), we have the task of evaluating the right-

hand side of the equation asymptotially, near eah of its singularities. Any singularities for whih

there is no \math" on the left-hand side must be eliminated by setting the oeÆient to zero; if

there is a math, the relevant oeÆients must be equated.

Providing we have hosen a suitable form for the mapping funtion, this proedure should

yield a well-determined system of o.d.e.'s for the time-dependent oeÆients in the map. Solving

these equations then gives the solution for the onformal map, and hene the evolution of the

uid domain 
(t), whih is valid until suh time as the map eases to be univalent on the unit

dis (we refer bak to the omments of x2.7).

3.4 A simple example

We illustrate the tehnique with a very simple solution, the ZST Hele-Shaw version of whih was

given in x2.4. This is one of a family of solutions presented by Howison & Rihardson [49℄, though

we use slightly di�erent notation. The mapping funtion used is

w(�; t) = a

1

� + a

2

�

2

; (3.27)

by hoosing axes suitably we may assume a

1

and a

2

to be real and positive, as explained in

x2.4. Parameter values satisfying a

1

� 2a

2

give maps univalent on the unit dis (whih desribe

lima�on-shaped free boundaries); univaleny is lost when a

1

(t

�

) = 2a

2

(t

�

), with the free boundary

beoming a ardioid with a 3/2-power usp at the point z

�

= w(�1; t

�

). The ow is driven by

a single point sink at the origin, so that the Goursat funtions have the asymptoti behaviour of

(3.20). We take �(0) = 0: it an be easily seen that this is a neessary ondition for a solution of

the form (3.27). Then the equation governing the evolution is (3.18), with �(�) given by (3.14).

Near the origin, equation (3.18) beomes

�

�t

[w

0

(�) �w(1=�)℄�

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ = �

Q

��

+O(1):

Asymptoti evaluation of the left-hand side gives singularities of orders 1=� and 1=�

2

, the oeÆ-

ients of whih must be equated to �Q=� and zero, respetively. We �nd

w

0

(�) �w(1=�) =

a

1

a

2

�

2

+

1

�

(a

2

1

+ 2a

2

2

) +O(1);

and

�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0)) =

a

1

a

2

�

f

+

(0) +O(1);

hene the resulting equations are:

d

dt

�

a

2

1

+ 2a

2

2

�

= �

Q

�

;

d

dt

(a

1

a

2

) = �

T

2�

a

1

a

2

f

+

(0):

The funtion f

+

(0) is found (by diret integration in (3.8)) to be

f

+

(0) =

2

�a

1

K

�

2a

2

a

1

�

;
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where K( � ) denotes the omplete ellipti integral of the �rst kind (see [8℄, [30℄, or appendix B).

The evolution is determined by solving these equations for a

1

(t) and a

2

(t). When T > 0 the

solution does not break down, and all the uid is extrated from the domain. Note that the

solution proedure does not require the determination of the Goursat funtions �(�) and X (�),

but should we wish to �nd them we an do so using (3.14) and (3.18). Likewise, we an �nd

physial quantities suh as the pressure and the veloity �elds using expressions (3.3) (formulated

in the �-plane), and (3.41) or (C.1).

This partiular solution is an example of the kind disussed in x3.1, in that it has a onstant,

nonzero omponent of momentum in the x-diretion, although the sink is �xed within the ow.

However, as stated there, it is still mathematially tenable, even if physially dubious.

Polynomial solutions are onsidered further in x3.6.1, and the work of [49℄, from whih this

example is taken, is reviewed in x6.1.

3.5 Zero surfae tension problems

The zero surfae tension (ZST) model is appropriate when the surfae tension oeÆient is small,

and where we have a driving singularity in the ow whih dominates the motion (the Capillary

number, introdued in x1.3.1, is large). This singularity might be of a very general kind, but in

muh of the theory we shall, for de�niteness, assume that we have a single point sink in the ow.

We reall here the omment of x1.4.2 that the ZST Stokes ow is time-reversible; for the ase in

hand this means that if we let the ow evolve for some time under the ation of the point sink

(but not so long that solution breakdown ours!), stop the motion and replae the sink by a

soure of equal strength, the motion will be exatly reversed.

5

A onsequene of this fat is that

(for lassial solutions to the problem) unless our initial domain is a irle, with the sink at its

entre, omplete extration of the uid annot our. Solution breakdown will inevitably be an

issue then, for all exept trivial ases of this problem.

We assume that the singularity is situated at the origin, z = 0, so that it is also �xed at the

origin in the �-plane. For a point sink of strength Q > 0 the loal behaviour of � and � is given

by (3.20), hene that of �(�) and X

0

(�) is given by

�(�) = �(0) +O(�); X

0

(�) =

Q

2��

+

�

�w

0

(0) +

Qw

00

(0)

4�w

0

(0)

�

+O(�); (3.28)

as � ! 0. With the assumption �(0) = 0, by (3.18) the governing equation is simply

�

�t

[w

0

(�) �w(1=�)℄ = �2X

0

(�); (3.29)

and the funtion �(�) is given in terms of the mapping funtion by the relevant analyti ontin-

uation of (3.13),

�w

�t

(�; t) = 2�(�); (3.30)

we onsider this simplest ase �rst. The right-hand side of (3.29) is analyti on the unit dis, save

for the simple pole at the origin spei�ed in (3.28). We begin by deriving an interesting result

of a very general nature; the existene of an in�nite set of onserved quantities for the problem.

For ompleteness and for future referene we shall also give the result for the ase of non-zero

surfae tension, although in this ase the quantities are not onserved, but evolve aording to a

ompliated system of nonlinear o.d.e.'s.

5

We really need the proviso here that we onsider only lassial solutions in whih the free boundary is analyti

for all times less than the breakdown time, sine in hapter 6 we shall see \weak" solutions where a nonanalyti

free boundary is permitted, and time-reversibility annot be inferred.
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3.6 The onserved quantities

Consider the quantities C

k

(t) de�ned by

C

k

(t) : =

Z Z




�

k

dx dy (k � 0)

=

1

2i

Z

�


�

k

�z dz

=

1

2i

Z

j�j=1

�

k

w

0

(�) �w(1=�) d�: (3.31)

Then, from (3.29), we see that

2i

dC

k

dt

=

d

dt

"

Z

j�j=1

�

k

w

0

(�) �w(1=�) d�

#

=

Z

j�j=1

�

k

�

�t

(w

0

(�) �w(1=�)) d�

= �2

Z

j�j=1

�

k

X

0

(�) d�

= �4�iRes

�

�

k

X

0

(�)

�

�=0

:

With a single point sink/soure at the origin, we have the asymptoti behaviour of (3.28), and

the above equations redue to

dC

k

dt

=

8

<

:

�Q k = 0 ;

0 k = 1; 2; : : : ;

(3.32)

thus revealing the onserved quantities. The �rst of these learly represents onservation of mass,

sine we have

Area of 
 =

Z Z




dx dy � C

0

:

This system may be modi�ed to deal with other singularities at the origin, for example multipoles

(the analogous Hele-Shaw multipole problem was onsidered by Entov et al. in [24℄). For instane,

if we have a dipole singularity at the origin (having the x-axis as streamline), so that the loal

behaviour is X (�) = M=(�w

0

(0)) + O(1), and �(�) = O(1), then the orresponding system of

equations is easily seen to be

dC

k

dt

=

8

>

>

<

>

>

:

2�M

w

0

(0)

k = 1 ;

0 k = 0; k � 2:

We note also that the above readily generalises from �

k

(in the de�nition of C

k

) to arbitrary

funtions h(�) analyti on the unit dis, the result being

C

[h℄

(t) =

Z Z




h(�) dx dy =

1

2i

Z

j�j=1

h(�)w

0

(�) �w(1=�) d�

)

d

dt

C

[h℄

= �Qh(0); (3.33)

this an be useful for some initial and boundary value problems.

As promised, we now give the analogous result for the NZST problem. The proedure is

exatly the same, exept we use (3.18) rather than (3.29), with the extra term on the right-hand
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side. Integration by parts is used to deal with this term, giving the system of equations for this

ase as

dC

k

dt

=

8

>

>

>

<

>

>

>

:

�Q (k = 0);

�

kT

�

"

f

+

(0)

2

C

k

+

1

X

r=1

f

(r)

+

(0)

r!

C

k+r

#

(k � 1):

(3.34)

The �rst equation is the same as for the ZST problem, this being the mass onservation result.

The f

(r)

+

(0) are obtained from (3.8) and are nonlinear funtions of the oeÆients of w(�; t). Note

that if time is resaled via

� =

T

�

t;

then the system (3.34) beomes

dC

k

d�

=

8

>

>

>

>

<

>

>

>

>

:

�

�

T

Q (k = 0);

�k

"

f

+

(0)

2

C

k

+

1

X

r=1

f

(r)

+

(0)

r!

C

k+r

#

(k � 1):

Whenever T 6= 0 then, it an be saled out of the problem, provided we also resale the sink

strength Q.

Further progress on this NZST problem for the general mapping funtion looks deidedly

unpromising and we do not pursue it further, although we reall that, as mentioned earlier, the

NZST problem proves surprisingly tratable in ertain individual ases.

3.6.1 Polynomial mapping funtions

We illustrate our results with the map

w(�) =

N

X

r=1

a

r

(t)�

r

: (3.35)

This will learly give a solution to both the ZST and NZST problems, by (3.32) and (3.34), sine

only the �rst N of the C

k

(t) are nonzero; moreover, the degree of the polynomial map must remain

the same throughout for both problems, as a onsequene of the invariants C

k

� 0 (k � N), and

C

N�1

6= 0. Bearing in mind the disussion of x2.7, the oeÆients a

r

(t) here must be subjet

to various onstraints to ensure univaleny of w(�), but we an only be spei� about these in

speial simple ases, for example N � 3 (see [50℄, [15℄) or if a

r

= 0 for r 6= 1; N (see [49℄); for

the general polynomial they are too diÆult. Assuming we have a univalent map then,

6

we may

evaluate the C

k

diretly from the de�nition (3.31),

C

k

= �

N�k

X

n=1

na

n

�a

n+k

0 � k � N � 1; (3.36)

all other C

k

being identially zero. The nonzero invariants C

k

, and C

0

(0), are determined

by the initial onditions. Equations (3.32), when integrated, onstitute a set of nonlinear si-

multaneous equations for the oeÆients a

r

(t) whih may be solved by starting with the last

6

It will in fat be suÆient for our purposes to ensure that we start o� at time t = 0 with a univalent map,

sine the polynomial solution is bound to break down within �nite time anyway by the observation of x3.5. The

oeÆients evolve smoothly with time, so we are at least guaranteed loal existene of the solution in time by doing

this.
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(C

N�1

=onstant) and working bakwards. The evolution is then fully determined until suh

time as the mapping (3.35) eases to be univalent.

In x3.4 we solved for the mapping funtion (3.35) in the ase N = 2. The results of this setion

give the same evolution equations muh more quikly; in the NZST ase equations (3.34) give

dC

0

dt

= �Q;

dC

1

dt

= �

T

2�

f

+

(0)C

1

;

with C

0

and C

1

given by (3.36) as

C

0

= �(ja

1

j

2

+ 2ja

2

j

2

); C

1

= �a

1

�a

2

;

this is exatly as we found in x3.4 (where we assumed real oeÆients, without loss of generality).

Tanveer & Vasonelos [96℄ onsidered polynomial solutions for the omplementary NZST

problem of a bubble in an unbounded expanse of uid. Setting T = 0 in their analysis, one an

reover onserved quantities similar to those above. The NZST polynomial solution for the speial

ase in whih a

r

= 0 for r 6= 1; N has been found exatly by Howison & Rihardson [49℄; we shall

later use ideas from that paper to onsider the NZST ase for a ubi polynomial map in the limit

T ! 0.

3.6.2 Comparison with the Hele-Shaw problem | `Rihardson's Mo-

ments' and other matters

The results of this setion bear a strong resemblane to the theory of `Rihardson's moments' in

the ZST Hele-Shaw problem, whih we desribed in x2.5. The similarities and di�erenes of the

Stokes ow and the Hele-Shaw problems were �rst remarked upon in [49℄, and the results of this

hapter add weight to their observations.

Reall from x2.5 that the Hele-Shaw moments of the uid domain are de�ned by the formula

M

k

=

Z Z




z

k

dx dy =

1

2i

Z

�


z

k

�z dz k = 0; 1; 2; : : : ;

for the ase we have been onsidering here, namely ows driven by a single sink at the origin,

they are onserved in a manner idential to our C

k

,

dM

k

dt

=

8

<

:

�Q k = 0 ;

0 k = 1; 2; : : : :

The C

k

are de�ned by the integrals

C

k

=

Z Z




�(z)

k

dx dy =

1

2i

Z

�


�(z)

k

�z dz k = 0; 1; 2; : : : ; (3.37)

the similarity of these expressions with the de�nitions of theM

k

is striking. The apparent simpli-

ity of the expression (3.37) is misleading, however, sine it presupposes knowledge of the inverse

onformal map, � = �(z). The derivation of the onservation laws required that we reformulate

the integrals in the �-plane, as

C

k

=

1

2i

Z

�


�

k

�w(1=�)w

0

(�) d�;

whih although super�ially more ompliated, is atually more onvenient to work with.
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In addition, a version of the Stokes ow evolution equation (3.18) may be obtained for the

Hele-Shaw problem, whih in dimensionless form is

�

�t

[w

0

(�) �w(1=�)℄�

�

��

[2�(�) + w

t

(�) �w(1=�)℄ =

� T

�

��

�

2�w

0

(�) �w

0

(1=�) + w

0

(�) �w

00

(1=�) + �

2

w

00

(�) �w

0

(1=�)

�(w

0

(�) �w

0

(1=�))

3=2

�

; (3.38)

where �(�) is the omplex potential for the ow (so � = �p + i ), realling the de�nitions of

x2.2.

7

The form of the singularity on the right-hand side of this equation, as ompared with (3.18),

explains why the NZST Hele-Shaw problem is so muh less tratable than the NZST Stokes ow

problem, despite being governed by only a seond-order (rather than a fourth-order) p.d.e.|in

general, if one assumes a spei� form for the mapping funtion w(�) at time t = 0 (one whih

works for the ZST problem; usually rational, or rational-logarithmi), it is no longer guaranteed

that the same funtional form persists for t > 0. For the Stokes ow problem, at least with the

assumption �(0) = 0, we do have this guarantee (see [82℄); but in any ase this an be seen, more

or less, just by looking at the form of equation (3.18). To put it another way, for the Stokes ow

problem, if a partiular mapping funtion gives a solution to the ZST problem, this same map

will also give a solution to the NZST problem (reall the omment made for the polynomial maps

in x3.6.1); this is very de�nitely not the ase for the Hele-Shaw problem.

Multiplying the ZST version of (3.38) by w(�)

k

and integrating around the unit irle yields

the moment onservation result (when we transform the result to an integral in the z-plane).

Writing the equations in this way highlights the di�erenes, as well as the similarities, between

the ZST problems, and their methods of solution. Reall that the Shwarz funtion for an analyti

urve  is the unique (loally analyti) funtion g(z) suh that the equation �z = g(z) de�nes ,

with the identity

g(z) = g(w(�)) = �w(1=�)

holding. Considering the ZST version of (3.18), we see that sine X (�) must be analyti on the

ow domain exept at driving singularities, the (non-driving) singularities of the Shwarz funtion

within 
(t) for Stokes ow must remain �xed in the �-plane, whereas for Hele-Shaw ow we have

seen that they remain �xed in the physial plane. For Hele-Shaw, it is best to work in the physial

plane wherever possible, hene we use equation (2.11) rather than (3.38), while the equations of

Stokes ow are easiest to deal with when formulated in the �-plane. These observations tie in

with the above integral expressions (over the domains in physial spae for Hele-Shaw, and in

�-spae for Stokes ow) for the onserved quantities.

3.6.3 Soure/sink systems | a warning example

Given the results for Hele-Shaw, an \obvious" question to onsider next is whether the results

of x3.6 might be extended to systems of soures and sinks distributed throughout the ow do-

main (refer bak to �gure 2.4 for a typial geometry). It is instrutive to do this, as it reveals

ompliations whih an arise with the solution method of x3.3. We may as well take one of the

singularities to be situated at the origin, and suppose the others to be at �xed points z

k

in 
(t)

(1 � k � N). Sine we have already stipulated w(0) = 0, w

0

(0) > 0, we assume the preimages

of these points under our onformal map to be time dependent, z

k

= w(�

k

(t)), say. The loal

behaviour of X

0

(�) at suh a point will then be

X

0

(�) =

Q

k

2�(� � �

k

(t))

+O(1) as � ! �

k

(t), (3.39)

7

This is just equation (2.11) reformulated in the �-plane for diret omparison with the Stokes ow result. The

onserved quantities for Hele-Shaw an be derived without reourse to omplex variable theory, and extension to

higher spatial dimensions is straightforward|see for example [35℄|whih seems to be not the ase for Stokes ow.
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where Q

k

<; > 0 indiates that we have a soure/sink (respetively) of strength jQ

k

j. We shall

refer to \sinks" throughout, for simpliity, but it is understood that we have a soure if Q is

negative.

Before we attempt to derive invariants et., we �rst pause to think about the restritions

equation (3.29) will impose on the hoie of mapping funtion w(�). Consider this equation near

one of the sinks Q

k

(not z = 0). If we are to have a balane of terms there (x3.3), then by (3.39)

we must have (integrating with respet to time)

w

0

(�) �w(1=�) = �

k

log(� � �

k

(t)) +O(1); (3.40)

for some �

k

, whih must be onstant if we are to avoid a logarithmi singularity in X

0

(�), whih

should not be present if we have a pure sink at z

k

. Even if we relax this assumption somewhat,

suh a singularity is not physially aeptable, as an be seen by onsidering the expression for

the veloity �eld in terms of �'s (see (3.2)),

u� iv = �(�) � w(�)

�

0

(�)

w

0

(�)

�

X

0

(�)

w

0

(�)

: (3.41)

The �rst two terms on the left-hand side are regular (�(�) = w

t

(�)=2; so is regular everywhere),

as is 1=w

0

(�) in the third term, hene the only singularities here are those of X

0

(�). Logarith-

mi singularities in X

0

(�) will never be allowable within j�j � 1 then, sine they give rise to a

multivalued veloity �eld.

Returning to (3.40), sine w(�) is univalent on the unit dis, the singularity on the right-

hand side must ome from �w(1=�) on the left-hand side, so that the mapping funtion must have

logarithmi branh-points outside the unit dis (at points 1=��

k

, to be spei�; branh uts an

then be taken from these points to in�nity). The preimage of z = 0 is time-independent, so we

do not need a logarithmi singularity in �w(1=�) at the origin. Indeed, the presene of suh a

singularity would be unaeptable, sine it would imply a logarithmi singularity in w itself at

the origin.

Possible solutions are thus very restrited by the presene of additional sinks. Seeking the

simplest options, we �rst attempt a solution with one entral sink Q and the others plaed

symmetrially about it, and of equal strengths Q

1

. The above analysis strongly suggests trying a

map of the form

w(�) = a� + b

k=N

X

k=1

$

k

log(1� �$

�k

);

where $ = e

2�i=N

, and 0 <  < 1, whih has the neessary singularities. The non-entral sinks

here must be positioned at z

k

= w($

k

) (so �

k

� $

k

). Mathing singularities in (3.29) at � = 0

aording to the proedure outlined in x3.3 yields the o.d.e.

d

dt

[a(a� bN)℄ = �

Q

�

: (3.42)

When mathing at � = $

k

, the left-hand side of (3.29) has the loal behaviour

�

�t

[w

0

(�) �w(1=�)℄ =

�b

(� � $

k

)

�

a�

Nb

1� 

2

�

d

dt

+ $

�k

d

dt

�

b

�

a�

Nb

1� 

2

��

log(� � $

k

) +O(1);

so mathing the simple poles and eliminating the logarithm (reall the earlier disussion about

onstant �

k

in (3.40)) gives two more equations,

b

d

dt

�

a�

Nb

1� 

2

�

= �

Q

1

�

; (3.43)

and b

�

a�

Nb

1� 

2

�

= onstant. (3.44)
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This would all be �ne, were it not for the fat that we have not yet required that the sinks be

�xed in the physial plane. This imposes an extra ondition,

w() = onstant;

giving a total of four independent equations for the three unknown funtions a(t), b(t), (t).

One might expet that the diÆulty ould be overome if, instead of assuming time-dependent

preimages �

k

(t), we tried to �x them in the �-plane. Similar arguments (for the problem with

symmetry) then lead us to a map with simple poles at � = $

k

= (instead of the logarithmi

singularities), where now  must be onstant, so we have one fewer unknowns. In this ase we get

one equation from mathing at the sink at z = 0, one from mathing at any of the sinks z = z

k

,

but again we have the further ondition that the sinks be �xed in the physial plane, so we have

a total of three independent equations for only two unknowns, a(t), b(t), and the system is still

overdetermined. The best we an do is to impose onditions (3.42), (3.43) and (3.44), and allow

the sinks to move in a manner ditated by their solution, whih is not very satisfatory.

This \overdeterminedness" of the system of o.d.e.'s whih arises when we try to allow more

than one sink is a problem, sine we an see that it is not a feature of the partiular geometry

we assumed in this example, but will arise quite generally whenever we have more than one

singularity. Similar problems are enountered in hapter 5 in our disussion of problems on

unbounded domains; there, we attempt to irumvent the diÆulty by allowing �(0) 6= 0.

3.7 The Shwarz funtion for the ZST problem

Reall the results of x2.5, where the Hele-Shaw moment onstants were linked to the Cauhy

transform of the uid domain (and hene to the singular part of the Shwarz funtion of the

boundary), and a systemati method was presented of �nding the orret form of the mapping

funtion to solve the ZST Hele-Shaw problem with a partiular driving mehanism. We now

onsider whether similar results might exist for the ZST Stokes ow problem.

The Shwarz funtion is known to be analyti in some neighbourhood of the free boundary, so

we may write g(z) = h

0

(z) for some funtion h, whih will be analyti in the same neighbourhood

of �
. Then de�ning H(�) = h(w(�)) we �nd

H

0

(�) =

d

d�

(h(w(�))) = g(w(�))w

0

(�) = w

0

(�) �w(1=�); (3.45)

using the funtional identity (2.12), g(w(�)) = �w(1=�). Comparison of this expression (3.45) for

H

0

(�) with the de�nition (3.31) of the quantities C

k

(t) immediately reveals the C

k

to be the

oeÆients of the prinipal part of the Laurent expansion of H

0

(�; t) about � = 0,

H

0

(�; t) =

1

�

1

X

k=0

C

k

�

k+1

+ (regular at � = 0);

this will hold regardless of any assumption about the behaviour of �(�) at the origin. Using the

deomposition (2.27) on the Shwarz funtion, and analogously on the funtion h(z), then writing

H

e

(�) = h

e

(w(�)), so that H

e

ontains all the singularities of H within the unit dis, we have

H

0

e

(�; t) =

1

�

1

X

0

C

k

�

k+1

) H

e

(�; t) =

C

0

�

log � �

1

�

1

X

1

C

k

k�

k

: (3.46)

We use the notation h

e

and H

e

to onform with the Hele-Shaw work of x2.5, but with slight

relutane, sine the subsript \e" was introdued to denote analytiity in the exterior of the uid
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domain. Although this is always true for the singular part of the Shwarz funtion g

e

(z), the

funtion h

e

(z) has a logarithmi singularity at the origin, and hene also at in�nity.

8

Suppose we have the ase in whih �(0) = A(t) (nonzero and real). The equation governing

the evolution is then

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) +

2A

w

0

(0)

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

= 0; (3.47)

and �(�) is given by

�(�) =

1

2

w

t

(�) +

A

w

0

(0)

w

0

(�)(1 � �

2

); (3.48)

using equations (3.19) and (3.15), with T = 0. Realling (3.45), it follows from (3.47) that

�X

0

(�) =

1

2

�

2

H

�t ��

+

A

w

0

(0)

�

��

�

(1� �

2

)H

0

(�)

�

;

whih may be integrated one with respet to �, giving

1

2

�H

�t

+

A

w

0

(0)

(1� �

2

)

�H

��

= �X (�): (3.49)

So, we have a partial di�erential equation whih must be satis�ed globally by the primitive of the

Shwarz funtion, in the �-plane.

We want to take the singular part of (3.49) within the unit dis, to get a p.d.e. for H

e

(�; t).

When doing this, we must remember to subtrat o� the regular terms arising from the term

�(A�

2

=w

0

(0))�H

e

=�� on the left-hand side. The result is

1

2

�H

e

�t

+

A

w

0

(0)

(1� �

2

)

�H

e

��

= �

A

�w

0

(0)

(C

0

� + C

1

)�X

sing

(�); (3.50)

or, de�ning the saled time variable � by

d�

dt

=

2A(t)

w

0

(0; t)

; (3.51)

(the onstant of integration taken to be zero, so that the time origins oinide),

�H

e

��

+ (1� �

2

)

�H

e

��

= �

1

�

(C

0

� + C

1

)�

w

0

(0)

A

X

sing

(�): (3.52)

In the above, X

sing

(�) denotes the stritly singular part of X (�) within the unit dis, whih will

be known preisely one we have spei�ed the driving singularity. For instane, with the point

sink at the origin, X

sing

(�) = Q=(2�) log �, whilst a dipole of strengthM at the origin, having the

x-axis as a streamline, gives X

sing

(�) =M=(w

0

(0)�).

De�ne the funtion

F(�; �) =

1

X

1

C

k

k�

k

: (3.53)

Then

H

e

(�; �) =

C

0

�

log � �

1

�

F(�; �); (3.54)

8

Note also that the onept of \exterior" annot be sensibly applied to the funtions in the �-plane, sine

although the domain fj�j � 1g maps to the interior of the uid domain, it is not the ase that fj�j � 1g maps to

the exterior of the uid domain. This is being rather pedanti, however; the important thing is that the funtions

H

e

(�) and G

e

(�) ontain all the singularities of H(�) and G(�) within the unit dis.
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and (3.52) beomes

�F

��

+ (1� �

2

)

�F

��

=

C

0

�

+ C

1

+

�w

0

(0)

A

^

X

sing

(�); (3.55)

where

^

X

sing

(�) := X

sing

(�)�Q=(2�) log �, so we have subtrated o� any point sink behaviour. If,

for example, we have a ow driven only by a point sink, then

^

X

sing

(�) � 0, and the p.d.e. for F

is just

�F

��

+ (1� �

2

)

�F

��

=

C

0

�

+ C

1

; (3.56)

while if we have a dipole of strength M at the origin (and no point sink) driving the ow, then

(3.55) beomes

�F

��

+ (1� �

2

)

�F

��

= (C

0

+

M�

A

)

1

�

+ C

1

; (3.57)

whih is essentially the same equation. In equation (3.56), C

0

(�) will be hanging in aordane

with mass onservation for a point sink, while in (3.57) C

0

will just be a positive onstant equal

to the area of the uid domain. We an solve suh p.d.e.'s with relative ease. Consider the ase in

whih F(�; �) satis�es (3.56). We an simplify this equation by subtrating from F the quantity

R

�

C

1

(�

0

) d�

0

, so that we need only solve

�

^

F

��

+ (1� �

2

)

�

^

F

��

=

C

0

(�)

�

:

The equations of the harateristi projetions of this p.d.e. in the (�; �)-plane are

� = tanh(� + �);

the di�erent harateristis being given by varying the parameter �. Equivalently, the ombination

� = tanh

�1

� � �

is onstant along a harateristi. On harateristis,

d

^

F

d�

=

C

0

(�)

tanh(� + �)

;

and so �nally the solution to the p.d.e. (3.56) is:

F(�; �) =

Z

�

0

C

0

(�

0

) d�

0

tanh(�

0

� � + tanh

�1

�)

+ f(tanh

�1

� � �)

+

Z

�

0

C

1

(�

0

) d�

0

; (3.58)

where f is some arbitrary funtion whih depends on the initial onditions imposed. The solution

of (3.57) also follows immediately from this, if we just replae C

0

by (C

0

+M�=A) in (3.58).

For the Hele-Shaw problem we are able to work out how the singularities of the Shwarz

funtion g(z) vary in time (and spae), and, in ertain situations, dedue the form of the mapping

funtion from the funtional identity (2.27). This proedure was outlined in x2.5, and a detailed

example will be given in x5.3. For Stokes ow, the singular part of the Shwarz funtion is given

by

G

e

(�) = g

e

(w(�)) = h

0

e

(w(�)) =

H

0

e

(�)

w

0

(�)

:
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We know also from the identity (2.27) that

g

i

(w(�)) +G

e

(�) = �w(1=�); (3.59)

and that the �rst term on the left-hand side here is analyti within the unit dis. Hene the

singularities of �w(1=�) in j�j � 1 must be exatly those of G

e

(�), whih (in priniple) will tell us

the general form of the mapping funtion we must try if we wish to obtain a solution. In pratie,

we �nd it easier to make use of the equivalent relation (3.45), whih implies that the singular part

of the ombination w

0

(�) �w(1=�) within the unit dis is given by

[w

0

(�) �w(1=�)℄

sing

= H

0

e

(�):

We have H

e

(�) from the solution of (3.55), and the relation (3.54). The above equation then tells

us the singularities of �w(1=�) within the unit dis, sine the mapping funtion itself is analyti

there.

A few remarks are in order before we move on. Firstly, if we do use the method outlined above

to �nd the form of the mapping funtion for a partiular geometry, we must remember that we

are working with a saled time variable, and so instead of using the governing equations in the

form (3.19) and (3.15) to determine how the parameters of the map evolve in time, we must �rst

resale time and use them in the form

w

0

(0)

A(�)

X

0

(�) +

�

��

(w

0

(�) �w(1=�)) +

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

= 0; (3.60)

and

�(�; �) =

A(�)

w

0

(0)

�

�w

��

(�) + w

0

(�)(1� �

2

)

�

: (3.61)

Seondly, we have so far in this setion ignored the simpler ase in whih �(0) = A � 0. In this

ase, the p.d.e. satis�ed by H

e

(�) (now in terms of the original time variable, t) is just

�2X

sing

(�) =

�H

e

�t

: (3.62)

For the ase of a dipole singularity at the origin, this has solution

H

e

(�; t) = H

e

(�; 0)�

2M�(t)

�

; (3.63)

where �(t) is de�ned by

�(t) :=

Z

t

0

dt

0

w

0

(0; t

0

)

:

With a single point sink driving the ow the equation is even simpler sine the left-hand side is

fully known; the solution in this ase is

H

e

(�; t) = H

e

(�; 0)�

Qt

�

log �: (3.64)

Expliit solutions for H

e

(�; t) are muh easier to deal with now, hene working out the form of

w(�) needed for a partiular geometry is a simpler task.

The example we onsider at length in x5.4 is the same for both ases A 6= 0, A = 0; it is

the problem of a vortex dipole plaed o�-entre in an initially irular uid domain (this is also

the example we give in x5.3 illustrating the analogous proedure for the Hele-Shaw problem, and

was motivated by a very similar Hele-Shaw problem solved by Rihardson [79℄). We present it

beause it highlights a problem whih an arise with Stokes ow solutions, whih does not our

with Hele-Shaw problems: we an obtain solutions to the mathematial problem with relative
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ease, but they are not always physially realisti. Thus, in our example, we �nd that the solution

for the ase A = 0 is unlikely on physial grounds (with the large-domain limit having the dipole

singularity moving relative to the uid mass in some spei�ed way), whih is what leads us to

onsider the more ompliated ase.

Suh behaviour means that we should, in general, treat Stokes ow solutions with irumspe-

tion. In x5.4.2, we \solve" a �nite domain problem, and then take the large domain limit. It is

only when we do this that the unphysial nature of the solution beomes apparent; for the �nite

domain ase it is not obvious that there is a problem. We might all suh solutions \formal",

sine they are ertainly solutions to the mathematial problem, but are unlikely to be observed

in pratie.

3.8 The \moments" for the ase �(0) 6= 0

We now onsider the evolution equations satis�ed by the (ZST) Stokes ow \moments" in the

ase that �(0) = A is nonzero (but bounded). Clearly, they will no longer be onserved in this

ase. The governing equations are then (3.47) and (3.48); for simpliity, we assume the ow to be

driven by a single point sink at the origin. Following the proedure of x3.6, we multiply equation

(3.47) through by �

k

and integrate around the unit dis. Using integration by parts on the extra

term ontaining the fator A (whih in general will depend on time, sine A(t) := �(0; t)), and

with the C

k

(t) de�ned by (3.31), it is readily seen that the equations satis�ed are

dC

k

dt

=

8

>

>

<

>

>

:

�Q k = 0 ;

2Ak

w

0

(0)

(C

k�1

� C

k+1

) k = 1; 2; : : : ;

(3.65)

so in general we have a system of oupled di�erential equations to solve for the C

k

. An immediate

onsequene of these equations is that polynomial solutions no longer exist. If w(�) is a polynomial

of degree N , then realling (3.36) we have C

k

(t) � 0 for k � N . It then follows from the k = N

equation of (3.65) that C

N�1

� 0, and working bak through the system in this way we see that

all the C

k

will have to vanish identially, and there an be no suh solution. Hene, if there exist

solutions to this problem, they must be for non-terminating power series mapping funtions.

The system (3.65) is simpler when written in terms of the time variable � introdued in (3.51)

of x3.7, sine we then have

dC

k

d�

=

8

>

<

>

:

�

Qw

0

(0)

2A

k = 0 ;

k(C

k�1

� C

k+1

) k = 1; 2; : : : :

(3.66)

The funtion F(�; �) introdued (and solved for) in (3.53) of x3.7 is a kind of generating funtion

for the (k � 1) \moments", and we ould equally well have derived equation (3.56) by multiplying

the equations (3.66) (for k � 1) through by �

�(k+1)

=k and summing them. To reover the

quantities C

k

(�), we need the derivatives (evaluated at � = 0) of the \usual" generating funtion,

de�ned by

F

1

(�; �) =

1

X

1

C

k

k

�

k

� F(

1

�

; �): (3.67)

The equation satis�ed by F

1

follows from (3.56) as

�F

1

��

+ (1� �

2

)

�F

1

��

= C

0

� + C

1

;

so that the solution is immediate from (3.58) as

F

1

(�; �) =

Z

�

0

C

0

(�

0

) tanh(�

0

� � + tanh

�1

�) d�

0

+ f

1

(tanh

�1

� � �)

46



+

Z

�

0

C

1

(�

0

) d�

0

; (3.68)

for some funtion f

1

whih depends on the initial onditions. Again, the solution for F

1

when we

have a dipole singularity at the origin (instead of the point sink) is obtained from this by replaing

C

0

(�

0

) by (C

0

+M�=A(�

0

)) in (3.68). Equating the onstant term on the right-hand side to zero

gives a \onsisteny ondition" whih must be satis�ed, namely

0 =

Z

�

0

C

0

(�

0

) tanh(�

0

� �) d�

0

+ f

1

(��) +

Z

�

0

C

1

(�

0

) d�

0

; (3.69)

equating the oeÆients of � gives

C

1

(�) =

Z

�

0

C

0

(�

0

) seh

2

(�

0

� �) d�

0

+ f

0

1

(��); (3.70)

whih is learly equivalent to (3.69). This equation, and the k = 0 equation of (3.66), provide

onstraints on C

0

(�), C

1

(�), and A(�).

3.9 The stress funtion

It has reently been noted by King [58℄ that it is possible to de�ne a kind of `Baiohi transform'

for the Stokes ow problem (reall the analogous transformation for the Hele-Shaw problem,

de�ned in x2.6). Here, the dependent variable we transform is the Airy stress funtion, whih we

now introdue. De�nitions vary slightly in the literature, but we de�ne the stress funtion, A,

to be a biharmoni onjugate of the streamfuntion  , so that in the Goursat representation we

have

A+ i = �[�z�(z) + �(z)℄: (3.71)

Alternatively, in terms of the stress tensor (�

ij

) the equations satis�ed by A are

�

11

= �p+ 2�u

x

= �2�A

yy

;

�

12

= �

21

= �(u

y

+ v

x

) = 2�A

xy

;

�

22

= �p+ 2�v

y

= �2�A

xx

;

whih shows that p = �r

2

A. The pressure is harmoni for Stokes ow, so it follows that A must

be biharmoni. It is straightforward to work from the stress tensor de�nition to the form in (3.71).

To �nd the boundary onditions satis�ed by A we use the Goursat form. Firstly, the hain rule

gives

�A

�s

=

�A

�z

�z

�s

+

�A

��z

��z

�s

;

from whih we see, using (3.71), that on �
,

�2

�A

�s

=

dz

ds

(z�

0

(z) + �

0

(z) + �(z)) +

dz

ds

(z�

0

(z) + �

0

(z) + �(z))

=

dz

ds

�

iT

2�

dz

ds

�

+

dz

ds

�

iT

2�

dz

ds

�

using (3.4)

= 0:

Hene we may integrate along �
 to dedue that

Aj

�


= 0;
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without loss of generality. We may evaluate �A=�n on �
 similarly, noting that, sine dz=ds is

the omplex tangent, and dz=dn is the omplex normal to �
, we will have dz=dn = �idz=ds and

d�z=dn = i(d�z=ds). Then:

�2

�A

�n

= �i

dz

ds

�

iT

2�

dz

ds

�

+ i

dz

ds

�

iT

2�

dz

ds

�

= �

T

2�

�

T

2�

sine jdz=dsj = 1:

Hene within 
(t) and away from singularities, A satis�es the problem

r

4

A = 0;

with boundary onditions

A = 0;

�A

�n

=

T

2�

on �
(t).

The KBC (1.9) will also hold; however this has no \nie" interpretation in terms of the Airy stress

funtion.

3.9.1 The \Baiohi transform" for Stokes ow

We are now ready to de�ne the \Baiohi transform" for the Stokes ow problem. For simpliity,

we restrit ourselves to the ZST problem, so that both boundary onditions for the stress funtion

are homogeneous. For the Hele-Shaw problem (see x2.6) we were able to appeal to the maximum

priniple for harmoni funtions to dedue that the free boundary behaviour is monotone, and

hene write the free boundary in the form t = �(x); however no suh maximum priniple exists

for the biharmoni equation, so we annot do this here. We shall see that the desired transform

variable is just the time integral of the stress funtion, but we �nd it neessary to use a omplex

variable approah, in some sense the reverse of the diret method adopted for the Hele-Shaw

problem.

De�ne the variable u by the formula

u =

1

4

(z�z � h(z)�

�

h(�z)); (3.72)

where, as in x3.7, h(z) is a primitive of the Shwarz funtion g(z), so that

g(z) = h

0

(z);

note that equation (3.72) is entirely equivalent to (2.34) derived for the Hele-Shaw problem in

x2.6. Sine g is analyti (exept at isolated singularities), it is immediate that u satis�es the

Poisson equation,

r

2

u = 1 in 
(t):

To �nd the boundary onditions satis�ed by u, note that sine �
 is de�ned by the relation

�z = g(z),

�u

�z

=

1

4

(�z � h

0

(z)) = 0 on �
(t);

�u

��z

=

1

4

(z � h

0

(z)) = 0 on �
(t);

) ru = 0 on �
(t):

48



Hene u = 0 on �
, if we hoose the onstant in h appropriately, and u satis�es the problem

r

2

u = 1 in 
(t);

u = 0 =

�u

�n

on �
(t):

Note that the derivation so far is entirely independent of the dynamis of the problem; we ould, if

we wished, de�ne the Hele-Shaw (or indeed any two-dimensional free boundary problem) Baiohi

transform from the starting-point (3.72).

We now assume slow visous ow, and demonstrate the relationship with the stress funtion

in the speial ase of zero surfae tension, with the assumption �(0) = 0. Realling the relation

(2.12) between the Shwarz funtion and the mapping funtion, we see that

�u

��

=

w

0

(�)

4

(w(�) � �w(1=�))

)

�

2

u

�t ��

=

1

4

�

�t

�

w

0

(�)w(�)

�

�

1

4

�

�t

(w

0

(�) �w(1=�)) ;

=

1

4

�

�t

�

w

0

(�)w(�)

�

+

1

2

X

0

(�);

using (3.29) in the last step. Next, transferring (3.71) to the �-plane gives

�2A = w(�)�(�) + X (�) + w(�)�(�) + X (�);

di�erentiating this with respet to � and using (3.30) then yields

�4

�A

��

= w(�)w

0

t

(�) + 2X

0

(�) + w

0

(�)w

t

(�)

� 4

�

2

u

�t ��

:

Integrating with respet to � then,

A = �

�u

�t

+ �(t);

for some funtion of time, �. But we know that both A and u vanish on �
, and therefore also

on j�j = 1, so that �(t) must in fat be zero. Hene �nally,

u = �

Z

t

A(�; �) d�; (3.73)

(.f. (2.30)) and we see that u is a \Baiohi transform" of the stress funtion, in the �-plane.

3.10 Summary

This hapter is rather long, and ontains many di�erent ideas, whih it is helpful to summarise

before moving on to new things. We began in x3.1 by reviewing the work of [82℄, deriving the

equations, holding in the �-plane, whih govern slow visous ow (either surfae tension driven,

or singularity driven). In this and subsequent setions we extended the work of [82℄, reduing the

problem to a single funtional evolution equation whih holds globally in the �-plane.

For the point-sink driven ZST problem (when the Goursat funtion � is assumed to vanish

at the origin) an in�nite set of onserved quantities of the motion was found in x3.6, whih are

analogous to Rihardson's moments for the Hele-Shaw problem (x2.5). The prinipal di�erene

between the Hele-Shaw moments and the Stokes \moments" is that the former are de�ned by

integrals over (or around) the uid domain itself, while the latter are best de�ned in terms of
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integrals over (or around) the unit dis, whih is (so to speak) the uid domain in the �-plane.

Consequently, although the Hele-Shaw moments have a lear physial interpretation, this is not

so for the Stokes moments (with the exeption of the mass onservation result). Underlying these

results is the fat that the internal singularities of the Shwarz funtion remain �xed within the

uid domain for Hele-Shaw ow, while for Stokes ow (with the assumption �(0) = 0) they remain

�xed within the unit dis. In fat, Stokes ow is almost always best dealt with in the �-plane,

while it is often the ase that Hele-Shaw ow is more tratable working within the physial plane.

A onsequene of this is that, while we are easily able to generalise the Hele-Shaw results to

more than one �xed driving singularity, this is not so for Stokes ow (x3.6.3)|in Hele-Shaw, the

preimages of the singularities an move around in the �-plane so long as they remain �xed in

the z-plane; in Stokes ow, with �(0) = 0, they must remain �xed in both the z-plane and the

�-plane. The moments were also solved for in the ase �(0) 6= 0 (x3.8), whih is a situation we

onsider further in hapter 5.

In x3.7 we onsidered the Shwarz funtion for the ZST Stokes ow problem in some detail,

and saw how it is related to the Stokes ow moments. A p.d.e. governing the evolution of its

singularities was formulated, and a method outlined for deduing the form of the mapping funtion

required for a given problem.

We onluded in xx3.9 and 3.9.1 with another result (due to King [58℄) whih has a Hele-

Shaw analogue; we de�ned a \Baiohi transform" u for the Stokes ow problem. The original

de�nition (3.72) was in terms of the Shwarz funtion, but we then established that u is in

fat the time integral of the Airy stress funtion, evaluated in the �-plane (3.73). We did not

present any examples of the use of this transformed variable to solve problems; our interest is

purely mathematial, in that it demonstrates yet another parallel between the Hele-Shaw and

slow visous ow problems.
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Chapter 4

Appliations to the glass industry

4.1 Introdution

In this short hapter, we digress to disuss an extension of the theory of hapter 3 to models of

�bre drawing. We shall return to `ordinary' Stokes ow in hapter 5; this hapter may be skipped

without loss of ontinuity. The situation we have in mind is of one or more long visous �bres,

whih are being strethed from either end, and possibly also twisted, suh as may our during

optial �bre manufature. In real-life problems we do not expet this strething and/or twisting

to dominate the motion, hene surfae tension e�ets are important, and we inlude them.

The analysis of slender �bres under tension (and hene in extensional ow) relies on expansions

in inverse powers of the large aspet ratio (the \slenderness parameter", �). (The r�egime of interest,

in whih surfae tension is present at leading-order in the ross-ow problem, is when the Capillary

number is of order 1=�. Surfae tension is not important in the ow along the �bre.) Broadly

speaking, for a thin �bre in extensional ow, the leading-order ow in any ross-setion normal

to the entre-line is two-dimensional Stokes ow, but with a non-zero uid divergene due to the

extensional omponent of the veloity. However, this may be dealt with by subtrating o� an

eigensolution, and the tehniques of hapter 3 augmented to desribe the new ow-�eld.

We now summarise the model and the omplex variable formulation following Howell ([42℄,

hapter 4). We then simplify the equations as in x3.2, and interpret them in terms of the

\moments" introdued in x3.6. The results are essentially equivalent to those obtained for the

stritly two-dimensional problem of hapter 3, but with the onvetive derivative along the �bre,

�(�)=�t+ �(u(�))=�x, replaing �(�)=�t. A new solution, illustrating the theory, is given in x4.3.1.

4.2 The theory for a visous �bre

Consider the situation for a single visous �bre, under tension along its length (so that it is nearly

straight), and with veloity �eld u = (u; v;$) within the �bre. Following [42℄ we hange notation

slightly, hoosing axes suh that the �bre is roughly aligned with the x-axis, and the �bre ross-

setion lies in the (y; z)-plane. The Reynolds number based on the ow along the �bre is assumed

to be O(1) so that the starting point is the full Navier-Stokes equations; however, the o-ordinates

in the �bre ross-setion are saled with �, the small slenderness parameter. The omponents of

veloity and the pressure are then expanded as power series in �, and the leading-order ow along

the �bre is seen to be extensional, that is, u

0

= u

0

(x; t) (the subsript \0" denoting leading-order).

As mentioned above, the ow in the ross-setion, (v

0

; $

0

), is not divergene-free, as the veloity

omponent u

0

ats as a distributed mass sink (or soure).

If we assume u

0

(x; t) to be known, then this \ross-ow" problem for (v

0

; $

0

) e�etively

deouples from the ow along the �bre, and an eigensolution of the leading order zero-surfae

tension problem an be found, whih has exatly the right non-zero divergene. This \ZST

eigensolution" an then be subtrated from the leading order ross-ow problem, and the problem
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for the \residual" leading order ross-ow (~v; ~$) (now divergene-free), and the residual pressure,

may be onsidered. It must be remembered that the ross-setion in whih we are working is

a funtion of both x and t, whih we denote by 
(x; t). Heneforth we drop subsripts, on the

understanding that we are onsidering only the leading-order problem for a �nite �bre, with the

full solution a power series in the slenderness parameter �. The length of the �bre is thus impliitly

assumed to be in�nite. (In a real problem, boundary onditions would be imposed at the ends of

the �bre, speifying the \pulling" veloity u there; hene here we expet to be able to speify the

behaviour of u as x! �1.)

[42℄ uses an adaptation of the tehniques of [82℄, presented in x3.1, working with the stream-

funtion  for the tilded ow �eld,

~v =

� 

�z

; ~$ = �

� 

�y

:

Using the familiar Goursat representation, with Z = y + iz, we have

 = �=f

�

Z�(Z) + �(Z)g;

for funtions � and � analyti within 
(x; t). As usual we then map the unit dis onto 
(x; t),

after �rst eliminating rotation and translation of 
(x; t), via

Z = Z

�

(x; t) + w(�; x; t)e

�i�(x;t)

;

where Z

�

(x; t) is the entreline of the visous �bre, and �(x; t) represents the rotation. The usual

normalisation assumption, w(0; x; t) = 0 for all x and t, an then be made, and sine the funtions

� and � are regular throughout the uid domain, the assumption of [82℄ that �(0; x; t) = 0 an

now be imposed without loss of generality. The analysis of [82℄ an then be followed through

almost exatly as in x3.1, and analogues of equations (3.10) and (3.13) found. These are

e

i�

�(�) +

T

2�

f

+

(�)�w

0

(�) = �(Z

�

+ w(�)e

�i�

)

�

�

0

(1=�)

�w

0

(1=�)

�e

i�

�

X

0

(1=�)

�w

0

(1=�)

+

T

2�

f

�

(�)�w

0

(�) ; (4.1)

holding on j�j = 1 (and elsewhere, by analyti ontinuation), and

<

�

1

�w

0

(�)

�

2�(�)e

i�

� (w

t

(�) + uw

x

(�) +

1

2

u

x

w(�))

�

+

T

�

f

+

(�)

�

=

T

2�

f

+

(0) ; (4.2)

holding on j�j = 1. In these equations the dependene of the various funtions on x and t has

been dropped expliitly, but is understood. All notation is exatly as in x3.1 (in partiular, the

funtions f

�

(�) satisfy (3.8) and (3.9)) and u is the leading-order extensional ow along the �bre.

Sine we may assume �(0) = 0, we are able to ontinue (4.2) analytially by simply \removing

the <" from the left hand side, to get a global equation (whih is idential to (3.14) if there is no

x-dependene and if � = 0).

All analysis has so far been as in [42℄. We may now, as in x3.2, depart from this approah,

and derive a single funtional evolution equation for the mapping funtion, whih holds globally.

If we �rst replae � in (4.1) by 1=� and take the omplex onjugate, we an substitute in (4.1) for

�(�) from (4.2) to get an equation for X

0

(�) in terms of quantities depending only on the mapping

funtion. When doing this, it is helpful to de�ne the di�erential operators E := �

t

+ u �

x

+ u

x

=2,

and D := �

t

+ u �

x

+ u

x

, where the u

x

terms are understood to only multiply whatever funtion

the operator is ating on (so D is the usual onvetive derivative). The general result is rather

ompliated, being

D [w

0

(�) �w(1=�)℄ + e

�i�

�

Z

�

�

��

�

E(w(�)) +

T

2�

�w

0

(�)(2f

+

(�) � f

+

(0))

�

+2e

�i�

X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�)� f

+

(0))℄ ; (4.3)
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but is analogous to (3.18) if we onsider the term in

�

Z

�

(whih is analyti on the unit dis, as well

as being a perfet di�erential), and the term in X

0

(�), together, as a kind of \modi�ed" X

0

(�).

In any ase, there are obvious simpli�ations whih an be made. For instane, if we assume

that there is no lateral motion of the �bre, so that its entreline is exatly aligned with the x-axis

and Z

�

= 0, then the seond term on the left-hand side is eliminated. If in addition there is

no twist applied to the �bre (� = 0), then we are only strething it (via the term u(x; t)), and

the evolution equation for the ross-setion is exatly analogous to (3.18), with the operator D

replaing the �( � )=�t,

D [w

0

(�) �w(1=�)℄ + 2X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ : (4.4)

4.3 \Conserved quantities" for �bres

A point to note about equations (4.3) and (4.4) is that, if we were to onsider the ZST versions,

then the analysis of x3.6 would follow through to give the in�nite system of onservation laws,

D(C

k

) = 0 k = 0; 1; 2; : : : ;

)

�C

k

�t

+

�

�x

(uC

k

) = 0 k = 0; 1; 2; : : : ;

for quantities C

k

(x; t) de�ned exatly as in (3.31). This just says that these \moments" are

onveted with the ow along the �bre in this simple ase, as we would expet, and is analogous

to the usual two-dimensional result that ZST Stokes ow is ompletely trivial in the absene of

driving singularities. For the NZST problem, we an write down the analogue of equations (3.34),

whih will hold here if we set Q = 0 and replae d( � )=dt by D, that is,

�C

k

�t

+

�

�x

(uC

k

) =

8

>

>

>

<

>

>

>

:

0 (k = 0);

�

kT

�

"

f

+

(0)

2

C

k

+

1

X

r=1

f

(r)

+

(0)

r!

C

k+r

#

(k � 1):

We emphasise that these equations still hold for the ase in whih we have twist, and/or lateral

motion of the entreline, sine the terms in equation (4.3) whih represent these e�ets are regular

on the unit dis, and so vanish upon integrating around the unit irle. The k = 0 equation here

immediately reveals the general mass onservation result,

1

sine C

0

(x; t) is exatly the ross-

setional area of 
(x; t).

4.3.1 Example|the sintering of a bundle of �bres

Howell [42℄ gives an example of his analysis, solving the problem of two idential �bres (of initially

irular ross-setion) sintering together under the ation of surfae tension as they are strethed

out. This is done for the simplest ase, Z

�

= 0 = �, using the method desribed in [82℄. If instead

equation (4.3) is used, with the method outlined in x3.3 of this thesis (but with the simpli�ation

that now X (�) will be regular on the whole unit dis, so that we only need math singularities

in two terms of the equation), the p.d.e.'s governing the parameters of the mapping funtion are

muh more quikly obtained. The mapping funtion used to desribe the ross-setion is

w(�) = C

�

1

1� b�

�

1

1 + b�

�

=

2Cb�

1� b

2

�

2

;

1

In the work of [82℄ and [42℄, this result is only found as a by-produt of the analysis for eah spei� example

onsidered, by suitably manipulating the p.d.e.'s satis�ed by the parameters of the mapping funtion. In [42℄ the

result is found by elementary onsiderations elsewhere, but our method has the advantage of not relying on any

extraneous analysis.
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Figure 4.1: Typial ross-setions generated by the map (4.6) when n = 6. Piture (a) is the usped on�guration,

while (b) is the kind of smooth ross-setion we might expet to observe in pratie.

for b and C both funtions of x and t. The stritly two-dimensional version of this problem

(and the problem of two unequal ylinders oalesing under surfae tension) has been solved in

[37℄ and [82℄, and [42℄ uses muh of the analysis of the latter. Note that the problem is as yet

underdetermined, though, sine we have said nothing about u(x; t), whih appears in the equations

governing the parameters of the map.

The \missing link" is an axial stress balane for the �bre, diÆult to manipulate analytially,

given in [42℄ as

�

�x

�

3S

�u

�x

�

= ReS

�

�u

�t

+ u

�u

�x

�

�

T

2�

��

�x

; (4.5)

where S is the ross-setional area of 
, � is the irumferene of the ross-setion (i.e. the length

of �
), and \Re" is the Reynolds number based on the ow u along the �bre.

An obvious extension of this work is to onsider a mapping funtion of the form

w(�) =

nCb�

1� b

n

�

n

; (4.6)

with b 2 (0; 1) to ensure analytiity of the map, and C > 0 without loss of generality. In fat, for

the map to be univalent we require that

0 < b < b

rit

=

1

(n� 1)

1=n

;

the limit b ! 0, C ! 1 giving a irular ross-setion, and the limit b ! b

rit

giving a \ower-

shaped" ross-setion, having n inward-pointing usps (�gure 4.1 (a)). Suh a map might represent

the later stages in the sintering of a bundle of visous �bres as they are strethed out, provided

we ould be sure that the interior gaps between the �bres had losed up by this stage, so that the

analysis for a simply-onneted ross-setion is appliable.

We restrit ourselves to working with equation (4.4), for simpliity. We have to math sin-

gularities here only at the two points � = 0 and � = b within the unit dis, appealing to the

symmetry of the map. Mathing at � = 0 simply yields the mass onservation result,

�S

�t

+

�

�x

(uS) = 0; (4.7)
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where a straightforward integration gives the ross-setional area S as

S =

�n

2

b

2

C

2

(1 + (n� 1)b

2n

)

(1� b

2n

)

2

:

Mathing at � = b yields another p.d.e.,

�b

�t

+ u

�b

�x

= �

Tb

2

(2f

+

(b)� f

+

(0)); (4.8)

these two equations (4.7) and (4.8) are equivalent to those given in [42℄ for the ase n = 2.

The fator (2f

+

(b) � f

+

(0)) an be expliitly evaluated from the formula (3.8) in terms of

ellipti integrals, with the result

2f

+

(b)� f

+

(0) =

2(1� b

2n

)

n�bC

K ((n� 1)b

n

) ;

where K( � ) denotes the omplete ellipti integral of the �rst kind (see appendix B, [8℄, or [30℄ for

a de�nition). In deriving this simple form for the right-hand side, use was made of the relation

[8℄

1

1 + (n� 1)b

n

K

�

2b

n=2

(n� 1)

1=2

1 + (n� 1)b

n

�

= K ((n� 1)b

n

) : (4.9)

We also need to utilise the axial stress balane (4.5) to lose the problem; however, the expression

obtained for the irumferene �(x; t) is more intriate,

� =

4bnC(n� 1)

1 + (n� 1)b

n

�

n(1 + (n� 1)b

2n

)

(n� 1)(1� b

n

)

2

�

�

�4b

n

(1� b

n

)

2

; k

�

�K(k)

�

;

where k = 2b

n=2

(n � 1)

1=2

=(1 + (n � 1)b

n

), and �( � ; � ) denotes the omplete ellipti integral of

the third kind (again, see appendix B, [8℄, or [30℄ for a de�nition). We ould use (4.9) on the

seond term here, but further analytial progress with the �rst term is diÆult, and numeris must

be employed to omplete the solution. We do not pursue this work further; however we should

mention reent work by Rihardson [85℄, whih is onerned with the sintering of an almost

arbitrary array of irular ylinders of visous uid. Many numerial solutions are presented, but

in this work the evolution is solely surfae tension driven, with no extensional axial veloity.

4.3.2 Connetedness onsiderations

We suggested that the problem onsidered in x4.3.1 might represent the later stages in the sintering

of a bundle of �bres, with the proviso that the \holes" between the �bres, whih would neessarily

be present at the outset, must have losed up before this analysis (whih relies on a simply

onneted ross-setion) an be appliable. An obvious alulation is to hek whether a irular

hole in an unbounded, two dimensional ow domain, will indeed lose up under the ation of

surfae tension only.

The required onformal mapping from the unit dis onto the uid domain is just

w(�) =

a(t)

�

;

for real, positive a(t). This is di�erent to previous examples, in that the point � = 0 maps to

in�nity (rather than z = 0). Rather than reformulating the theory of xx3.2 and 3.3 to deal with

this, it is easier to use an ad ho method based on equation (3.10) and the boundary ondition

(3.13).

The funtion f

+

(�) is easily seen to be equal to 1=a everywhere (with f

�

(0) � 0). Equation

(3.13) then beomes

2<(��(�)) = _a+

T

2�

; on j�j = 1;
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whih is trivial to ontinue analytially, giving

�(�) =

1

2�

�

_a+

T

2�

�

:

Substitution into (3.10) gives

X

0

(�) =

a

�

�

_a+

T

2�

�

�

aT

2�

:

The �nal ondition needed is that the veloity vanish at in�nity (as � ! 0); the most general

onditions allowing this are given in hapter 5, by (5.30) and (5.31). Sine the ow is solely

surfae-tension driven, the pressure at in�nity (p

1

) must be zero in (5.30). Hene we require �(z)

to be bounded at in�nity, that is, �(�) must be bounded at the origin, giving the �nal result

_a = �

T

2�

) a(t) = a(0)�

T t

2�

:

The radius of the hole is exatly a(t), so the hole will lose in �nite time.

4.4 Summary

In this hapter, we have seen how the ideas introdued in hapter 3 for the two-dimensional prob-

lem, may be extended to deal with the (three-dimensional) problem of visous �bres undergoing

tration (and torsion, although we did not elaborate on this point). This was a onsequene of the

slender geometry, whih meant that asymptoti methods ould be employed to make the problem

e�etively two-dimensional. We onsidered only �bres; however as was mentioned in x1.3, similar

asymptoti methods may be used for slender bubbles; see for example [7℄, [43℄.

As in hapter 3, \moments" of the ross-ow may again be de�ned by (3.31). In the ZST

ase (whih here is equivalent to the assumption that the e�ets of tration far outweigh those

of surfae tension), they are simply onveted with the ow along the �bre. In the more realisti

NZST ase, their evolution is via a muh more diÆult system of nonlinear partial di�erential

equations, analogous to (3.34).

Finally, in x4.3.1, we gave a physially-relevant example of the theory, as applied to the sin-

tering of a bundle of visous �bres under tration.
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Chapter 5

Flow in unbounded domains

5.1 Introdution

This hapter is onerned with Hele-Shaw ows and Stokes ows on unbounded

1

uid domains

with a free boundary. The theory and tehniques of previous hapters (whih assumed a bounded

uid domain) will, on the whole, still arry through for suh ases, but the onformal map from

the unit dis must now have an isolated singularity within j�j � 1, orresponding to the single

point that maps to in�nity.

This hapter rystallises why Stokes ow and Hele-Shaw ow are di�erent. The key idea

(whih has already been mentioned in x3.6.2) involves the Shwarz funtion of the free boundary,

g(z; t). Driving singularities of the ow are assoiated with singularities of g for both problems,

and so we may regard the ow as being \driven by the Shwarz funtion". For Hele-Shaw ow,

as we saw in x2.3, the singularities of g must remain �xed within the physial plane, and so may

be made to orrespond to (�xed) driving singularities. For Stokes ow, they remain �xed in the

�-plane, at least when we make the tehnial assumption �(0) = 0, and so in general we have no

hope of keeping the assoiated driving singularity �xed in the physial plane too.

Problems on unbounded domains are another example of this diÆulty, if we try to solve in

the time-dependent ase for driving singularities at points other than in�nity. This is beause

\in�nity" is, by neessity, also a singular point of the ow, in both the fully-in�nite and semi-

in�nite domain ases of suh problems. Thus, expliit, unsteady solutions (with �(0) = 0) will,

in general, be driven by moving singularities. Even when �(0) 6= 0, isolated singularities of

the Shwarz funtion move in a spei�ed manner within the �-plane (see (5.43)), whih is very

restritive, and in x5.4.2 we �nd that a ontinuous distribution of singularities is needed if we are

to satisfy all the onditions.

No suh tehnial diÆulties arise for time-dependent problems with driving singularities at

in�nity [96℄, sine this is the only singular point of the ow. Likewise, steady problems driven

from the origin an be solved, sine in�nity is not a singular point of suh ows. We onsider

some steady problems in x5.5.

5.2 Literature Review

Before saying more, we �rst onsider the work whih has been done on the two problems when

the ow domain is unbounded, beginning with the Hele-Shaw ase. For the Hele-Shaw problem

very many results exist; as mentioned above, most results from the bounded domain ase follow

through straightforwardly, and there seem to be no surprises. For the ase of a �nite air bubble,

onepts suh as Rihardson's moments (x2.5) an be easily rede�ned in terms of integrals over

1

We shall use the term \fully-in�nite" to denote an unbounded ow domain ontaining a �nite air bubble (or

more than one �nite bubble if the domain is multiply onneted, but we shall not study suh ases). \Semi-in�nite"

will refer to domains where the area of air present is also unbounded.

57



forms here

Transient 5/2-power usp

univalent region again

Phase-path within

UNIVALENT

Figure 5.1: Shemati diagram showing how a \ontinuable 5/2-power usp" solution

looks in phase trajetory spae within the univaleny domain.

large irles ontaining the bubble (see for example [24℄); the evolution equation for M

0

(t) then

redues to onservation of the bubble area.

The lassial Sa�man-Taylor �ngering solutions [87℄ (and their time-dependent analogues [88℄)

are one obvious example of solutions on semi-in�nite uid domains, driven by a uniform pressure

gradient at in�nity. Solutions exhibiting �ngering in a radial geometry have been found by How-

ison [45℄; like Sa�man & Taylor's �ngers, these exist for all time, but are driven by a sink at

in�nity. Further \bubble" solutions have been found by Tanveer [93℄ and Howison [47℄ (this latter

paper onsiders the lassi�ation of bubble solutions aording to the limiting form of the uid

domain). Entov et al. [24℄ onsider bubbles in unbounded domains driven by multipole singu-

larities at in�nity. These last solutions are worth remarking on, if only for the fat that they

demonstrate steady solutions to the NZST Hele-Shaw problem.

Howison [46℄ presents bubble solutions in whih usps form in the free boundary within �nite

time, but where the solution may be ontinued beyond this time. This extraordinary behaviour

is only possible when solutions blow up via the formation of a (4n+ 1)=2-power usp in the free

boundary (see the omments of x2.6). In x5.3 we present a new example whih exhibits this

behaviour. For a general example of this kind, we may draw the solution trajetories for the

parameters of the mapping funtion within the univaleny domain V . The partiular trajetory

whih passes through the point on �V orresponding to the 5/2-power usp does so tangentially

to the boundary �V , before re-entering V , so that geometrially, the free boundary beomes

nonanalyti at a point for an instant, before smoothing again, and the solution ontinues to exist

(see �gure 5.1; also �gure 5.7 for the loal form of the free boundary as this ours). All known

solutions of this kind subsequently blow up via 3/2-power usp formation however, whih is known

to be always \terminal" (this may be proved from known results for the related obstale problem

of variational alulus; [90℄, [64℄).

Another Hele-Shaw solution whih is of interest, and of whih we shall onsider the Stokes

ow analogue, onerns a rational mapping funtion,

w(�) =

��(� � �)

� � 

; (5.1)

this is onsidered by Hohlov et al. [33℄ for the ase of real parameters �, �, . For  2 (0; 1)

the map gives unbounded uid domains; the ase  = 1 (� 6= 1) gives a map to a semi-in�nite
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uid domain. The authors solve for the problem with a single point sink at the origin driving

the ow (the Stokes ow analogue we onsider is driven by a dipole singularity at the origin).

This situation di�ers from those mentioned above in that here, the driving singularity is at the

origin, whereas the previous ases were driven by presribed singularities at in�nity. The mapping

funtion (5.1) is interesting beause the points (�; ) on the boundary of the univaleny domain

in (�; )-spae orrespond to uid domains having slits in them (along ars of irles).

Finally (for the Hele-Shaw problem) we mention the work of Rihardson [79℄, where a limiting

proedure is employed to solve for a problem on a semi-in�nite uid domain. The problem of a

point sink, plaed o�-entre in an initially irular domain, is onsidered (the geometry of �gure

5.2 but with a di�erent driving singularity); the NZST version of this problem has reently been

solved numerially in [55℄. For an initial irle of radius r, entred at z = � < r (with the sink

at z = 0), the method outlined in x2.5 is used to �rst dedue the orret form of the mapping

funtion, and then to solve the problem. The semi-in�nite domain limit is obtained by allowing

both r and � to tend to in�nity, whilst keeping the quantity r � � = k �xed. This proess yields

the solution for a point sink plaed at the origin in the unbounded initial domain fx > �kg (so

here again we have a driving singularity at a �nite point within the ow domain). In x5.3 we

employ the same methods to solve the problem for a vortex dipole singularity at the origin, in the

same geometry.

We now onsider what results exist for the Stokes ow ase. Most of the work whih has been

done on the unbounded domain problem involves steady solutions for �nite bubbles in (fully-

) in�nite uid domains, and was mentioned briey in x1.4.2. One of the �rst papers of note

was Rihardson [78℄ (1968), who solved the problem of a two-dimensional invisid bubble in the

ases of uniform shear, and pure straining, external ow. In a subsequent paper [80℄ he solved

the same problem for a paraboli external veloity pro�le. In 1972, Bukmaster [7℄ published

results for slender bubbles in three-dimensional axisymmetri slow visous ow (at small surfae

tension), �nding bubble shapes whih appeared to have usped ends; Antanovskii (though in two

dimensions) has also onsidered the formation of steady-state usped bubbles [3℄ and pointed

drops [4℄. Later work by Youngren & Arivos [101℄ (1976) gave agreement with Bukmaster's

results for small values of surfae tension, and with other experimental work for larger surfae

tension values. Slender three-dimensional bubbles have been studied more reently by Howell

[42, 43℄, in extensional ow, and with a time-dependent formulation (the above mentioned work

all being for steady ows).

Tanveer & Vasonelos [96℄ have reently published results on the time evolution of two-

dimensional bubbles, where the motion is driven by a given external ow �eld at in�nity (whih

may inlude a soure/sink at in�nity, so that the bubble area an hange). Partiular ases

onsidered are when the external ow is simple shear, and pure straining (as in Rihardson [78℄,

but time-dependent), and they �nd a family of exat solutions for a polynomial-type onformal

map. Three-dimensional time-dependent axisymmetri bubbles have also been studied by Nie

& Tanveer [70℄; in this paper and in [96℄ the possibility of \pinhing" is onsidered, where, for

a shrinking bubble, opposite sides of the bubble touh before the bubble has vanished, and the

solution breaks down.

The work of [96℄ demonstrates that the ideas pioneered by Hopper [37, 38℄ and Rihardson [82℄

for bounded uid domains, arry through to the unbounded domain (with �nite bubble) ase with

little modi�ation needed. However, very little work has been published relating to problems on

unbounded domains where the driving singularity is at some �nite point within the ow domain,

and, to our knowledge, all expliit solutions whih have been found for suh ases are for the muh

simpler, steady version. In fat, the only notable ontribution to this problem of whih we are

aware is the work of Jeong & Mo�att [52℄ (heneforth J & M), who solve the steady problem for

a vortex dipole plaed beneath a free surfae in a semi-in�nite uid domain. This is intended to

model experiments performed in a large tank of uid, with two ounter-rotating ylinders plaed

beneath the free surfae. Antanovskii [2℄ generalises their work in two ways: �rstly, he allows a

variable interfaial tension, to model the e�et of surfatant, and seondly, he assumes eah of the

ounter-rotating ylinders to be represented by a separate vortex singularity in the ow (although

an exat analytial solution is only found in the limit in whih these two vorties merge to form
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Figure 5.2: The geometry for the problem of a dipole plaed o�-entre in a irle.

a single vortex dipole, as onsidered by J & M).

Our idea was to present a time-dependent version of the work of J & M (whih would hopefully

tend to their solution as t! 1), sine no solutions to problems of this kind exist in the urrent

literature. As we shall see though, this is far from trivial, involving ompliations of the kind

hinted at in x5.1. Before onsidering suh a generalisation, we will briey review the analysis of

J & M, but before we do this we solve the orresponding ZST Hele-Shaw problem, whih turns

out to be muh more straightforward than the Stokes ow problem.

5.3 The Hele-Shaw dipole problem

In this setion we show that the ZST Hele-Shaw version of the J & M dipole problem an be

solved without diÆulty. It is worth doing this for two reasons; �rstly, it represents an interesting

new solution for Hele-Shaw, being one whih exhibits the \transient 5/2-power usp" behaviour

referred to earlier, and furthermore, it has the driving singularity at a �nite point within the uid

domain (as in the Stokes ow literature, most in�nite-domain Hele-Shaw solutions have driving

singularities at in�nity). Seondly, it illustrates the use of the proedure outlined in x2.5, for

deduing the form of the mapping funtion that is needed for a partiular geometry.

The analysis is a simple adaptation of that given in Rihardson [79℄, where the same geometry is

assumed (i.e. an initially irular domain, with an o�-entre singularity; see �gure 5.2) but instead

a point sink drives the ow. The dipole singularity in our example fores a more ompliated

mapping funtion than in that paper; hene the solution we obtain has a di�erent struture|all

solutions in [79℄ blow up in �nite time via formation of a single 3/2-power usp.

Reall the result (2.10) linking the time evolution of the Shwarz funtion, g(z; t), to the

omplex potential, W(z), of the ow. For the ase of a vortex dipole singularity of strength M at

the origin, in the sense of �gures 5.2 and 5.3, the only singularity of W(z) is at z = 0, this being

W(z) = �

M

z

+O(1) as z ! 0:
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It follows from (2.10) that, near the origin, the Shwarz funtion varies aording to

�g

�t

= 2

dW

dz

=

2M

z

2

+O(1) as z ! 0; (5.2)

so that, deomposing the Shwarz funtion aording to (2.25), the singular part must satisfy

g

e

(z; t) = g

e

(z; 0) +

2Mt

z

2

:

The Shwarz funtion for a irular initial domain, with entre at z = � and radius r > �, is

given in [79℄ (and in any ase is trivial to �nd) as

g(z; 0) = �+

r

2

z � �

; (5.3)

hene for t > 0 the singular part of the Shwarz funtion is given expliitly by

g

e

(z; t) =

r

2

z � �

+

2Mt

z

2

: (5.4)

Let the point d(t) within fj�j � 1g map to the point � in the physial domain, w(d) = � (we

know that the origin maps to the origin, and that the mapping funtion is analyti on the unit

dis). The relation (2.27) then tells us that the omplex onjugate mapping funtion �w(1=�) has

to have a double pole at � = 0, a simple pole at � = d, and no other singularities. Sine w(0) = 0,

�w(1=�) must also vanish at in�nity, and hene must be of the form

�w(1=�) =

a

�

2

+

B

�

+

C

� � d

; (5.5)

so that assuming a; B; C; d 2 R, whih amounts to assuming symmetry about the x-axis, we

have

w(�) = a�

2

+B� +

C�

1� d�

: (5.6)

To determine the parameters a; B; C and d in (5.6), we need to math singularities within the unit

dis in equation (2.12). This requires a straightforward loal analysis at eah of the singularities,

and yields the three algebrai equations,

a(B + C)

2

= 2Mt; (5.7)

B(B + C)

3

a+ Cd

= �4Mt; (5.8)

Cw

0

(d) = C

�

2ad+B +

C

(1� d

2

)

2

�

= r

2

: (5.9)

The fourth equation needed omes from the requirement w(d) = � (whih embodies the fat that

the singularities of the Shwarz funtion remain �xed in the physial plane for Hele-Shaw ow),

ad

2

+Bd+

Cd

1� d

2

= �: (5.10)

These equations are seen to satisfy automatially the orret initial onditions for the geometry


(0), namely

a(0) = 0 = B(0); C(0) = r

�

1�

�

2

r

2

�

; d(0) =

�

r

:

Note that the system is simpler if we replae (5.8) by ((5.8) + 2� (5.7)), i.e.

2a(a+ Cd) +B(B + C) = 0: (5.11)
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Figure 5.3: The geometry for the dipole-in-a-half-spae problem.

Solving for a; B; C and d gives the evolution of the uid domain until suh time as the solution

breaks down, with loss of univaleny of the mapping funtion. We do not solve (5.7){(5.10)

expliitly, however, beause we are primarily interested in the in�nite domain limit (�gure 5.3).

In addition, the system (5.7){(5.10) is spei� to an initially-irular geometry (or an initially-

at geometry in the unbounded domain limit), and it is lear that with the mapping funtion

(5.6), we may onsider the evolution of more general initial domains than this. Sine we are now

proposing a de�nite form, (5.6), for w(�; t), the governing equations for the more general ase are

best obtained using the method outlined below equation (2.12) in x2.3 (and illustrated in x2.4).

We know that (5.2) represents the only singular behaviour of �g=�t in 
(t). We also know

that g(z) � �w(1=�) (equation (2.12)), whih by (5.5) has singularities at points � = 0 and � = d

within the unit dis. Hene, expanding the mapping funtion to �nd � as a funtion of z in the

neighbourhood of these points, we may �nd the loal form of g(z) at both points z = 0, z = w(d),

and use (5.2) to get the o.d.e.'s governing the oeÆients. Near z = 0 = � we have

� =

z

w

0

(0)

�

w

00

(0)z

2

2w

0

(0)

3

+O(z

3

);

so that a loal analysis here yields

g(z) =

aw

0

(0)

2

z

2

+

aw

00

(0) +Bw

0

(0)

z

+O(1):

Hene, mathing singularities in (5.2),

d

dt

(aw

0

(0)

2

) = 2M; (5.12)

aw

00

(0) +Bw

0

(0) = onst. = k

1

: (5.13)

Near � = d,

� � d =

z � w(d)

w

0

(d)

+O((z � w(d))

2

);

so by (2.12) and (5.5),

g(z) =

Cw

0

(d)

z � w(d)

+O(1);
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and (5.2) gives the two equations

w(d) = onst. = �; (5.14)

Cw

0

(d) = onst. = r

2

: (5.15)

Equations (5.7), (5.11), (5.10) and (5.9) are easily seen to be a speial ase of equations (5.12){

(5.15).

2

The onstants in (5.14) and (5.15) are arbitrary; we write them as � and r

2

to onform

with the speial ase onsidered �rst. We are justi�ed in assuming that the onstant in (5.15)

is positive, sine we are assuming that the positive real axis within the unit dis maps onto the

positive real axis in the uid domain.

Taking the in�nite domain limit of the problem involves letting r and � tend to in�nity whilst

keeping r � � = k �xed. Equations (5.12) and (5.13) have trivial limits,

a(B + C)

2

= 2Mt+ onst.; (5.16)

2a(a+ C) +B(B + C) = k

1

; (5.17)

whilst a areful analysis of equations (5.14) and (5.15) shows that they redue to the single

ondition

C � 2(a+B) = 2k: (5.18)

Geometrially this last equation is what we expet; it says that asymptotially, the free boundary

is jyj ! �1, x � �k. It is easily veri�ed that the solution represented by equations (5.16){(5.18)

gives a veloity �eld whih tends to zero at in�nity, whih we learly require for a realisti solution.

To see by what possible means this more general solution may blow up, we must onsider the

subset of (a;B;C)-parameter spae on whih the map with d = 1 is univalent. For this purpose

it is simplest to rewrite the map as

w(�) = a

�

�

2

+ b� +

�

1� �

�

; (5.19)

so that in fat we only need onsider univaleny of the map in (b; )-parameter spae. The only

drawbak of writing the map this way is that the limit a ! 0 is degenerate; maps whih pass

through or start from suh on�gurations must have ! �1 (b an either beome unbounded or

remain O(1))|the \initially at" on�guration is one suh ase, as are any solutions whih pass

through at on�gurations.

We may determine the univaleny domain V in (b; )-parameter spae by looking for boundary

urves on whih w

0

(e

i�

) = 0 for real � (the ondition that the free boundary has a usp), and

also urves on whih w(e

i�

) = w(e

�i�

) for real, nonzero � (the ondition that the free boundary is

self-interseting, using the symmetry of the domain). We omit the analysis, whih is not diÆult,

but rather tedious. The result is that V is split into two parts, in  > 0 and  < 0 (see �gure 5.4;

the line  = 0 is not relevant to the present disussion, sine it represents bounded uid domains,

and our solution trajetories annot reah it). That part of V in  > 0 is bounded by the lines

4b+  = 8 and  = 0;

whilst the part in  < 0 is bounded by

b+ + 4 = 0;  = 0;

and the parabola

+

�

b

2

+ 1

�

2

= 0;

2

Note that the system (5.12){(5.15) ould have been obtained working wholly in the �-plane, using the ZST

version of (3.38).
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Figure 5.4: The univaleny domain in (b; )-spae for the mapping funtion (5.19).
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to overlap itself. (3b) is an enlargement of the trapped air bubble in (3a).
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whih meets the line b+ + 4 = 0 at the point (2

p

3;�(4 + 2

p

3)).

With our \normalisation ondition" that the positive real axis in the �-plane should map to

the positive real axis in the z-plane, we require a(0) > 0 for solutions in  > 0, and a(0) < 0

for solutions in  < 0. Geometrially, in the upper part of V , the line 4b+  = 8 orresponds to

loss of univaleny via formation of a single 3/2-power usp at the point z = w(�1) on �
 (�gure

5.5 (1)). The line  = 0 is the �nite domain limit in whih the uid domain is a ardioid (f the

lima�on example of x2.4). In the lower part of V , the line b+ + 4 = 0 gives free boundaries �


having two 3/2-power usps, symmetrially plaed about the x-axis (�gure 5.5 (2)). Along the

paraboli portion of �V the free boundary is nonanalyti due to self-intersetion (�gure 5.5 (3)),

exept for the isolated point (6;�16), where �
 has a single 5/2-power usp|at this point the

parabola is atually tangent to the line 4b +  = 8 (whih formed part of �V in the upper half

plane,  > 0). Figures 5.4 and 5.5 should larify the above explanation.

The analogues of equations (5.16){(5.18) for the modi�ed mapping funtion (5.19) are:

a

3

(b+ )

2

= 2Mt+ onst.; (5.20)

2(1 + ) + b(b+ ) =

k

1

a

2

; (5.21)

� 2(1 + b) =

2k

a

; (5.22)

eliminating a between the last two yields the solution trajetories in (b; )-spae as

2 + b

2

+ (2 + b)

(1 + b� =2)

2

= �;

for various onstants �, determined by the initial onditions (�gure 5.6). This equation learly

represents some kind of oni setion, depending on the value of � hosen. Changing to axes

aligned with the prinipal axes, it an be rearranged into the form

�

b�



2

+ 1 + 3�

�

2

� 4�

�

b+



4

+ 1

�

2

= 9�(1 + �);

where � = 1=(3�+ 1). From this it is lear that for 0 < � < 1 the phase paths are branhes of

hyperbolae, with asymptotes



2

(1�

p

�) = b(1� 2

p

�) + 1 + 3�� 2

p

� ;

(so the gradient of these asymptotes is 2(1 � 2

p

�)=(1 �

p

�)). The two sets of branhes are

separated by the � = 0 (straight line) path,

b�



2

+ 1 = 0:

A positive value of � does not uniquely speify a solution path then, sine there are two possible

branhes. This is not a problem, however, beause the value of � is determined by the initial

onditions, and obviously the free boundary has to evolve in a ontinuous manner, so we must

stay on the partiular path on whih we start.

Values of � between �1 and �1 give elliptial phase paths, � = �1 being the value at whih

the family of ellipses ollapses to the single point (0;�4), whih atually lies on the boundary

�V . There are no real phase trajetories for � 2 (�1; 0). The limit � ! �1 orresponds to the

original parameter � approahing the value �

1

3

from above or below; the limiting phase path is a

parabola with equation

Y

2

=

3

2

�

X �

3

2

�

; (5.23)

where X = 1 + b� =2 and Y = 1 + b+ =4 are the o-ordinates along the prinipal axes of the

family of onis.
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Figure 5.6: The phase diagram (within the univaleny domain) for the Hele-Shaw dipole problem.
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The phase diagram within the univaleny domain is shown in �gure 5.6. The arrows on the

phase paths are for positive values of the dipole strength M (so the dipole has the sense in �gure

5.3); if the dipole is reversed, so are these arrows. Points to note about the phase diagram are:

� The existene of the elliptial solution trajetory for � = �5, whih is tangential to the

paraboli part of �V at the point (6;�16), and re-enters V immediately (�gure 5.7). As

disussed in x5.2, this orresponds to the appearane, and subsequent immediate disappear-

ane, of a 5/2-power usp in �
. Note that this trajetory reahes the boundary b++4 = 0

of �V shortly afterwards, so that the solution does ultimately blow up with the formation

of two 3/2-power usps in �
.

� The existene of the \degenerate" phase path b = 0;  = �4, (� = �1), whih lies on �V .

This annot represent a solution, however, sine equations (5.20){(5.22) annot be solved

for a(t) if b and  are onstant.

� The paraboli phase path (� ! �1, or � = �1=3), separating the elliptial paths in the

lower part of V , from the branhes of the hyperboli paths in that part of V .

In the lower part of V , the paths whih \go o� to in�nity" whilst remaining within V are

those hyperboli paths for 0 < � < 1 whih lie to the right of the \separatrix" 1 + b = =2 (the

� = 0 path), and those for 0 < � < 1=4 to the left of the separatrix.

For the paths lying to the right of the separatrix, � = 1 (� = 0) gives the hyperbola whih has

an in�nite-gradient asymptote. The orresponding asymptotes of the hyperbolae for 0 < � < 1

have gradients lying in the range 2 to 1 (2 being the gradient of the separatrix), whilst those for

� > 1 will have asymptotes with negative gradient. These � > 1 hyperbolae will thus interset the

paraboli part of �V before b and  beome in�nite, and solution breakdown via self-overlapping

of the free boundary ours. The hyperbolae for 0 < � < 1, whih lie between the � = 0 separatrix

and the � = 1 path, have orresponding branhes in the upper part of V . What happens with

these solutions is that we reah  = �1 within �nite time, then reappear on the orresponding

branh at  = +1 in the upper part of V . We have to be areful, sine there are two possible

branhes for a partiular value of �, but a little thought tells us that the \orresponding branh"

is the branh having the same value of �, but now lying to the left of the separatrix in the upper

half of V , sine the free boundary shape must hange in a ontinuous manner.

This transition from  = �1 to  = +1 is simultaneous with a passing through the value

zero. Only if b remains O(1) as this happens will we have the free boundary passing through the

ompletely at on�guration, whih is the speial ase we onsidered �rst. This will be exatly

the hyperboli path whose asymptote has in�nite gradient, i.e. the � = 1 (or � = 0) path, along

whih b! �2 as �! �1.

For the paths lying to the left of the separatrix in the lower half of V , � = 1=4 is the value for

whih one of the asymptotes of the hyperbola has zero gradient. Phase paths for 0 < � <

1

4

will

thus extend to in�nity without leaving the domain V ; as above, this will our within �nite time,

and the solution is ontinued by reappearing at in�nity on the orresponding path in the upper

part of V , whih will here lie to the right of the � = 0 separatrix. It an be seen, by onsidering

the arrows on the phase paths in the upper half of V , that all solutions exhibiting this kind of

behaviour will ultimately blow up with formation of a 3/2-power usp in the free boundary at the

point w(�1).

The paraboli phase path is exeptional in that it has no omponent in the upper part of

V . The solution represented by this trajetory blows up within �nite time when it intersets the

paraboli part of �V , at the point (b; ) = (21:2328;�134:941), with self-intersetion of the free

boundary.

We have been able to analyse the possible kinds of behaviour, without solving expliitly for

(a; b; ). A omplete desription would involve solving (5.20){(5.22), but little would be gained

by doing this, sine the above working aptures all the essentials, and ertainly all the interesting

aspets of the problem.

As an aside, we omment that the analysis may be extended to the ase of a general multipole

singularity at the origin (as onsidered by Entov et al. [24℄). For a multipole of order n, the
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omplex potential has the behaviour

W(z) = �

M

z

n

+O(1) as z ! 0;

so that the singular part of the Shwarz funtion is given by

g

e

(z; t) =

r

2

z � �

+

2nMt

z

n+1

;

instead of (5.4). Thus in this ase, by (2.27), the omplex onjugate mapping funtion must have

a pole of order (n+1) at � = 0 and a simple pole at � = d as its only singularities within the unit

dis, and must vanish at in�nity. The mapping funtion for this ase will therefore be given by

w(�) =

n+1

X

r=1

a

r

�

r

+

C�

1� d�

; (5.24)

(with d = 1 in the unbounded domain limit). The more ompliated form of this funtion will

allow for more varied behaviour of solutions, but for larger values than n = 1 it is muh more

diÆult to determine the univaleny region for the map in parameter spae.

5.4 The Stokes ow dipole problem

5.4.1 Review of Jeong & Mo�att's steady solution

Before onsidering time-dependent possibilities, we �rst review the steady Stokes ow dipole

problem as solved by J & M [52℄, sine this was our original motivation for studying problems on

unbounded domains with �nite driving singularities. This problem models experiments performed

(at low Reynolds number) in a large tank of visous uid, with two ounter-rotating ylinders

plaed beneath the free surfae. Above a ertain ritial rate of rotation of the ylinders, a steady

state was quikly attained in whih the free surfae of the uid above the ylinders had an apparent

usp. It is this steady-state on�guration whih J & M's solution desribes.

The presentation we give here is slightly di�erent to theirs, sine we use the tehniques and

onventions of this thesis; however in all essentials it is the same. We use the form of the governing

equations given in x3.2.1; in the simpler time-independent ase here, equation (3.26) integrates to

X (�) + �w(1=�)�(�) = 0; (5.25)

whih is just the ondition that the free boundary be a streamline, analytially ontinued to hold

globally. �(�) is given (from (3.15)) by

�(�) =

T

4�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t) +

w

0

(�)

w

0

(0)

A(1� �

2

); (5.26)

where we have assumed �(�) to be bounded at the origin (with limit A), whih will be the ase if

we have a pure vortex dipole at the origin. We have also assumed that A is real, whih is equivalent

to requiring the geometry to be symmetri about the x-axis (if we also have a onformal map with

real parameters). Thus our geometry is J & M's, rotated through 90

0

, and the free boundary at

in�nity will be x = onstant, with the uid oupying the region to the right of this boundary

(see the Hele-Shaw de�nition sketh, �gure 5.3). The dipole is taken to be situated at the origin,

and the onformal map is subjet to the usual onditions w(0; t) = 0, w

0

(0; t) > 0.

Some point on the unit irle must map to in�nity; with the above restritions, this an only

be the point � = 1. The geometrial onstraint that the free boundary be asymptotially at

fores the behaviour

w(�) =

�

1� �

+O(1) as � ! 1;
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for some real positive �, and there are no other singularities of w(�) within the unit dis. Con-

sideration of the dipole behaviour at � = 0 requires (using (5.25))

�w(1=�) = �

M

Aw

0

(0)�

+O(1) as � ! 0; (5.27)

so that the mapping funtion must be of the form

3

w(�) = �� +

��

1� �

: (5.29)

For this map, the free boundary at in�nity is given by

x = ��

�

2

; jyj ! 1;

and sine we must be able to speify the depth of the dipole beneath this asymptoti free surfae,

we may insist

� =

�

2

� 1

without loss of generality (taking this dipole depth to be 1). There are now only two unknown

quantities, the parameter �, and A � �(0). The behaviour at the dipole gives A in terms of �,

sine by (5.27) and (5.29) we must have

�A = �

M

w

0

(0)

� �

M

3�+ 2

:

We �nally have to satisfy the ondition that the ow be stagnant at in�nity, where the e�et of

the dipole annot be felt. The most general behaviour of �(z) and �(z) allowing this is

�(z) = �

p

1

4�

z + �+O(1=z); (5.30)

�(z) = z +O(1); (5.31)

both holding as jzj ! 1; this may be seen from (3.2) and (3.3) (p

1

denotes the pressure �eld at

in�nity). For this partiular ase we take p

1

= 0; this is neessary if we are to get the orret

balane in (5.25) at in�nity, beause the map (5.29) satis�es

�w(1=�) � �w(�) (5.32)

at leading order, as � ! 1. With our symmetri geometry, the onstant  will be real. Thus, if

we an ensure that �(�) remains bounded as � ! 1, denoting this limit by , equation (5.25) will

automatially ensure that the seond of the `stagnant ow' onditions is satis�ed.

Writing � = 1� �, (5.26) gives the asymptoti behaviour of �(�) near � = 1 as

�(�) =

T�

4��

2

(f

+

(0)� 2f

+

(1))�

1

�

�

T�

4�

(f

+

(0)� 2f

+

(1)� 2f

0

+

(1))�

2A�

w

0

(0)

�

+O(1):

3

We note in passing that the analysis is easily generalised to the ase of a general multipole singularity at the

origin, for whih the funtion X (�) has the behaviour

X (�) =

M

�

n

w

0

(0)

n

+O

�

1

�

n�1

�

; as � ! 0: (5.28)

This would neessitate a pole of order n at � = 0 in �w(1=�), giving the general form of the map as

w(�) =

n

X

r=1

�

r

�

r

+

��

1� �

:
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(All quantities appearing in this expression are either given, or else are known funtions of �). It

is easy to see from the de�nition (3.8) that

f

+

(0)� 2f

+

(1) =

i

2�

Z

2�

0

sin � d�

jw

0

(e

i�

)j(1� os �)

;

whih is identially zero, by a simple symmetry argument. Thus the singularity of order 1=�

2

in

�(�) vanishes automatially, and we need only impose the ondition

T

4�

f

0

+

(1) +

A

w

0

(0)

= 0;

to remove the order 1=� singularity. Use of (3.8) redues this to

�(0) =

Tw

0

(0)

16��

Z

2�

0

1

jw

0

(e

i�

)j

d�

(1� os �)

;

whih is the single ondition needed to omplete the solution. For detailed disussion of the

results, and omparison of the free boundary shape with experiment, see [52℄.

5.4.2 The time-dependent problem

Having seen how the steady problem works, we onsider how we might generalise the analysis to

�nd a time-dependent solution. Realling the omments of x5.1, we annot expet to �nd suh a

solution unless we allow the singularity to move relative to the uid mass, and we �nd that this

is indeed the ase, at least when we assume �(0) = 0.

We begin by observing that, if suh a solution exists, it must be realisable as the limit of

a dipole-in-irle problem, suh as we solved for Hele-Shaw ow in x5.3. Motivated by this, we

attempt the Stokes ow problem, using the method outlined in x3.7 to �nd the onformal map.

As ommented in x3.6.2, if a onformal map gives a solution to the ZST time-dependent problem,

the same map will also work for the NZST problem, hene we onsider the easier ZST ase. For

a pure dipole singularity at the origin, we require �(�) to be bounded there, but do not yet know

whether we may assume it to be zero. (Given that �(0) turned out to be nonzero for the steady

problem of x5.4.1, we an hardly expet to �nd a time-dependent solution for whih it is zero,

but it is instrutive to see what happens when we onsider both ases.) We onsider the simpler

situation in whih �(0) � 0 �rst.

In this ase, and with a dipole singularity at the origin, the funtion H

e

(�; t) is given by (3.63),

so we need to determine H

e

(�; 0). The Shwarz funtion of the initial domain is exatly as for

the Hele-Shaw problem, and is given by (5.3); from this the funtions g

e

(z; 0) and h

e

(z; 0) are

immediate as

g

e

(z; 0) =

r

2

z � �

; h

e

(z; 0) = r

2

log(z � �):

If d is the (unique) point within the unit dis suh that w(d; 0) = �, then we must have

H

e

(�; 0) = r

2

log(� � d); (5.33)

so that for the ase of a dipole singularity driving the ow we have

H

e

(�; t) = r

2

log(� � d)�

M�(t)

�

;

by (3.63), with �(t) as de�ned there. Sine H

0

(�) = w

0

(�) �w(1=�), the singular part of this

ombination within the unit dis is given by

[w

0

(�) �w(1=�)℄

sing

=

r

2

� � d

+

M�(t)

�

2

:
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These singularities must ome from the term �w(1=�), the mapping funtion being analyti on the

unit dis. Hene, if a solution to the problem as stated exists, the orret mapping funtion must

be suh that �w(1=�) has a double pole at the origin, and a simple pole at some (�xed) point � = d,

as its only singularities within the unit dis. It an have no singularities outside the unit dis

sine this would entail w(�) being nonanalyti on j�j < 1. It follows that w(�) must be of the

form

w(�) = a�

2

+ b� +

�

1� d�

; (5.34)

for some time-dependent parameters a; b and , whih is exatly the map whih was used for the

Hele-Shaw solution of x5.3.

4

This will always be the ase with the assumption �(0) = 0; if a

Stokes ow solution of this kind exists, it must be suh that the mapping funtion is the same as

for the orresponding Hele-Shaw solution.

To �nd the equations governing the evolution of the parameters in (5.34), we must return to

(3.29) and make a quantitative omparison of singularities at � = 0 and � = d. The appropriate

behaviour of X

0

(�) on the right-hand side of (3.29) is X

0

(�) = �M=(�

2

w

0

(0)) +O(1) near � = 0,

whilst X

0

(�) must be regular at � = d. Mathing at � = 0 gives the equations

d

dt

(a(b+ )) =

2M

b+ 

; (5.35)

2a(a+ d) + b(b+ ) = onst: = 0; (5.36)

while eliminating the singularity at � = d yields

d = onst: =

�

r

; (5.37)

w

0

(d) = 

�

2ad+ b+



(1� d

2

)

2

�

= onst. = r

2

: (5.38)

Note that equations (5.36) and (5.38) are exatly the same as (5.11) and (5.9) for the Hele-Shaw

problem; (5.35) is analogous to (5.7), and (5.37) is analogous to (5.10). The onstany of d

here emerged naturally as a onsequene of the solution (3.63), but in any ase ould have been

assumed a priori by the omment of x3.6.2 that the singularities of the Shwarz funtion must

remain �xed in the �-plane. The values of the onstants on the right-hand sides of these equations

were obtained from the initial onditions on the map neessary to give the irle of radius r entred

at z = �, namely

(0) = r(1�

�

2

r

2

); b(0) = 0 = a(0); d(0) =

�

r

;

the ondition on d(0) gives the value of d for all time. We have the three equations (5.35), (5.36)

and (5.38) to solve for the funtions a(t), b(t) and (t), whih is a well-determined system. At

�rst sight then, it seems that everything is leading to a solution of the physial problem; however

when we onsider the large domain limit (as we did for the analogous Hele-Shaw problem), we

enounter problems, �nding that the entire uid mass translates uniformly relative to the (�xed)

dipole (or vie-versa, if we subtrat o� this translational veloity from the solution).

To see this expliitly, we take the same limit as in x5.3, letting r !1, �!1, while keeping

(r � �) �xed at k (this being the problem of a dipole plaed at z = 0 in the half-spae of uid

fx > �kg). In this limit d approahes the value 1, and (0) approahes 2k. Equation (5.35) still

stands, and (5.36) has the obvious limit obtained by setting d = 1. A leading-order balane is

ahieved in (5.38) only if (t) assumes the onstant value, 2k. As the limit is approahed, it is

prudent to look at what is happening far from the dipole, sine physially the free surfae ought

4

As ommented there (and again in footnote (3)), we ould equally well onsider a multipole singularity at the

origin. For a multipole of order n the funtion X (�) has the behaviour of (5.28); this would also lead us to the

same map as for Hele-Shaw, namely (5.24).

73



to be undisturbed (at) as x ! �1, and the veloity �eld ought to be zero at in�nity. For the

ZST problem with �(0) = 0, the veloity �eld is given by (C.1) with T = 0, that is,

2(u� iv) = �w

t

(1=�) + w

t

(�) +

w

0

t

(�)

w

0

(�)

�

�w(1=�)� w(�)

�

: (5.39)

The map for the in�nite domain limit is

w(�; t) = a�

2

+ b� +

�

1� �

;

with initial onditions as before exept that now (0) = 2k. Sine � = 1 maps to in�nity, we write

� = 1� � for small � 2 C and examine the veloity �eld (5.39). The various expressions are found

to be

�w(1=�) = �



�

+ (a+ b) + �(2a+ b) +O(�

2

);

w(�) =



�

+ (a+ b� )� �(2a+ b) +O(�

2

);

�w

t

(1=�) = �

_

�

+ (_a+

_

b) + �(2 _a+

_

b) +O(�

2

);

w

t

(�) =

_

�

+ (_a+

_

b� _)� �(2 _a+

_

b) +O(�

2

);

w

0

t

(�)

w

0

(�)

=

_



+

�

2



2

h

(2 _a+

_

b)� _(2a+ b)

i

+

2�

3



2

(a _� _a) +O(�

4

);

ombining these gives the veloity at large distanes from the dipole as

u� iv = �

_

�

+ (_a+

_

b) +O(�):

The leading-order term here vanishes, sine we already know  is a onstant (equal to 2k) from

the balane of terms in (5.38). We also require

a(t) + b(t) = onst. = 0;

ombined, these two onditions give � 2(a+ b) = 2k, f (5.18), whih is exatly the requirement

that the asymptoti free boundary at in�nity be �xed relative to the dipole. These onditions

are learly inompatible with equations (5.35) and (5.36) (with d = 1 in the latter). Insisting

that (5.35) and (5.36) hold, as they must ertainly do to �t the onditions at the dipole, the best

we an then do is to take (t) to be onstant, giving bounded, but nonzero, veloity at in�nity.

Physially, this orresponds to the entire uid mass translating with speed a(t) + b(t) relative to

the �xed dipole, whih is a highly arti�ial geometry. The unrealisti nature of this large domain

limit implies that the �nite domain solution represented by the system (5.34){(5.38) must also be

arti�ial, otherwise it would give a sensible limit.

5

The unaeptability of this partiular solution is a onsequene of the assumption �(0) = 0

whih was made, sine if a solution exists to the problem of a pure dipole in this geometry, �(0) is

neessarily regular at the origin, but need not vanish there (see the omments following (3.14) in

x3.1). We therefore onsider what form the mapping funtion must take in this ase. The relevant

governing equations for the Shwarz funtion are now (3.57) and (3.54); by the remarks following

(3.57) the solution for H

e

(�; �) may be written down from (3.58) as

H

e

(�; �) =

C

0

�

log � �

1

�

Z

�

0

(C

0

+M�=A(�

0

)) d�

0

tanh(�

0

� � + tanh

�1

�)

�

1

�

f(tanh

�1

� � �)

�

1

�

Z

�

0

C

1

(�

0

) d�

0

;

5

As an aside, we note that if we onsider the simpler problem of a point sink singularity in this geometry, the

same unphysial result is obtained.
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where C

0

and C

1

are, respetively, the zeroth and �rst \moments", and f is a funtion to be

determined. Note that we are now working with the saled time variable � , de�ned in (3.51), and

that sine we have no point sink at the origin, the \moment" C

0

is a onstant equal to the area of

the uid domain (�r

2

here). We have initial onditions (5.33) as before, from whih the funtion

f is seen to be

f(�) = �r

2

log(tanh �)� �r

2

log(tanh � � d):

After simplifying and rearranging, the solution for H

e

beomes

H

e

(�; �) = r

2

log � � r

2

log(� � tanh �) + r

2

log(� � tanh(� + tanh

�1

d))

�r

2

Z

tanh �

0

(1� �x) dx

(� � x)(1� x

2

)

�M

Z

tanh �

0

(1� �x) dx

A(� � tanh

�1

x)(� � x)(1� x

2

)

;

(plus some funtion of � , irrelevant to the disussion). Hene,

H

0

e

(�; �) =

r

2

�

�

r

2

� � tanh �

+

r

2

� � tanh(� + tanh

�1

d)

+r

2

Z

tanh �

0

dx

(� � x)

2

+M

Z

tanh �

0

dx

A(� � tanh

�1

x)(� � x)

2

: (5.40)

As disussed in x3.7, this must give us the singularities of �w(1=�) within the unit dis. The

above expression for H

0

e

(�; �) reveals these to be simple poles at � = 0, � = tanh � , and � =

tanh(� + tanh

�1

d), as well as a line singularity along the line segment (0; tanh �) on the positive

real axis. Hene, the form of the mapping funtion needed to give a solution for this partiular

problem must be suh that

�w(1=�) =

a

�

+

b

� � tanh �

+



� � tanh(� + tanh

�1

d)

+

Z

tanh �

0

R(x; �)

(� � x)

2

dx

+

Z

tanh �

0

Q(x; �)

� � x

dx;

so that

w(�) = a� +

b�

1� � tanh �

+

�

1� � tanh(� + tanh

�1

d)

+

Z

tanh �

0

�

2

R(x; �)

(1� x�)

2

dx

+

Z

tanh �

0

�Q(x; �)

1� x�

dx; (5.41)

for some unknown funtions a(�), b(�), (�), R(x; �), Q(x; �). Note that this analysis is all in terms

of the saled time variable, hene if we wish to solve for suh a mapping funtion, we must use

the governing equations in the form (3.60), (3.61). This form of w(�) is learly very ompliated,

and the algebra involved in substituting into (3.60) will be very messy; however, the arguments

leading to (5.41) were dedutive, and in priniple the problem an be solved. The parameter A(�)

provides the extra degree of freedom, whih is neessary to enable the \momentum ondition" to

be imposed. For the unbounded domain limit of the problem, this will be automati if we insist

that the onditions both at the dipole and at in�nity hold. For a bounded domain, the momentum

P of the ow is given by (3.17) with T = 0; with �(�) given by (3.61) this beomes

P =

A(�)

iw

0

(0; �)

Z

j�j=1

w

0

(�) �w(1=�)(w

�

(�) + w

0

(�)(1� �

2

)) d�;

whih must vanish.
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As an aside, note that we may also �nd the \moment generating funtion" F

1

from (3.68) and

the remark following it, as

F

1

(�; �) =

Z

�

0

�

C

0

+

M�

A(�

0

)

�

tanh(�

0

� � + tanh

�1

�) d�

0

+ f

1

(tanh

�1

� � �)

+

Z

�

0

C

1

(�

0

) d�

0

: (5.42)

The arbitrary funtion f

1

is determined by the data (5.33), using the relations (3.54) and (3.67),

and is

f

1

(�) = �C

0

log(1� d tanh �):

Equating the onstant term on the right-hand side of (5.42) to zero then yields a onsisteny

ondition analogous to (3.70), namely

C

1

(�) =

Z

�

0

�

C

0

+

M�

A(�

0

)

�

seh

2

(�

0

� �) d�

0

+

C

0

d seh

2

�

1 + d tanh �

) C

1

(�) =

Z

�

0

M�

A(�

0

)

seh

2

(�

0

� �) d�

0

+ C

0

tanh(� + tanh

�1

d);

this gives a relation between C

1

(�) and A(�) (remember C

0

� �r

2

, a onstant). The other

\moments" also follow from (5.42), should we want them.

We have assumed a spei� geometry and driving mehanism throughout this setion, but it

is lear that the same dedutive method of �nding the form of w(�; �) will apply quite generally,

provided we an solve (3.52) for H

e

(�; �). Given the omplexity of (5.41) it is unlikely that will

be able to determine solutions of this kind analytially; however we have shown how, in priniple,

they may be onstruted.

Realling our omments of x5.1, the root of the diÆulty lies in �nding a mapping funtion suh

that the distribution of singularities of the Shwarz funtion within the unit dis in �-spae allows

all onditions in the physial domain to be ful�lled. We have already seen (from our disussion

of the ase �(0) = A = 0) that this is ertainly not possible for the ase where these singularities

remain �xed in �-spae. The above shows that, even in the ase A 6= 0 when the singularities are

allowed to move, a Shwarz funtion whih has only isolated singularities within the unit dis is

not good enough; a ontinuous line distribution of singularities is needed, and moreover, this line

itself must vary in time.

We remark that if we were to attempt a general problem (with A 6= 0) using a Shwarz funtion

with a distribution of isolated singularities at points �

r

= �

r

(�) 6= 0, say, within the unit dis, then

it is easily seen from the governing equation (3.60) that these singularities must vary aording

to

d�

r

d�

= 1� �

2

r

(5.43)

(in ontrast to the ase A = 0, where the �

r

remain �xed). With the saled time variable � , they

are thus moving in a spei�ed manner within the unit dis (exept for the singularity at � = 0

orresponding to the driving singularity, whih remains �xed). Behaviour of this kind is every

bit as restritive as �xed singularities, hene we annot expet to do any better for problems

with multiple, �xed driving singularities in this ase. It seems that the ontinuous distribution of

singularities is essential if suh problems are to be treated by onformal mapping methods.

5.5 Steady Stokes ow reonsidered

Sine the time-dependent problem with driving singularity at a �nite point proves so intratable,

we reonsider steady problems of this kind (little literature exists even for this simpler problem).
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Although we were able to onsider the ZST equations for the time-evolving problem with singu-

larities, surfae tension is essential in the steady problem. One an onsider the small surfae

tension limit of steady, NZST solutions (f hapter 6, where we do this for the unsteady, �nite

domain problem), but this requires areful asymptotis, and is de�nitely not the same as setting

T = 0 in the steady equations (whih gives either trivial solutions, or no solution).

The most onvenient form of the equations to use is (5.25) and (5.26). The solution tehnique

is best illustrated by example, and shows how the ideas introdued by J & M an be generalised.

For the sake of de�niteness, we again onsider a dipole singularity situated at the origin in an

unbounded uid domain (though we ould easily onsider more general singularities), but in

ontrast to their solution, we assume the uid to ontain a �nite air bubble.

Assuming �(0) = A 6= 0 then, (5.25) implies that �w(1=�) must have a simple pole at the

origin, to balane with the dipole singularity. There will also be some point � =  within the unit

dis whih maps to in�nity; as usual, we onsider a map with real oeÆients, so that without

loss of generality  2 (0; 1). Thus we onsider a map of the form

w(�) =

��(� � �)

� � 

; (5.44)

and this should give a solution. Note that the map (5.29) onsidered by J & M is the speial ase

 = 1, so we are in e�et generalising their solution. Note also that this is exatly the map (5.1)

referred to in x5.2, for whih a Hele-Shaw solution has been found with a point sink singularity

driving the ow [33℄.

The usual onditions apply at the dipole, namely

X (�) =

M

�w

0

(0)

+O(1); �(�) = A+O(�); as � ! 0;

so mathing the order 1=� singularity at � = 0 in (5.25) gives

M

��

+ �A = 0: (5.45)

We also have to deal with the onditions at � =  (in�nity, in the physial plane). The most

general onditions allowing stagnant ow at in�nity are (5.30) and (5.31), and for the mapping

funtion (5.44) we an no longer take p

1

= 0. After a loal analysis of (5.26) at the point � = ,

ondition (5.30) yields the three equations

T

4�

(f

+

(0)� 2f

+

()) +

A(1� 

2

)

��

= 0; (5.46)

2

2

A

��

�

T

4�

(f

+

(0)� 2f

+

()� 2f

0

+

()) = �

p

1

4�

; (5.47)

A

�

(1� �) +

T�

4�

�

f

+

(0)� 2f

+

() + ( � �)

�

2f

0

+

() + f

00

+

()

�	

= �

p

1

4�

�(2 � �): (5.48)

Condition (5.31), in onjuntion with equation (5.25), yields another ondition,

 =

p

1

4�

�w(1=): (5.49)

We have �ve equations, then, for the six unknowns �, �, , A, p

1

and . The system is not

underdetermined however, sine we have an arbitrary lengthsale, represented by the parameter

�. We may simplify the system (5.45){(5.49) by introduing the salings

^

A =

�

T

A; P

1

=

�p

1

T

; Ca =

M�

T�

2

; (5.50)
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here, Ca is a Capillary number for the ow (measuring the relative e�ets of visosity and surfae

tension), and the quantity P

1

is a dimensionless line pressure. If we also rede�ne the funtions

f

+

(�) by writing

F

+

(�) = �f

+

(�); (5.51)

then they are independent of the saling parameter �. With these salings, and eliminating 

between (5.48) and (5.49), we obtain the system:

�

^

A



+ Ca = 0; (5.52)

F

+

(0)� 2F

+

() +

4

^

A

�

(1� 

2

) = 0; (5.53)

4

^

A

�

(1 + 

2

) + 2F

0

+

() = �P

1

; (5.54)

P

1



4

� 

2

� � + 1

(1� 

2

)( � �)

= �

4

^

A

�

+ 

2

F

00

+

(): (5.55)

We now have four equations for the four unknowns �, ,

^

A and P

1

. The Capillary number will

be spei�ed as part of the problem. It is a simple matter to eliminate P

1

and

^

A, giving just two

equations to be solved for the mapping parameters � and ,

�

2

(F

+

(0)� 2F

+

()) = 4Ca(1� 

2

); (5.56)



4

� 

2

� � + 1

(1� 

2

)( � �)

(4(1 + 

2

)Ca� 2�

2

F

0

+

()) = 4Ca+ �

2

F

00

+

(): (5.57)

These equations are still very diÆult though, sine the funtions F

+

( � ) depend nonlinearly on �

and , being de�ned through the expressions (3.8). A better notation emphasising this dependene

would perhaps be F

+

( � ;�; ), but this is rather unwieldy.

Clearly, in the limit  ! 1 we require P

1

= 0 for a balane of terms in (5.55). In this limit,

equation (5.53) redues to an identity, and what remains is equivalent to the problem solved by

J & M for the dipole in a half spae.

The set of solution pairs (�; ) to (5.56) and (5.57) desribe a set of equilibrium bubble shapes

whih are solutions to the dipole-at-the-origin problem. Sine we expet that there are very many

suh solution pairs, a sensible sheme for �nding solutions to these equations (whih will need to

be done numerially) is to speify the value of  we wish to onsider, and, eliminating Ca between

equations (5.56) and (5.57), �nd the orresponding value(s) of � whih satis�es the equations (the

relevant Capillary number will then follow from either of the above equations). Note that the

mapping funtion (5.44) an also desribe bounded uid domains if we allow  > 1; the governing

equations in this ase will be di�erent however, sine the singularities of equation (5.25) within

the unit dis then our at � = 0, � = 1= and have to be mathed appropriately.

Any solution pairs (�; ) whih are found must be heked for univaleny, sine only univalent

mapping funtions give aeptable solutions. For unbounded uid regions, the univaleny domain

in (�; ) parameter spae is the union of the two regions

1

�

<  < 1 (� > 0;  2 (0; 1));

and

� < �

�

2 +

1



�

(� < 0;  2 (0; 1));

reall that we assumed  2 (0; 1) at the outset. In � > 0; < 0 we require � > 0; < 0 (respetively)

to satisfy the normalisation ondition w

0

(0) > 0. Typial free boundary shapes desribed by this
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map are shown in �gure 5.8; note that the extremal onformal maps orresponding to points (�; )

on the boundary of the univaleny domain in � > 0 desribe uid regions in whih the bubble

has ollapsed to a slit, whih is a irular ar (the limiting ase of �gure 5.8 (b))|suh domains

will be obtained as solutions as we allow the Capillary number to beome unbounded (the ZST

limit).

As another example, we may onsider the solution of J & M as being the limit of yet another

family of maps. In their solution the parameter p

1

was identially zero, beause the map satis�ed

(5.32) near the point � = 1 (the preimage of in�nity). We may onsider more general maps

having p

1

identially zero, provided we hoose an appropriate form for them. We know that the

onditions (5.30), (5.31) are the most general giving stagnant ow at in�nity; we also know that

(5.25) must hold globally. Hene if �(�) is to remain O(1) as � ! , with X (�) behaving as

spei�ed by (5.31), the funtion �w(1=�) must have a pole at � = ; that is to say, if w(�) has a

pole at � =  within the unit dis, it must also have a orresponding pole at the inverse point,

(� = 1=, in the ase  2 R), outside the unit dis. We again onsider a dipole singularity at the

origin, so the funtion �w(1=�) must have another simple pole at � = 0. Hene a possible mapping

funtion giving a (steady) solution has the form

w(�) = �

�

� + ��

�

1

� � 

�



1� �

��

: (5.58)

We ould onsider more ompliated options, but restrit ourselves to this simplest possibility

satisfying all the requirements, sine the solution of J & M again emerges as a speial limiting

ase. Note that unlike the last example, this map annot desribe bounded uid domains.

The solution proedure is essentially the same as for the previous example, but the algebra is

a little easier. Mathing the singularity at the dipole in (5.25) gives (with the salings of (5.50))

^

A

�

1� �

�

 +

1



��

+ Ca = 0:

For the ondition at in�nity, we need only ensure that �(�) has a �nite limit as � ! , sine

for this partiular hoie of mapping funtion the ondition on X (�) at in�nity will then follow

automatially from (5.25). With the funtions f

+

( � ) rede�ned as in (5.51) this is easily seen to

require

^

A(1� 

2

)

1� � ( + 1=)

+



4

(F

+

(0)� 2F

+

()) = 0;

and

^

A(1 + 

2

)

1� � ( + 1=)

+



2

2

F

0

+

() = 0:

Eliminating

^

A between these three equations gives two equations for � and , whih also ontain

the Capillary number,

Ca(1� 

2

)

(1� � ( + 1=))

2

=



4

(F

+

(0)� 2F

+

()); (5.59)

Ca(1 + 

2

)

(1� � ( + 1=))

2

=



2

2

F

0

+

(): (5.60)

Again, one may seek solution pairs (�; ) to these equations by postulating a partiular value for

 2 (0; 1), eliminating Ca between equations (5.59) and (5.60), and �nding the orresponding

value(s) of � whih gives a solution (the orresponding Capillary number then follows from either

equation). Thus, the equation to be solved for �, with  spei�ed, is

1� 

2

1 + 

2

=

F

+

(0)� 2F

+

()

2F

0

+

()

;
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Figure 5.8: Typial free boundary shapes desribed by the mapping (5.44). Case (a)

has � = �0:4; � = �5;  = 0:5, and orresponds to a dipole suh that the x-axis is a

streamline from negative to positive. Case (b) has � = 1; � = 1:4;  = 0:8, and has the

x-axis as a streamline from positive to negative.
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Figure 5.9: Typial free boundary shape desribed by the mapping (5.58). The parameter values used here are

� = �1; � = 3:5;  = 0:65. The dipole at the origin is suh that the x-axis is a streamline from negative to positive.
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the �-dependene in this equation is entirely impliit in the funtions F

+

( � ). Maps for solution

pairs (�; ) desribe a family of equilibrium bubble shapes in a ow with a dipole singularity at

the origin. Only solution pairs (�; ) giving univalent maps are relevant; a typial on�guration

is shown in �gure 5.9. For the map (5.58), the univaleny domain in (�; )-spae is bounded by

the lines

� =

(1 + )

2

2

;  = 1;

so the allowed parameter regime is

� >

(1 + )

2

2

; for  2 (0; 1):

There is no subset of the region � < 0,  2 (0; 1) whih orresponds to a univalent map (we an

�nd univalent maps with � < 0,  2 (�1; 0), but these are equivalent to those already onsidered).

For points on the univaleny boundary, the bubble shape desribed has a single usp in the free

boundary on the x-axis (at the point losest to the dipole). The situation shown in �gure 5.9

orresponds to a dipole suh that the x-axis is a streamline in the positive sense; for a dipole of

the opposite strength we have the \mirror image" situation (with � < 0,  2 (�1; 0)); there is no

analogue of �gure 5.8 (b).

5.6 Summary

This work of this hapter falls into two parts; the (ZST) Hele-Shaw results, and the Stokes ow

results. We began by reviewing the relevant literature for eah, whih is substantial, for both the

steady and time-dependent versions of the problems. Nevertheless, for the Stokes ow problem,

there is a gap in the literature: no solutions (obtainable by the omplex variable methods used in

this thesis) exist for time-dependent problems on unbounded ow domains, having a free boundary,

and driven by a singularity at some �nite point within the ow. Our task, whih proved to be

far from trivial, was to �nd suh a solution by generalising the well-known (dipole driven) steady

solution of [52℄ to the time-dependent ase.

The Hele-Shaw version of this problem was solved in x5.3 and found to be a reasonably straight-

forward adaptation of a problem solved in [79℄, but with more interesting solution behaviour, sine

the presene of the dipole singularity (rather than a point sink) neessitated a more ompliated

mapping funtion. In partiular, the existene of a \transient 5/2-power usp" solution was found

(see also [46℄, [50℄), where the free boundary formed a usp near the dipole, then immediately

smoothed, with a little air entering through the usp. The free boundary soon afterwards beame

nonanalyti again, with the formation of two 3/2-power usps in the free boundary (�gure 5.7).

For the slow visous ow analogue, we saw that no physially-relevant solution to the problem

exists in the simplest ase with �(0) = 0; sine the Goursat funtion �(�) must be bounded at a

dipole singularity we were fored to onlude that �(0) be �nite and nonzero. In this situation we

were able to solve for the singular part of the primitive of the Shwarz funtion, and hene dedue

the distribution of singularities of �w(1=�) (the Shwarz funtion itself) within the unit dis. The

main result was that a solution is only possible if the Shwarz funtion has a time-dependent line

singularity within the unit dis. Due to the omplexity of the onformal map needed, the solution

was not ompleted.

We onluded the hapter by onsidering two (dipole driven) steady problems on unbounded

uid domains, both of whih may be onsidered as generalising the solution of [52℄.
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Chapter 6

Stokes ow with small surfae

tension

We now abandon the simpli�ation we have hitherto assumed in most of our solutions, and move on

to onsider the time-dependent problem with positive surfae tension, or the NZST problem. We

have mentioned already that remarkable analytial progress has been made with this problem,

notably by Hopper [37, 38, 39℄, Rihardson [82℄ and Howison & Rihardson [49℄ (and see also

Tanveer & Vasonelos [96℄ in this ontext); Hopper uses somewhat more onvoluted methods

than ours to obtain his solutions. Two-dimensional problems that have been fully solved by the

methods of x3.3 or by Hopper's method inlude:

� the oalesene under surfae tension of two (equal or unequal) irular ylinders of uid

[37, 82℄;

� the oalesene under surfae tension of a ylinder and a half-spae of uid [39℄;

� a lima�on-shaped uid domain evolving under the ation of surfae tension only [82℄;

� the evolution of domains desribed by polynomial mapping funtions of the form w(�) =

a(� � b�

n

=n) for any integer n > 2, evolving under the ation of both surfae tension and a

point sink at the origin [49℄;

� the evolution of bubbles in shear ow with surfae tension inluded [96℄;

� the evolution of expanding/ontrating bubbles in quiesent ow with surfae tension in-

luded [96℄.

The work that will most interest us here is that of Howison & Rihardson [49℄, whih we shall

heneforth refer to as HR'95, sine they inlude the e�ets of both surfae tension and a driving

mehanism. In addition, they introdue a new onept, whih we shall all a weak solution to the

problem, and whih we will be exploiting to solve a new problem.

6.1 Review of \weak" solutions

We begin by giving a short review of some of the work of HR'95, using their example to illustrate

the \weak solution" onept. They onsider uid domains 
(t) having a single point sink of

strength Q at the origin, whih are desribed by the family of mapping funtions

z = w(�; t) = a(� �

b

n

�

n

); j�j � 1; (6.1)

for a, b real and positive funtions of time, and integers n � 2. The maps (6.1) are univalent on

the unit dis only if b < 1, with (n� 1) inward-pointing 3/2-power usps forming simultaneously

on �
 if b = 1.
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Figure 6.1: The di�erent regions in the small surfae tension \lima�on" problem, using

mathed asymptotis.

We an irumvent some of the analysis of HR'95 if we use the results of x3.6, sine we there

gave the \moment" evolution equations (3.34), and we have a polynomial map, for whih the

\moments" were evaluated expliitly in equation (3.36). The form of the NZST equations (3.34)

makes it lear why a polynomial of the form above is so muh easier than a general polynomial; it

means that we only need �nd f

+

(0), without worrying about any of the higher derivatives f

(r)

+

(0).

The only triky bit then is alulating f

+

(0) using (3.8); one this is done the evolution equations

dS

dt

=

d

dt

�

�a

2

�

1 +

b

2

n

��

= �Q; (6.2)

d

dt

(a

2

b) = �(n� 1)

T

��

abK(b); (6.3)

are immediate. Here, S(t) denotes the ross-setional area of 
(t) and K(�) denotes the omplete

ellipti integral of the �rst kind (see [8℄, [30℄, or appendix B, for example).

The authors onsidered an (a; b) phase plane within the univaleny domain 0 � b � 1, a � 0,

a solution trajetory (a(t); b(t)) reahing the boundary b = 1 being assoiated with formation of

3/2-power usps. Solution breakdown is inevitable when T = 0, with b(t

�

) = 1, a(t

�

) > 0 for
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some positive \blow up" time t

�

(as expeted, by the time-reversal argument of x1.4.2). However,

when T > 0 they found that one always has omplete extration of the uid from the domain,

with extration time t

E

= S(0)=Q suh that a(t

E

) = 0, b(t

E

) < 1. This naturally led them to

onsider the limiting ase T ! 0 where, ombining the previous two observations, usps form

in �
 at time t

�

< t

E

, and persist until time t

E

in a kind of \weak solution" senario, where

a nonanalyti free boundary is permissible. This orresponds to a degenerate ase of equation

(6.3), where K(b) on the right-hand side is singular as b " 1 (in fat the ellipti integral has the

asymptoti behaviour K(1� �) � �(1=2) log(�=8) as �! 0), but T ! 0 to ounterat this e�et.

The net result is that b(t) is `pinned' at 1 for t > t

�

, whilst from (6.2), a(t) evolves aording to

d

dt

�

a

2

�

1 +

1

n

��

= �

Q

�

; (6.4)

until t = t

E

, ZST theory holding for 0 < t < t

�

, of ourse. These weak

1

solutions are all of

similarity type for t

�

< t < t

E

, sine only the saling parameter a is hanging; the shape of the

free boundary remains the same throughout. So for instane, the solution for n = 2 (whih is

just the \lima�on" example of x3.4) will evolve as a shrinking ardioid for times t > t

�

in the

limit T ! 0. The authors investigate the veloity �eld of the uid in the neighbourhood of the

\usp", and �nd it to be �nite, being exatly the veloity of the free boundary itself (so there is

no entrainment of air into the usp). This an be easily heked using the expression (C.1) in the

T ! 0 limit.

We note that if T is small and positive, the logarithmi nature of the singularity in K(b) as

b " 1 in (6.3) means that b(t) must be exponentially lose to 1 before surfae tension e�ets beome

important, a fat borne out in experiments, where `almost-usps', having radii of urvature whih

are exponentially small in the Capillary number, an be observed; see for example [52℄.

2

In this small surfae tension ase, 0 < T � 1, mathed asymptotis may also be used to solve

the problem, with three distint r�egimes (�gure 6.1 illustrates this for the ase n = 2). The outer

solution will be the T ! 0 shrinking usped shape of HR'95. In the inner region, the free boundary

will be loally paraboli, a on�guration whih was solved for in the NZST ase by Hopper [40℄

(the \Stokes ow Ivantsov" solution). The invariane of Stokes ow under rigid-body motions

means that this solution an be a travelling wave of arbitrary speed. The apex urvature of the

partiular parabola observed is a funtion of the far-�eld ow imposed (whih here is due to the

point sink). There will also be an intermediate region in whih the inner and outer solutions are

mathed. In this region, the geometry is suh that the free boundary may be linearised onto a slit,

and the Stokes equations solved on an unbounded domain with appropriate mathing onditions.

Similar remarks apply to our solution of x6.2. We shall not onsider mathed asymptotis in

this thesis|see [67℄ for full details of the method applied to a similar Stokes ow problem (the

oalesene of two idential irular ylinders).

6.2 The ubi polynomial map

We now onsider the ideas of HR'95 desribed above, applied to a general ubi polynomial

mapping in the limit T ! 0. The ZST ase of the analogous Hele-Shaw problem was solved by

Huntingford in [50℄. As explained, we expet the evolution of 
(t) to follow ZST theory until

the \blow up" time t

�

, at whih point we relax the restrition on �
 to permit solutions with

persistent usps in the free boundary. For ease of manipulation we hange notation slightly from

that above, writing

w(�; t) = a(t)

�

� +

b(t)

2

�

2

+

(t)

3

�

3

�

: (6.5)

1

These solutions are not \weak" in the true sense of the de�nition; we use the terminology beause the solutions

are not lassial. To avoid umbersome notation we now drop the inverted ommas when referring to them.

2

In this paper (whih was disussed in detail in x5.4), the radius of urvature at the near-usp is found to be

proportional to exp(�32�Ca).
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The saling fator a may learly be taken to be real and positive for all time. By suitably rotating

the o-ordinates in the initial domain 
(0), the general ase with both b(0) and (0) omplex

may be redued to an initial map with just one omplex oeÆient. For simpliity we shall

assume b(0); (0) 2 R, whih will then ensure b(t) and (t) are real for t > 0; this is equivalent

to the assumption that 
(t) is symmetri about the x-axis. We return to the limitations of our

assumption in x6.2.1. For this ase, (3.34) and (3.36) yield

d

dt

�

a

2

�

1 +

b

2

2

+



2

3

��

= �

Q

�

; (6.6)

d

dt

�

a

2

b

�

1 +

2

3



��

= �

T

2�

f

+

(0)a

2

b

�

1 +

2

3



�

�

T

�

f

0

+

(0)

2

3

a

2

 ; (6.7)

d

dt

[a

2

℄ = �

T

�

f

+

(0)a

2

 : (6.8)

With T = 0 these equations are valid until the time t

�

at whih the map eases to be univalent.

As in [50℄ we must onsider the domain V in (b; )-spae for whih (6.5) is univalent

3

on j�j � 1,

and �nd the phase trajetories of the system (6.7), (6.8) within V . The determination of this

univaleny domain (in the more general ase of omplex oeÆients) is the subjet of [15℄. For

real oeÆients, V is symmetri about the -axis (so we lose nothing by restriting attention to

the right-half plane), and is bounded in b > 0 by the lines

 = 1; b = 1 + ; and

b

2

4

+ 4

�



3

�

1

2

�

2

= 1: (6.9)

The line b = 1 +  orresponds to formation of a single 3/2-power usp on �
, exept for the

isolated points (0;�1) (where we have two 3/2-power usps, symmetrially plaed about both

axes), and (8/5, 3/5) (where we have a single 5/2-power usp). The line  = 1 orresponds to two

3/2-power usps on �
 (symmetrially plaed about both axes when b = 0), and the elliptial

segment of �V (whih extends from b = 8=5 to b = 4

p

2=3) orresponds to loss of univaleny by

the free boundary beginning to overlap itself. The domain V , together with the phase paths for

the T ! 0 solution, is shown in �gure 6.4. Figure 6.2 shows free boundary \blow-up" shapes for

various parameter values on �V .

Equations (6.7) and (6.8) give the ZST phase paths within V as the urves

b



�

1 +

2

3

�

= onst = k; (6.10)

for various k 2 R. In ontrast to the Hele-Shaw result of [50℄, we �nd no phase paths whih

meet �V tangentially and then re-enter V ; all ZST solutions blow up with the phase path hitting

�V obliquely. A tangent phase path is assoiated with the instantaneous formation of a usp,

whih immediately smooths (when the phase path re-enters V ), and the free boundary beomes

analyti again (the only known examples of suh behaviour for the Stokes ow [85℄ and Hele-Shaw

problems involve transient 5/2-power usps).

The ZST evolution is then fully determined, and we now onsider the e�et of small positive

surfae tension, as we approah �V along a phase path. Using the de�nition (3.8), we are able to

�nd exat expressions for f

+

(0) and f

0

+

(0) in terms of ellipti integrals. These exat expressions are

neessary if we wish to onsider the problem with O(1) surfae tension, but not very illuminating

for the present disussion of the limit T ! 0; hene we relegate the details to appendix B. The

main point to note is that they are singular only on the straight-line portions of �V (i.e. those

portions orresponding to blow-up via usp formation rather than by overlapping) and so only in

the neighbourhood of these lines will surfae tension e�ets be signi�ant, justifying our earlier

assumption that ZST theory is adequate for t < t

�

. To �nd the phase paths near �V , we ombine

3

Note, though, that we are atually onsidering the projetion of a \univaleny ylinder" in (a; b; ) spae, onto

a = 1, with (6.6) providing the extra information about the variation of a with time.
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Figure 6.2: Free boundary shapes desribed by the map (6.5) for various points (b; ) on the boundary �V

of the univaleny domain. The values used are: (b

1

; 

1

) = (0; 1), (b

2

; 

2

) = (1; 1), (b

3

; 

3

) = (4

p

2=3; 1),

(b

4

; 

4

) = (1:8; 0:8461), (b

5

; 

5

) = (8=5; 3=5), (b

6

; 

6

) = (1; 0), and (b

7

; 

7

) = (1=5;�4=5). Pitures (3b) and

(4b) are magni�ations of the nonunivalent region, showing how the free boundary begins to overlap itself; the

former ase is usped and self-overlapping, while the latter is smooth. The value a = 1 was used to generate eah

piture, hene the shapes do not have equal areas.
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(6.7) and (6.8), writing a

2

 = A, and a

2

b(1 + 2=3) = B, to give

4

dB

dA

=

B

2A

+

2

3

f

0

+

(0)

f

+

(0)

; (6.11)

and hene it is only the ratio of f

0

+

(0) to f

+

(0) whih is important.

We need to onsider two separate ases, aording as to whether the ZST solution breaks down

by reahing  = 1, or by reahing b = 1 +  (refer forward to �gure 6.4). Consider �rst the lass

of solutions for whih  " 1 within �V , along a ZST phase path. One  has reahed a value lose

to 1, it is `trapped' near  = 1 until either the solution blows up (with  = 1 and attendant usp

formation, or with  ' 1, b ' 4

p

2=3 on the elliptial portion of �V , and self-overlapping of the

free boundary), or all uid is extrated, sine if  dereased muh below 1, ZST theory would

again take over, foring it bak up towards  = 1 on a ZST phase path. It follows that only a and

b will be varying appreiably with time, and so A � a

2

, B � 5a

2

b=3. The results of appendix B

show that near  = 1,

f

0

+

(0)

f

+

(0)

� �

b

2

� �

3B

10A

;

hene (6.11) beomes

dB

dA

�

3B

10A

;

giving B = (onst.)�A

3=10

, or, in terms of the mapping funtion parameters,

b � (onst.)� a

�7=5

;  � 1: (6.12)

Knowing that ZST theory will hold until  � 1, we may take t

�

(the ZST \blow up" time) to

be zero without loss of generality and proeed from there, so that, in the limit T ! 0, (t) � 1

throughout the motion. Thus, from (6.6) and (6.12), the equations to be solved are

a

2

�

4

3

+

b

2

2

�

=

S(0)�Qt

�

= a

2

�

�

4

3

+

b

2

�

2

�

�

Qt

�

; (6.13)

and b = b

�

�

a

�

a

�

7=5

; (6.14)

where we use S(t) to denote the area of 
(t), and a

�

; b

�

denote the starting values of a and b

(

�

= 1, remember). The right-hand side of (6.13) is simply a linearly dereasing funtion of time,

reahing zero at \extration time" t

E

= S(0)=Q. Substituting from (6.14) in (6.13) gives

G(b)�G(b

�

) = �

6Qt

�a

2

�

b

10=7

�

; where G(b) := b

�10=7

(8 + 3b

2

): (6.15)

Now, G(b) is positive and monotone dereasing in b on the range of interest (namely 0 � b �

4

p

2=3), so (6.15) tells us that b must be monotone inreasing in t, from the starting value b

�

.

Hene the phase path must follow the line  = 1 in this diretion, ending either at time t

E

, or

when it reahes b = 4

p

2=3. Complete extration annot our in this r�egime, sine (6.13) and

(6.14) give the area of the uid domain as

S(t) = �

 

4

3

a

2

+

b

2

�

a

14=5

�

2a

4=5

!

;

whih is always positive. Hene we dedue that the phase path reahes b = 4

p

2=3 before all the

uid has been extrated, and the solution breaks down with �
 beginning to overlap itself (�gure

6.2 (3a) and (3b)).

4

Note that B and A are proportional to the 2nd and 3rd Stokes ow \moments" of the map (6.5), from the

de�nition (3.36).
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We now onsider the ase of solutions approahing the straight-line portion b = 1 +  of �V

along a ZST phase path, observing, by the same argument as above, that a phase path will be

`trapped' near this line one it is suÆiently lose to it (�gure 6.4). We may thus eliminate either

b or  in the ZST limit, and we hoose to work with b (so  = b� 1). In this ase, A � a

2

(b� 1)

and B � a

2

b(2b+ 1)=3. The asymptoti evaluation of the ratio f

0

+

(0)=f

+

(0) as the line b = 1 + 

is approahed is performed in appendix B. This limit is found to be nonuniform on the range

b 2 (0; 8=5), being equal to �1 everywhere exept at the single point b = 0. Thus for b > 0 (6.11)

beomes

dB

dA

�

B

2A

�

2

3

;

whih has solution

B = �

4A

3

+ �

p

jAj;

for some onstant �. We again take t

�

= 0 without loss of generality, and our initial onditions

must satisfy b

�

= 1 + 

�

(where now 0 � b

�

� 8=5). In terms of a and b then, we have

a

jb� 1j

1=2

(2b

2

+ 5b� 4) =

a

�

jb

�

� 1j

1=2

(2b

2

�

+ 5b

�

� 4) � 3�;

holding together with the mass onservation equation (6.6) whih, after some rearrangement, and

putting  = b� 1 (sine we remain on this part of the univaleny boundary), beomes

�

a

a

�

�

2

h(b)� h(b

�

) = �

6Qt

�a

2

�

;

for h(b) de�ned by

h(b) := 5b

2

� 4b+ 8 � 6

�

1 +

b

2

2

+

(b� 1)

2

3

�

:

Combining the previous two equations, eliminating the ratio a=a

�

between them, we �nally arrive

at an analogue of (6.15),

jb� 1j

h(b)

g(b)

2

� jb

�

� 1j

h(b

�

)

g(b

�

)

2

= �

6Qt

�a

2

�

jb

�

� 1j

g(b

�

)

2

; (6.16)

where g(b) := 2b

2

+ 5b� 4. Ignoring the exeptional ases b

�

= 1, � = 0 for the moment (on our

range of interest, � = 0 ours if and only if b

�

= b



= (�5+

p

57)=4), we see that the right-hand

side of (6.16) is a monotone dereasing funtion of time, and so the left-hand side must be also,

i.e. F (b) := jb� 1jh(b)=g(b)

2

dereases with time. The area of the uid domain is given by

S(t) =

�a

2

�

h(b

�

)

6

F (b)

F (b

�

)

;

so omplete extration ours if and only if F (b) falls to zero; this orresponds to extration time

t

E

= �a

2

�

h(b

�

)=(6Q). A plot of F (b) on (0; 8=5) is given in �gure 6.3 (b = 8=5 is the point at whih

the form of �V hanges, the small elliptial portion of �V for 8=5 < b < 4

p

2=3 orresponding to

blow up of solutions by overlapping of the free boundary). Important features to note are that:

� F (b) vanishes only at b = 1;

� F (b) has a singularity at b = b



, orresponding to a ritial point in the phase diagram;

� F (b) is monotone inreasing (to in�nity) on (0; b



), monotone dereasing (to zero) on (b



; 1),

and monotone inreasing on (1, 8/5);
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Figure 6.3: The funtion F (b) governing evolution on the part b = 1 +  of �V . (Note the di�erene in sales

between the two plots.)

� F

0

(b) = 0 at b = 8=5, and only there, orresponding to the formation of the 5/2-power usp.

Hene for b

�

2 (b



; 1) and b

�

2 (1; 8=5), the phase path will approah the point b = 1,  = 0, with

omplete extration ourring when we reah this point, sine we must have F (b) dereasing with

t. By ontrast, if b

�

2 (0; b



) we must have the phase path approahing b = 0,  = �1. Sine

F (0) > 0, this point is reahed before all the uid has been extrated, but due to the symmetry

of the phase diagram about the -axis, we are fored to stay at this point. For the moment we

ignore the ompliations hinted at by the nonuniformity of the limit f

0

+

(0)=f

+

(0) at this point.

Reall now the omment in footnote (3), that we have atually been onsidering the projetion

of a univaleny ylinder by suppressing the parameter a. We are thus in one of the speial ases

onsidered in HR'95; the subsequent evolution will be of the `similarity' type disussed there,

with b � 0,  � �1, and the parameter a hanging in aordane with the orresponding mass

onservation equation. The full phase diagram in the (b; )-plane is given in �gure 6.4, with phase

paths that are in some way `speial' represented by dashed lines. The bold arrows indiate the

sense in whih the phase paths `turn around' as they hit �V .

It is now apparent that the `exeptional ases' b

�

= 1, b

�

= b



mentioned earlier are stable

and unstable (respetively) ritial points in the phase diagram, and thus also represent possible

`similarity' solutions of the kind studied in HR'95, the dotted phase path  = 0 being exatly one of

those solutions. Note that for this speial solution, reahing b = 1 no longer need be synonymous

with total extration, sine the right-hand side of (6.16) is now identially zero; indeed, by the

analysis of HR'95 we do remain a �nite time at (1; 0) before extration is omplete. The points

(0;�1) and (0; 1) are also ritial points, stable (but see x6.2.1) and unstable respetively, and

again, are members of the family of similarity solutions of HR'95. We may summarise our results

as follows:

� Phase paths whih hit �V at (1; 0) or (0;�1) terminate there and represent stable similarity

solutions, sine adjaent phase paths are also entering these points.

� Paths whih hit �V at (0; 1) and (b



; 1�b



) terminate there and represent similarity solutions

whih are unstable, sine neighbouring paths are diverging.

� Paths for whih 

�

= 1, b

�

2 (0; 4

p

2=3) turn to the right and follow �V along  = 1,

reahing (4

p

2=3; 1) before extration is omplete, at whih point the free boundary begins

to overlap itself. The present analysis then no longer applies, and the solution annot be

ontinued.
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b

Blow-up

by overlapping

only on this urved

portion of �V

Two 3/2-power usps in �D along line  = 1

5/2-power usp

Complete extration

Critial point b



Two 3/2-power usps (symetrially plaed) at b = 0,  = �1.

forms here

ours here

One 3/2-power usp in �D along line b = 1 +  (b 6= 0; 1; 8=5).

Figure 6.4: The univaleny diagram (restrited to the right-half (b; )-plane) for the ubi polynomial mapping

funtion. The shaded region orresponds to a nonunivalent map.
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� Paths hitting the urved portion of �V likewise represent self-overlapping uid domains,

and annot be ontinued.

� Paths for whih 

�

= b

�

� 1, 1 < b

�

< 8=5 turn around and enter the point (1; 0); reahing

this point is simultaneous with omplete extration.

� Ditto for b



< b

�

< 1.

� Paths for whih 

�

= b

�

� 1, 0 < b

�

< b



turn around and enter (0;�1), reahing this point

before extration is omplete; subsequent evolution is of `similarity' type and is disussed in

HR'95.

In addition, an analysis of the veloity �eld in the neighbourhood of the usp has been arried

out, using the expression (C.1) with T ! 0. The same result as in HR'95 was found (although

we do not give the analysis): the veloity at the usp is exatly the (�nite) veloity of the free

boundary at that point, so there is no entrainment of air into the usp.

The 5/2-power usp is an interesting borderline ase, being the point of transition between

ZST solutions whih break down via formation of a 3/2-power usp, and those whih break down

via overlapping of the free boundary. This path must still turn around and enter (1; 0); however,

the fat that F

0

(8=5) = 0 (�gure 6.3) implies that this path `only just makes it'. Geometrially, the

5/2-power usp immediately beomes a 3/2-power usp, whih then persists. The point (1; 0) on

�V orresponds to a ardioid, but sine reahing this point is simultaneous with total extration,

this on�guration is not atually attained.

The existene of the point b



is also interesting. As we move along �V from (1; 0) towards

(0;�1), �
(t) evolves ontinuously from a ardioid (with a usp on the left-hand side), to a fully

symmetri shape having usps on both sides. As is does so, a `dimple' develops on the right-hand

side (see (6) and (7) in �gure 6.2), whih beomes more pronouned, eventually turning into the

seond usp at (0;�1). It is perhaps not surprising then that there is some ritial point beyond

whih the `dimple' is too large to disappear, and the ultimate shape has to have two usps. If the

dimple is small enough (i.e. b

�

> b



), then the ultimate shape will have just one usp. For the

solutions with 

�

= 1, however, the possible geometries are suh that the two-usp state is always

unstable, and ultimate overlapping of the free boundary has to our.

6.2.1 Complex oeÆients

Reall that, near the start of x6.2, we stated that the assumption of real oeÆients in the mapping

funtion (6.5) was equivalent to assuming symmetry of 
(t) about the x-axis. The results obtained

seem to have a remarkably rih struture nonetheless; however they are somewhat deeptive, as

onsideration of the ase with omplex oeÆients reveals.

A little thought about the onlusions of x6.2 throws up an apparent ontradition: the point

(0;�1) in (b; )-spae is stated to be a stable equilibrium point, whilst the point (0; 1) is an unstable

equilibrium point. But the two on�gurations are atually idential, one being a rotation through

angle �=2 of the other. In fat, the onlusions regarding the point (0;�1) were a little suspet

anyway, sine we knew the limit f

0

+

(0)=f

+

(0) to be nonuniform at this point, but the analysis

away from this point did indiate that it should be a stable equilibrium.

In the preeding analysis, we have been onsidering a single, two-dimensional ross-setion

of what is atually a four-dimensional univaleny domain V

4

in omplex (b; )-spae. In fat,

bearing in mind the omments of footnote (3), the full univaleny domain for the map (6.5) will

be a ylinder in �ve-dimensional spae, but the dependene on the saling parameter a is of no

onsequene. Determination of this domain is the subjet of Cowling & Royster's (heneforth C

& R) paper [15℄. There, the authors note that the ross-setion =fbg = 0 of V

4

is symmetri

about the planes <fbg = 0 and =fg = 0, and so it may be assumed without loss of generality

that =fbg = 0 and <fbg � 0 (sine this will still generate all possible free boundary shapes, up

to rotations and reetions). Writing  =  + i� and taking b 2 R

+

, their paper then determines

this three-dimensional ross-setion V

�

of V

4

for whih the map (6.5) is univalent on the unit dis;

however this domain is not simple, and is given in an impliit form whih is diÆult to use.
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Before exploring the struture of this domain further, we onsider the hanges wrought in the

evolution equations for the oeÆients by allowing them to be omplex. We assume still that

a 2 R

+

, but now write b = � + i� and  =  + i�, for real �; �; ; �. The equations governing

the ZST problem are found from (3.32) and (3.36), and are

d

dt

�

a

2

�

1 +

jbj

2

2

+

jj

2

3

��

= �

Q

�

; (6.17)

a

2

�

b+

2b

3

�

= onstant; (6.18)

a

2

 = onstant. (6.19)

To obtain the phase paths in the four-dimensional (�; �; ; �)-spae we must equate real and

imaginary parts in these equations. The �rst is wholly real already, and in any ase (as we have

observed for the real oeÆients ase) is unneessary for determination of the phase paths. The

four real equations resulting from (6.19) and (6.18) are

a

2

 = k

1

; (6.20)

a

2

� = k

2

; (6.21)

a

2

�

� +

2

3

(� + ��)

�

= k

3

; (6.22)

a

2

�

�+

2

3

(��� �)

�

= k

4

; (6.23)

whih, for various values of these four arbitrary onstants k

1

to k

4

, will give paths in (�; �; ; �)-

spae (after elimination of a). We now reall the statement of C & R that it is suÆient to onsider

the situation � = 0, � > 0. Suppose we seek suh solutions to the above equations (6.20){(6.23).

The �rst two are unhanged, whilst the seond two beome

a

2

�

�

1 +

2

3

�

= k

3

; (6.24)

a

2

�� = k

4

: (6.25)

Equations (6.20) and (6.21) give



�

= onstant;

whilst (6.24) and (6.25) give

1

�

+

2

3�

= onstant;

whih together imply that either both � and  must be onstant, or else � = 0. Supposing the

�rst ase, with � 6= 0, then to satisfy the equations we need both a and � to be onstant also, in

whih ase the mass onservation equation annot hold (exept in the trivial ase Q = 0). Hene

we must have � = 0, showing that the only family of solutions for whih b 2 R throughout the

evolution are those already found for whih  2 R also.

The result of C & R essentially says that restriting attention to V

�

yields all possible free

boundary shapes, the remainder of V

4

onsisting of rotations and reetions of shapes whih are

ontained within V

�

. For a map with onstant oeÆients it is then suÆient to onsider V

�

, sine

any free boundary on�guration an be generated by some point within V

�

provided the axes

are suitably hosen. With time-dependent oeÆients, we may hoose axes suh that the initial

on�guration 
(0) is generated by a point of V

�

; however the above shows that only if � = 0 will

the on�guration for t > 0 also be generated by a point of V

�

. Solution trajetories for � 6= 0 will

migrate to regions of V

4

outside V

�

.
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C & R's observation is therefore of limited use, sine the only family of solution trajetories

lying wholly within the three-dimensional ross-setion V

�

� V

4

is the family of real solutions

already studied|all other solution trajetories will simply interset V

�

at a single point. The full

four-dimensional spae V

4

will be horribly diÆult (if not impossible) to determine and study. We

onsider instead whether we might �nd a three-dimensional solution family for the ase in whih

 is real, but b is omplex. Setting � = 0 in equations (6.20){(6.23) gives

a

2

 = k

1

; k

2

= 0;

a

2

�

�

1 +

2

3

�

= k

3

; a

2

�

�

1�

2

3

�

= k

4

;

sine (6.21) has redued to an identity, we are able to eliminate a from these equations to �nd

phase trajetories in (�; �; )-spae: these will be determined by the two equations

�



�

1 +

2

3

�

= onstant;

�



�

1�

2

3

�

= onstant:

To get an idea of this three-dimensional ross-setion of V

4

, all it V

z

, we onsider simple two-

dimensional ross-setions. The ross-setion � = 0 is the ase already studied (the domain V

given by (6.9)). The ross-setion � = 0 orresponds to maps of the form

w(�)

a

= � +

i�

2

�

2

+



3

�

3

:

Making the substitutions � = �i

^

�,  = �̂ and w(�) = �iŵ(

^

�) we �nd that

ŵ(

^

�)

a

=

^

� +

^

�

2

^

�

2

+

̂

3

^

�

3

;

so the intersetion of V

z

with this ross-setion is exatly the domain V , but inverted with respet

to ; all it V

y

. Likewise, we will have a ZST solution family lying entirely within V

y

, with phase

paths exatly as for the real oeÆients ase, but inverted with respet to . The T ! 0 limit is

also inferred from the earlier analysis.

The other two-dimensional ross-setion of V

z

we an look at is  = 0. This is partiularly

easy, the map now being

w(�)

a

= � +

(� + i�)

2

�

2

;

so that w

0

(�) = 0 only if � = �1=(� + i�), and the map is univalent on the dis

�

2

+ �

2

� 1:

A solution family again lies in this ross-setion (whih we all V

o

), with solution trajetories

whih are straight lines

�

�

= onstant;

as an be seen from (6.22) and (6.23) with  = 0 = �. All points on the univaleny boundary are

equivalent, in the sense that the free boundary shapes represented by the maps are just rotations

of the same ardioid. The T ! 0 limit of this solution family will be of the \similarity solution"

type, with initial lima�ons beoming ardioids (before all the uid has been extrated) whih then

persist in a self-similar fashion until extration is omplete.

The shemati diagram 6.5 indiates how the three-dimensional domain V

z

�ts together. Given

the equivalene of the ross-setions V and V

y

, we now see plainly the equivalene of the points
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Figure 6.5: The three-dimensional univaleny domain V

z

� V

4

, and its two-dimensional ross-setions V , V

y

and

V

o

. The arrows on V

y

indiate how the point fb = 0;  = �1g destabilises (f. �gure 6.4).
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fb = 0;  = 1g and fb = 0;  = �1g, and the arrows in �gure 6.5 show how this on�guration

destabilises.

This is obviously not the full story, sine we have onsidered only a limited subset V

z

of

V

4

, whih happens to ontain a family of solutions of whih the real oeÆients ase is a sub-

family. In fat this sub-family appears twie within V

z

, as we have seen (in V and in V

y

) so there

is onsiderable repetition even within this limited subset. V

z

does not ontain all possible free

boundary on�gurations. On the other hand, the ross-setion V

�

(� = 0) of V

4

is a minimal set of

possible free boundary shapes if axes are hosen appropriately, but omplex-parameter solutions

do not lie wholly within this spae. Evolution in time annot be determined by studying V

�

then,

unless the analysis is somehow modi�ed to allow the oordinates within the uid domain to rotate

suitably in time|we do not onsider this possibility.

In onlusion, it seems that a omprehensive study requires the determination of the full

domain V

4

, sine we an say little more by onsidering three-dimensional ross-setions. We have

at least resolved the apparent paradox of the real oeÆients ase, whih appeared to show that

idential on�gurations were at one stable and unstable.

6.3 Summary

In this hapter our prinipal onern has been with the (time-dependent) NZST Stokes ow

problem, in the limiting ase that the small positive surfae tension tends to zero. We began by

listing the more notable ontributions to the NZST problem, most of whih assume an O(1) surfae

tension parameter. Only HR'95 have previously onsidered the T ! 0 limit in suh problems (the

\weak solution" onept), and their work is desribed in x6.1. Clearly, it only makes sense to

do this when onsidering problems for whih the ZST version undergoes �nite time blow-up (the

unstable sution problem, reall the omments in x1.4.2). For suh problems the T ! 0 limit

is not the same as the ZST problem: in the latter, the usp formation in the free boundary is

terminal, with solution breakdown ourring, but for the former this is not so.

Following HR'95 we found a new weak solution for the sution problem, with a ubi polyno-

mial mapping funtion with real oeÆients, whih we disussed at some length. Some of these

solutions were found to permit the extration of all the uid from the uid domain, while some

underwent a topologial hange (self-overlapping), beyond whih the solution ould not be on-

tinued. In ontrast to the ZST Hele-Shaw result of [50℄ (using the same mapping funtion), there

is no ontinuable 5/2-power usp solution in the ZST ase.

5

The quadrati and ubi \similarity solution" families of HR'95 were seen to be a subset of

our new family. Our solutions were seen to be unsatisfatory, however, in that two idential

on�gurations are apparently both stable and unstable, a paradox whih is a onsequene of the

\real oeÆients" simpli�ation. Hene, in x6.2.1, we investigated the \omplex oeÆients" ase.

While a omplete solution was found to be too ompliated analytially, we were able to resolve

the apparent ontradition, and arrive at an understanding of how our solution family �ts into

the muh larger family of omplex ubi solutions. In partiular, it would appear that the generi

\limiting on�guration" (as extration time is neared) for those solutions whih do not undergo

a hange of topology, is the ardioid solution of HR'95, this being the only stable point of the

univaleny boundary.

It was also found (although we did not give the analysis) that the veloity �eld at the usp is

�nite, and equal to the veloity of the free boundary at that point, so that there is no entrainment

of air into the usp (see HR'95 for the analysis in the simpler ase onsidered there). Viewed as

a regularisation of the Stokes ow sution problem, this may be ontrasted with the analogous

slit regularisation for the Hele-Shaw problem, whih was mentioned in x1.4.1, and is disussed in

detail in hapter 7.

5

Suh ontinuable solutions an be found for the NZST Stokes ow problem, however; see [85℄.
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Chapter 7

Crak and Anti-rak solutions to

the Hele-Shaw model

We reall the omments of x1.4.1 where we mentioned the theory of \raks" and their ZST limit,

\slits", in the Hele-Shaw problem. In this hapter we shall give a brief overview of the theory of

raks and slits, and introdue the new onept of what we all antiraks, whih although very

di�erent in behaviour to raks, are in some sense omplementary. We shall be onsidering the

small, positive surfae tension problem throughout, so it might be expeted that the ZST model

applies; however, we will see that the the nonzero surfae tension is a ruial part of the theory.

7.1 Overview of raks and slits

The rak/slit theories were developed by several authors in a series of papers [36, 62, 33℄ between

1988 and 1994. The models are an attempt to regularise the ill-posed ZST Hele-Shaw sution

problem, whih is known to exhibit �nite-time blow-up via usp formation in all but very speial

ases. The ZST model has to be invalid as suh usped on�gurations are approahed, beause

the urvature � of the free boundary beomes very large at the forming usp. When � = O(1=T ),

where T is the (small) surfae tension parameter, the boundary ondition p = 0 on �
 is no

longer a valid approximation to the atual boundary ondition p = �T on �
. Thus, surfae

tension e�ets beome important as we near usp formation (the ZST blow-up time), but only

in the neighbourhood of the usp. This statement forms the basi premise of the models: they

are, in e�et, a loal regularisation, ating only at isolated points of the boundary, whih on

physial grounds we expet to be those points at whih blow-up of the ZST problem ours. For

de�niteness, we assume a point sink-driven ow.

In the ase of the rak model [62℄, the proposal is that the subsequent morphology (for times

lose to the ZST blow up time) is that of a thin �nger of air (a rak) whih penetrates the uid

domain and propagates rapidly towards the sink. By \rapidly", we mean that the motion of

the rest of the free boundary is negligible ompared to the motion of the rak, as long as this

ontinues. Asymptoti methods are employed to study the evolution, and the rak geometry for

later times is determined as an analyti ontinuation of some assumed initial geometry. Slits are

raks of zero thikness, but the slit model an be derived independently of the rak model, as

we shall see.

Before presenting the theories, we mention some of the experimental and numerial evidene

supporting them. Kopf-Sill & Homsy [59℄, and Couder et al. [14℄ have observed narrow �ngers

(of thikness approximately 1/10 the hannel width) propagating in Sa�man-Taylor experiments.

These an be observed only under very arefully monitored onditions; in [59℄ for instane, the

plates of the Hele-Shaw ell had to be srupulously lean. The �ngers destabilise via dendriti

instabilities along the sides of the �nger, whih are on a muh shorter lengthsale than the �nger

length itself, and are negleted in the rak theory to be desribed.
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Figure 7.1: The geometry of (a) a �nite rak; (b) a semi-in�nite rak, along the

x-axis (driven by a sink at in�nity).

Kelly & Hinh [55℄ and Nie & Tian [69℄ have omputed rak-type morphologies numerially.

In [55℄, the problem of o�-entre sution from an initially irular dis is solved using a boundary

integral algorithm (the ZST version of this problem was solved analytially by Rihardson in

[79℄). For small values of the surfae tension parameter, the free boundary is observed to follow

ZST theory approximately until the urvature is relatively high, then a thin �nger of air advanes

towards the sink. In the omputations of [69℄, similar geometries are found; these authors atually

�nd that the solution breaks down via the \�nger" reahing the sink before all the uid has been

suked out.

Consider �rst the rak model. We begin with the assumption that a rak (either �nite,

oupying �(t) < x < (t), or semi-in�nite, oupying �1 < x < (t); see �gure 7.1) has

already formed along the x-axis, and is desribed by

y = ��h(x; t); h(x; 0) � h

0

(x) known;

for some small parameter �, whih is also used to resale time, t = �� . Three regions are onsidered:

the �rst is the outer region, in whih the rak may be linearised onto the x-axis as a slit. In this

region, with the above salings, the evolution equation for the rak pro�le (in the ase of the

�nite rak �(t) < x < (t)) is readily derived as

�h

��

=

1

p

(�)

2

� x

2

: (7.1)

It is straightforward to integrate this to �nd the rak pro�le for times � > 0 if x lies in the range

jxj < (0), but for jxj > (0) the analyti ontinuation mentioned above is neessary, whih relies
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on the assumption that

h((�); �) = 0; � � 0:

(Here (�) is assumed monotone inreasing, whih will be the ase if p

1

< 0, by the maximum

priniple for Laplae's equation.) With this assumption the inverse funtion !(x), suh that

(!(x)) � x, may be de�ned, and expliit expressions for h(x; �) in both regions may be written

down,

h(x; �) = h

0

(x) +

Z

�

0

d�

0

p

(�

0

)

2

� x

2

; jxj < (0); (7.2)

h(x; �) =

Z

�

!(x)

d�

0

p

(�

0

)

2

� x

2

; jxj > (0): (7.3)

The latter equation here is the analyti ontinuation of the former. For the partiular example of

a �nite rak with an initially elliptial pro�le, the shape of the rak for later times turns out to

be a narrow ellipse [62℄.

There is also an inner region for the problem, in whih the rak is onsidered to have an O(1)

thikness (by resaling y with �), and a tip region, in whih both (x� (t)) and y are saled with

�

2

, and surfae tension e�ets are important. In [36℄, onjetures are made whih suggest that

the mathing at the tip is only possible if � = T

1=3

. (In this paper, a balane of terms in the tip

region is ahieved by saling distanes with T

2=3

, time with T

�1=3

, and pressure variations with

T

1=3

; with these salings the tip speed is O(T

�1=3

).)

The proedure of analyti ontinuation of the initial geometry h

0

(x) is ill-posed, often leading

to the formation of singularities in the free boundary within �nite time, with subsequent blow-up

of the model. Examples of how this an our are given in [62℄, and speulation is made about

how the rak might evolve through ertain types of singularities via tip-splitting.

The slit model (Hohlov et al. [33℄) on the other hand is well-posed, relying on onformal

mapping ideas whih by now should be familiar to the reader. A slit is essentially a rak of zero

thikness, whih again is postulated to propagate rapidly into the uid region. In this limiting ase,

\rapidly" will mean on a timesale suh that the rest of the free boundary is atually stationary

whilst the slit is in motion. On physial grounds, as for the rak model, the expetation is that

slits will grow from the ZST blow-up points of the free boundary; however, the slit model su�ers

from being seriously under-determined, permitting slits to propagate from arbitrary points of the

free boundary along arbitrary paths, and to branh in any hosen way.

If a well-posed slit model exists, it ought to be realisable as the (ZST) limit of some rak

model, and we will see that this is indeed the ase. The theoretial framework for the model relies

on �rst rewriting the P-G equation (2.4) in the form

<

�

w

t

(�)

�w

0

(�)

�

=

�Q

2�jw

0

(�)j

2

on j�j = 1; (7.4)

(where the prime denotes �=��); as usual we take Q > 0 to represent a sink, sine we are only

interested in the sution problem. We have already mentioned that the model is under-determined;

however, physial onsiderations suggest that we are interested in slit evolution for times t > t

�

(t

�

being the blow-up time for the ZST model), and from the point(s) on �
(t

�

) at whih the

usp forms. Time is thus resaled for t > t

�

with some small parameter �,

t� t

�

= ��; (7.5)

and the \slit mapping" is denoted by

W (�; �) = w(�; t

�

+ ��): (7.6)

For simpliity, suppose a usp has formed at w(�1; t

�

) on the real negative axis, with the sink

lying at z = 0 (as in �gure 2.3, for example). To lowest order in �, (7.4) beomes

<

�

W

�

(�)

�W

0

(�)

�

= 0;
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holding on j�j = 1, exept at � = �1, where the right-hand side is in fat unbounded (so we expet

something like a delta-funtion there). In the absene of other singularities on j�j = 1 Hohlov et

al. derive the appropriate form of (7.4) as

<

�

W

�

(�)

�W

0

(�)

�

= <

�

�a(�)

�

1� �

1 + �

��

;

for an arbitrary real, positive funtion a(�). Resaling time again, and analytially ontinuing

this equation, they obtain a version of L�owner's di�erential equation for the mapping funtion

W ,

W

�

(�)

�W

0

(�)

= �

�

1� �

1 + �

�

; (7.7)

holding globally. This is a linear, hyperboli p.d.e., with solution

W (�; �) = F (e

��

K(�));

for arbitrary funtions F ( � ). Here K( � ) is the Koebe map of univalent funtion theory (see [20℄),

de�ned by

K(�) =

�

(1� �)

2

;

whih maps the unit dis onto the whole omplex plane, minus the slit (�1;�1=4℄ along the real

axis. The funtion F ( � ) is determined from the initial data,

F (K(�)) =W (�; 0) � w(�; t

�

):

Hene the \slit mapping" W (�; �) maps the unit dis onto the region 
(t

�

), minus the image

(under F ) of the slit [�1=4;�e

��

=4℄, so that the smooth portion of the free boundary remains

�xed at �
(t

�

), whilst the point whih was at w(�1; t

�

) has travelled into 
(t

�

) as far as the point

F (�e

��

=4). This is illustrated shematially in �gure 7.2. By hoosing a suitable distribution

of delta-funtions on the right-hand side of the P-G equation, more general versions of L�owner's

equation are obtained, and the above an be generalised to a model whih allows slits to propagate

from arbitrary points of the free boundary, and in a spei�ed manner (this is desribed in [33℄),

hene the indeterminay of the model referred to earlier. However, the justi�ation for writing

down (7.7) had a physial basis, in that the singularity on the right-hand side was plaed at

� = �1 beause this is where the zero of w

0

(�; t

�

) ourred.

The link with the rak model of [36, 62℄ an now be demonstrated. With time saled as

in (7.5), we assume that the \slit" map W (�) of (7.6) represents only the �rst term in a simple

perturbation of the atual mapping funtion, in powers of � (the rak thikness), so that the free

boundary will be an O(�) distane away from the slit. Thus, (7.6) is replaed by

w(�; t) =W (�; �) + �W

1

(�; �) +O(�

2

):

We again substitute into (7.4); at lowest order we retrieve the slit problem, but at order � we get

<

�

�

�W

��

�W

1

��

+ �

�W

1

��

�W

��

�

= �

Q

2�

on j�j = 1: (7.8)

For the simple \paradigm" problem of a �nite rak jxj < (�) driven by a sink at in�nity, with

sides y = ��h(x; �), the slit mapping is exatly

W (�; �) =



2

(� + 1=�):

Substitution of this form for W into (7.8) with � = e

i�

and the normalisation Q = 2�, and noting

that at leading-order h(x; �) = =(W

1

(e

i�

)), and that x = (�) os �, leads eventually to

�h

��

=

1

p

(�)

2

� x

2

;
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Figure 7.2: Shemati diagram showing how a general slit solution works.
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whih is exatly equation (7.1) of the rak model.

We an also study the rak model in terms of the Shwarz funtion of the free boundary, and

its singularities. We know that the free boundary, assuming it is analyti, may be written in the

form

�z = g(z; t);

where the Shwarz funtion g is analyti in some neighbourhood of the free boundary. It was shown

in x2.3 (equation (2.10) and the omments below it) that although g(z; t) may have singularities

both inside and outside the uid domain, those within the uid remain onstant in both position

and time, whilst those outside the uid may move around, and vary in strength. In the example

of x2.4, blow-up of the ZST problem was assoiated with an external square-root singularity of g

reahing the free boundary.

For the symmetri rak y = ��h(x; �), either �nite or semi-in�nite, the Shwarz funtion

representation takes the form

�z = z � 2i�h(z; �) +O(�

2

);

(the +; � referring to the lower, upper sides of the rak respetively) and hene the Shwarz

funtion of the rak boundary has singularities wherever h does. Consider the singularity near

the rak tip for the �nite rak lying along �(�) < x < (�). The leading-order behaviour of h

may be found from (7.3) as

h(x; �) �

1

(�)

�

2((�) � x)

(�)

�

1=2

;

an expression whih is easily veri�ed by heking in (7.1), with x =  � Æ for some small Æ. A

similar result holds for the ase of the symmetri semi-in�nite rak (whih is a paraboli, or

\Ivantsov" rak) [62℄. Hene in general, the assumption is that the funtion h will have a square-

root singularity at the rak tip, whih may be interpreted as a square-root singularity of the

Shwarz funtion, just inside, and O(�) distant from, the tip (note that \inside the tip" here is

atually outside the uid domain, sine the rak is the narrow �nger of air).

Sine we have now seen how the two models are linked, we shall heneforth use the term

\rak" to denote either a rak or a slit solution, on the understanding that the slit is the ZST

limit of the rak. We reserve the term \slit" for emphasis, when we are onsidering only the slit

model. It is helpful at this stage to summarise by listing the more important points of the theory,

for later omparison with the antirak results and onjetures.

� Craks are born at singularities of the ZST problem, and an propagate only in the ase

T > 0.

� Crak tip speeds and rak widths are determined by surfae tension e�ets near the tip.

� As T ! 0, the Shwarz funtion g(z) has a square-root singularity at the rak tip.

We onlude this setion by mentioning the work of King et al. [56℄ on Hele-Shaw ows where the

initial geometry has a orner of internal angle � in the boundary (that is, � is the angle measured

within the uid domain; see the de�nition sketh of �gure 7.9), sine we shall ite their results

later as evidene for the antirak theory. They prove that, for the ZST sution problem, if the

angle � lies stritly between � and 2� (the ase 2� being some kind of inward-pointing usp in

the free boundary), there is no solution to the model for later times. In the ase that the orner

angle is 2� there is still no solution for t > 0, save in the speial ase that the boundary has a

(4n+ 1)=2-power usp (for integer n); this result is dedued from a similar result for the related

obstale problem of variational alulus [90, 64℄. This is the kind of \blow-up" geometry we have

in mind for regularisation by slit propagation; this result shows that the surfae tension e�ets at

the slit tip are an essential part of the model.
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7.2 Introdution to Antiraks

Having reviewed the fundamental ideas behind raks and slits, we turn now to what we view as

the omplementary phenomenon of antiraks. These too will only arise in the ill-posed \sution"

(and not in the \blowing") problem.

As the name suggests, in this ase, instead of having thin �ngers of air penetrating the uid

domain, we now have thin �ngers of uid whih are \left behind" as the free boundary progresses

(refer forward to �gure 7.5). The two situations are very di�erent, despite the super�ial similar-

ities in the geometry. We know (by the maximum priniple for harmoni funtions) that, at least

for the ZST problem, the free boundary must always be moving down the pressure gradient (for

example, towards the sink, in a problem with a single point sink). Hene, although �ngers of air

are able to propagate into the uid in a general sution problem, �ngers of uid annot propagate

out but must, as we said, be \left behind". Thus the antiraks themselves are very stagnant (the

motion of the tip will be seen to be exponentially small for large time), although the rest of the

free boundary is able to propagate smoothly.

Suh strutures are observable in Hele-Shaw experiments (Paterson [73℄ and Chen [11℄), and

large families of exat solutions to the ZST model exist (Howison [45℄, Mineev-Weinstein & Pone-

Dawson [66℄) whih demonstrate antirak formation. In the experiments of [73℄ and [11℄ a less

visous uid is injeted at a onstant rate into an expanse of more visous uid in a large Hele-

Shaw ell, and time-lapse photographs of the evolving interfae are presented. The photographs

of both papers are remarkably similar, showing learly that long thin �ngers (the antiraks)

of the more visous uid are left behind as the free boundary advanes. Typial results of the

experiments of [73℄ are reprodued in �gure 7.3. It is diÆult to see from these pitures, but there

is a tendeny for the tips of the antiraks to be slightly bulbous for large times.

Paterson performs a linear stability analysis for the problem of an expanding irular \bubble"

of the less visous uid, whih provides a surfae tension dependent \seletion mehanism" for

the �ngers, prediting �rstly at what bubble radius they will start to form, and seondly, whih

of the unstable �nger wavelengths is fastest-growing when this radius is reahed. We reonsider

this analysis in x7.6.

The radial �ngering solutions of [45℄, whih are briey onsidered in x7.3.3, an be made to

mimi losely the experimental results of [73℄ and [11℄ if the parameters in the onformal map are

hosen appropriately (�gure 7.3). Essentially, \hoosing appropriately" means that the mapping

funtion is hosen to give a judiious distribution of singularities of the Shwarz funtion within

the uid domain, whih by the results of x2.3, must remain �xed within the ow domain, and

whih the free boundary annot ross. In [45℄, a large lass of �ngering solutions in a hannel

geometry is also found, whih are generalisations of the time-dependent Sa�man-Taylor �nger [88℄.

When wide �nger solutions of this type are onsidered as a periodi array, the antiraks beome

apparent as the strips of uid separating these air �ngers, whih were adjaent to the wall and

asymptotially stagnant in the hannel geometry. The solutions of [66℄, although non-periodi,

are very similar to these solutions.

Remarkably similar geometries to the radial �ngering solutions (and experiments) have reently

been omputed by Elliott & Gardiner [23℄, for the losely-related problem of the growth of a seed

of solid into a superooled liquid (�gure 7.4). The authors use the phase �eld equations (with

suitably hosen parameters) to approximate the isotropi Stefan problem with Gibbs-Thomson

underooling. The phase �eld equations are known to exhibit a wide range of possible behaviours

in di�erent parameter-group limits; in partiular, various types of Stefan problem an be repre-

sented in this way, as well as the Hele-Shaw problem itself (see [9℄ for more disussion of these

matters).

In this hapter, we regard raks and antiraks as two di�erent possible regularisations of

the ill-posed \sution" problem. A natural question to ask, then, is: What will determine whih

instability is observed in a partiular physial situation? This is a key question, to whih we return

in x7.9; although we are unable to give a ategorial answer, we make a onjeture (baked up by

analytial, numerial and experimental evidene). Another question of interest onerns the e�et

of surfae tension on antiraks. We saw in x7.1 that the rak/slit theory is ruially dependent
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Figure 7.3: Examples of the radial �ngering solutions of [45℄, together with a photograph of one of Paterson's

experiments [73℄.
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Figure 7.4: Phase-�eld omputations of the \free boundary" (atually a level set of

the phase parameter � ourring in the phase �eld model) for the growth of a seed of

solid into a superooled liquid. This piture was kindly supplied by Dr A. R. Gardiner

[23℄.
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on surfae tension, sine there is no solution to the ZST problem beyond the time at whih it

blows up with formation of a 3/2-power usp [56℄ (whih is the kind of situation we expet to

be regularised by rak formation). For the ase of antiraks, however, there exist large lasses

of solutions to the ZST problem whih exist for all time, with analyti free boundaries. These

boundary urves should not be very di�erent to those for the orresponding small positive surfae

tension problem, then|although surfae tension must be the seletion mehanism determining

whih solution is observed. We also remark that the tendeny of the antirak tips to beome

slightly bulbous for large times observed in [73℄ and [11℄ must be attributable to surfae tension

e�ets, sine the tip is the most highly urved part of the free boundary in a narrow antirak.

7.3 Exat ZST antirak solutions

Before making any more general omments, we present some exat ZST solutions to the Hele-

Shaw problem whih exhibit antirak formation. It is useful to do this, �rstly beause it makes

lear what the mathematial desription of an antirak is, and seondly, beause by the above

omments regarding the small surfae tension problem, we expet suh solutions to be able to

provide a good desription of the atual behaviour observed. We will see, however, that the

ZST problem is underdetermined, having solutions whih allow a more or less arbitrary array of

antiraks to be generated by suitable hoie of the parameters in the onformal maps.

7.3.1 The \generi" antirak

We �rst present what we onsider to be the \generi" (and ertainly the simplest) Hele-Shaw

antirak solution, sine it aptures all the essentials of the behaviour. It is a solution on a semi-

in�nite uid domain, driven by a onstant negative pressure gradient at in�nity, and is most easily

obtained by use of a onformal map from the right-half plane onto the uid domain. The map we

onsider is very simple,

w(�; t) = � + Ut+ � log(a(t) + �) <(�) � 0; (7.9)

where U and � are positive onstant parameters, and a(t) is a funtion of time (assumed real,

without loss of generality). This map is easily seen to be a solution of the problem, for arbitrary

�, provided a satis�es the ondition

a+ Ut+ � log a = onst. = a

0

+ � log a

0

; (7.10)

where a

0

= a(0). This may be seen either by using the P-G equation (2.6), or by the results

of x2.3 (that those singularities of the Shwarz funtion within the physial domain must remain

�xed), noting that for a map from the right-half plane onto the uid domain, the Shwarz funtion

is given by

g(z(�)) � �w(��): (7.11)

Equation (7.10) is not expliitly solvable for a(t), but the large-time behaviour, when the antirak

is well-developed, is easy to obtain. The only possible large-time balane is a! 0 as t!1, with

the onstant � neessarily positive. (If � < 0 a solution for a(t) must ease to exist within �nite

time.) Sine here we are only interested in the large-time behaviour, we assume initial onditions

suh that the right-hand side of equation (7.10) vanishes; the asymptoti behaviour of a(t) is then

a(t) � exp(�Ut=�): (7.12)

The antirak tip is at

z

tip

= w(0)

= Ut+ � log a

= �a; (7.13)
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the last equality following from (7.10) with zero right-hand side. Hene with the asymptoti be-

haviour of (7.12), the antirak tip approahes exponentially lose to the origin, but never atually

reahes it. This asymptoti stagnation of the tip is assoiated with a logarithmi singularity of

the Shwarz funtion (given by (7.11)) at the point

z = w(a) = Ut+ a+ � log(2a)

= � log 2;

whih the free boundary annot ross while the solution exists. The free boundary itself is given

by the image of the imaginary �-axis, � = i�. Taking real and imaginary parts in x+ iy = w(i�)

gives

x = Ut+

�

2

log(a

2

+ �

2

) � Ut+

�

2

log(�

2

+ exp(�2Ut=�));

y = � + � tan

�1

(�=a) � � + � tan

�1

(� exp(Ut=�)):

There are three distint parts to the free boundary, orresponding to di�erent r�egimes for �. The

antirak tip is desribed by j�j � exp(�Ut=�) � 1, or equivalently, j�j � a, so that aording

to the above expressions,

x � 0; y � � tan

�1

(� exp(Ut=�))

� �� exp(Ut=�);

(although a better approximation for x is given by (7.13) and (7.12)). For a narrow antirak,

�� 1, and if we resale x = �X , y = �Y , then in the tip region,

2X � log(1 + �

2

=a

2

); Y � tan

�1

(�=a);

and the general equation of the antirak tip is

Y = os

�1

(e

�X

):

The antirak sides are given by exp(�Ut=�)� j�j � ��=2, where

x � Ut+ � log j�j; y � �

��

2

:

The advaning free boundary is given by j�j � ��=2, and for � in this range,

x � Ut+ � log jyj:

Intermediate values of � represent the smooth transition between these three regions; in partiular,

we refer to the transition between the antirak sides and the advaning free boundary as the

antirak root. A typial large-time free boundary is shown in �gure 7.5. All suh free boundaries

are of self-similar form in any ase, there being only one free parameter in this solution (�=U , the

ratio of the antirak width to the uniform pressure gradient). Away from the tip, the rest of the

antirak annot \feel" its presene, and the solution is essentially a travelling wave,

z = w(�) = � + Ut+ � log �; (7.14)

with an in�nitely long antirak of width ��.

The pressure �eld within the antirak is given by (2.1) and (2.5) as

p = �<(�):

Near the tip,

z � Ut+ � log(a+ �);

so with a given approximately by (7.12), the pressure �eld in the tip region is approximately

p � exp(�Ut=�)(e

z=�

� 1):
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7.3.2 Solutions with many antiraks

Having seen how the solution for a single antirak works, it is a straightforward matter to gener-

alise to an arbitrary array of parallel antiraks, by suitable hoie of the logarithmi singularities

in the mapping funtion w(�). The solutions of this setion were also given in [66℄ in the ontext of

general Laplaian pattern formation (whih of ourse inludes the ZST Hele-Shaw problem), and

are losely related to the \hannel geometry" solutions of [45℄ and [88℄, although the derivation

as given here was independent of this work.

The obvious form of mapping funtion to try is

w(�) = � + Ut+

N

X

r=1

�

r

log(a

r

(t) + �); (7.15)

where all the �

r

are assumed to be real positive onstants, and the a

r

(t) funtions of time with

positive real parts. This will give a solution of the P-G equation (2.6) provided the singularities

of the Shwarz funtion (7.11) remain �xed in the physial region, that is, provided the following

onditions hold:

a

n

(t) + Ut+

N

X

r=1

�

r

log(a

r

(t) + a

n

(t)) = k

n

; n = 1; : : : ; N; (7.16)

for N omplex onstants k

n

. The parameters �

n

represent the antirak widths (for large times,

when the antiraks are well-developed), and (�U) is the pressure gradient at in�nity. As with

the generi solution, U may be saled out of the problem by dividing eah of the �

n

by U . The

large-time behaviour of these solutions requires a little more are than the previous example,

sine we are now dealing with omplex quantities. Writing a

n

= p

n

+ iq

n

and k

n

= �

n

+ i�

n

the

equations (7.16) beome:

p

n

+

N

X

r=1

�

r

2

log[(p

n

+ p

r

)

2

+ (q

n

� q

r

)

2

℄ = �

n

� Ut; (7.17)

q

n

+

N

X

r=1

�

r

tan

�1

�

q

n

� q

r

p

n

+ p

r

�

= �

n

: (7.18)

A large-time balane in (7.17) is only possible if eah of the funtions p

n

(t) is deaying expo-

nentially with time; the q

n

(t) will remain O(1). If we assume that q

n

6= q

m

for n 6= m then the

asymptoti behaviour of (7.17) will be

p

n

(t) �

1

2

exp

�

�

n

� Ut

�

n

�

;

whilst that of (7.18) will be

q

n

(1) = �

n

+

�

2

X

r 6=n

�

r

sgn(q

r

(1)� q

n

(1)):

If we assume the ordering is hosen suh that q

1

(0) < q

2

(0) < : : : < q

N

(0) (whih will then persist

for later times), we have

q

n

(1) = �

n

+

�

2

X

r>n

�

r

�

�

2

X

r<n

�

r

; (7.19)

hene the q

n

approah known, onstant values as t!1.

This solution exists globally in time, with the parameter restritions we have imposed. It

desribes an array of N parallel antiraks, the n'th one having its tip at the point

z

n

= w(�iq

n

);
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Figure 7.6: A typial solution generated by (7.15), showing 4 well-developed antiraks. Here, ��

i

=

0:5; 1; 0:8; 0:4; for i = 1; 2; 3; 4; respetively; �

i

= �3; �2; 0:5; 1:5, and �

i

= 0:5 for eah i.

suh that the orresponding logarithmi singularity of the Shwarz funtion lies (�xed) within the

�nger tip, preventing the free boundary progressing beyond this point. Asymptotially then, the

antirak tips are �xed at the points

x

n

(1) � �

n

� �

n

log 2 +

X

r 6=n

�

r

log jq

r

(1)� q

n

(1)j; (7.20)

with the q

k

(1) given by (7.19), and

y

n

(1) � �q

n

(1) +

�

2

X

r>n

�

r

�

�

2

X

r<n

�

r

= ��

n

: (7.21)

The width of the n'th antirak is �

n

�. This impliitly assumes that the distane between

adjaent antirak tips, j�

n+1

��

n

j, is greater than the sum of the two antirak half-thiknesses,

�(�

n

+ �

n+1

)=2, so that the antiraks are all distint, although this is not neessary for the

validity of the solution. All that we require is that the �

n

be real and positive, and that the
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Figure 7.7: Sketh showing the geometry when we have an array of \fat antiraks" with narrow spaing generated

by (7.15). The gaps between the \antiraks" may be viewed as raks.

�

n

be real and distint. Note that sine we have expliit expressions (7.20), (7.21) for the large-

time tip o-ordinates (x

n

(1); y

n

(1)), we may hoose these, together with the (�

n

), as the free

parameters in the solution. Hene with this family of solutions, we an generate a more or less

arbitrary array of antiraks, having spei�ed widths and tip o-ordinates. A typial solution is

shown in �gure 7.6. The family of solutions given in [66℄ was even more general, in that they

allowed the parameters � to be omplex (provided they have positive real parts); this an give

solutions with non-parallel antiraks.

Several omments may be made about this lass of solutions. Firstly, given the above in-

terpretation of the arbitrary onstants �

n

and �

n

in the solution, it is possible to hoose these

parameters so as to give an array of very fat \antiraks", whih are very lose together (we

use the inverted ommas here beause usually we envisage antiraks as being narrow strutures,

hene the name). The strips of air separating them may then be viewed as raks, sine the

motion of the \stagnant" antirak bases is negligible relative to these, whih was the ase in the

rak theory. This is essentially a system of narrow Sa�man-Taylor �ngers, see �gure 7.7, and

illustrates the omplementarity of raks and antiraks.
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Figure 7.8: Solution of the form (7.15) exhibiting what we interpret as rak and antirak formation. The values

�

1

= 0:1 (the antirak), and �

2

= �3 were used.

Seondly, if we allow any of the real onstants �

n

to be negative, then the free boundary

inevitably develops usps within �nite time (as we would expet from the interpretation of the

�

n

as the antirak widths), sine there is no possible large-time balane in equations (7.17).

Hene by suitable hoie of the parameters in the map, we may generate solutions whih �rst

form well-developed antiraks, then break down via usp formation (�gure 7.8). Suh solutions

an be interpreted as exhibiting antirak and rak formation, sine as the usped on�guration

is neared, the rak theory outlined in x7.1 will take over from the ZST theory, operating on a

muh faster timesale.

The solutions represented by (7.15) may, for suitably \small" initial data, be regarded as

a perturbation to a travelling wave planar front. One an study the e�et of positive surfae

tension on suh a travelling wave solution, by superimposing a small sinusoidal perturbation on

the interfae and performing a straightforward linear stability analysis. The basi travelling wave

we perturb is (in dimensional variables, with b the gap width in the Hele-Shaw ell, and � the

visosity of the uid),

p =

12�

b

2

U(Ut� x) (x > Ut);
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where x = Ut is the free boundary. Perturbing the free boundary to

x = Ut+ �e

�t

sin

�

n�y

L

�

+O(�

2

);

we �nd the dispersion relation

� =

jnj�

L

�

U �

Tn

2

�

2

b

2

12�L

2

�

:

Here, T is the usual surfae tension parameter, whih when positive is seen to have the e�et of

stabilising shorter wavelengths. Assuming walls at y = �L=2, there is a ritial (minimum) speed

for a perturbation to be maintained,

U

�

=

T�

2

b

2

12�L

2

;

whih will typially be muh less than unity, and hene usually exeeded. The fastest-growing

wavenumber is the n = 1 mode, so aording to this analysis, if we have a hannel of width L

(not small), and hannel length muh greater than L, an initially at interfae might be expeted

to evolve to a single dominant �nger (although this would rapidly take us beyond the realm of

the linear theory)|the Sa�man-Taylor experiment.

7.3.3 Howison's radial \antirak" solutions

For ompleteness, and also beause of the remarkable similarity with the experimental pitures of

[73℄ and [11℄, and the numerial simulations of [23℄, we present the family of solutions found by

Howison [45℄. These solutions di�er from those above, being in a radial geometry, although the

essential antirak behaviour is the same.

We map from the unit dis onto the uid domain, whih is here the exterior of some �nite

bubble. The mapping funtion used is

w(�) =

a(t)

�

+ �

1

N

X

k=1

$

�k

log(

1

(t)$

k

� �)

+ �

2

N

X

k=1

$

�k�1=2

log(

2

(t)$

k+1=2

� �); (7.22)

for a, 

1

, 

2

real funtions of time, with a > 0, 

1

> 1, 

2

> 1; the �

i

are positive onstants to be

hosen (analogous to the �

i

in the solution (7.15), in that ��

i

turns out to be the antirak width),

and $ is an N 'th root of unity (so $

N

= 1). More ompliated maps, allowing asymmetri arrays

of �ngers to be generated, an be dealt with, but (7.22) is the ase onsidered in detail in [45℄.

The motion is assumed to be driven by a sink Q at in�nity. The fat that the singularities of

the Shwarz funtion must remain �xed in the physial plane yields two invariants of the motion,

a

i

+ �

i

N

X

k=1

$

�k

log(

2

i

$

k

� 1) + �

j

N

X

k=1

$

�k�1=2

log(

i



j

$

k+1=2

� 1) = K

i

;

holding for i = 1, j = 2, and also for j = 1, i = 2, for some real onstants K

1

, K

2

. The third and

�nal equation governing the evolution is the ondition that the rate of hange of the bubble area

should be equal to Q,

a

2

�Na(�

1



1

+ �

2



2

) =

Qt

�

+K

0

;

for some real onstant K

0

. These equations ould also have been derived by diret substitution

of (7.22) into the P-G equation (2.4), although this is muh more tedious.
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If the initial values 

1

(0) and 

2

(0) are large, then the initial domain will be nearly irular

(as may be seen from w(�; 0)). In any event, provided their initial values are greater than one,

both 

1

and 

2

will derease monotonially to unity as t ! 1, and the bubble will leave behind

2N �ngers of uid, alternate �ngers having widths ��

1

and ��

2

. A typial solution is shown in

�gure 7.3; we refer to [45℄ for the remaining details of the solution.

7.4 The Shwarz funtion of an antirak

The solutions obtained so far indiate that a general ZST antirak has a logarithmi singularity of

the Shwarz funtion just inside the tip, whih is �xed, and whih the free boundary annot reah

in �nite time (ontrast this with the square-root singularity just outside the tip, for a rak). We

have already seen how this works for the logarithmi singularity, but it is also easy to demonstrate

that the free boundary annot reah a more general internal singularity, suh as g(z) � �(�� z)

m

for some onstants �, �, and m > 0.

1

We note, however, that although we onjeture this

logarithmi singularity to be generi for the ZST antirak, it annot be a singularity in the

NZST problem (even if we allow it to move), as may be seen from (2.11). Internal singularities

of the Shwarz funtion will not now remain �xed in spae (save those whih oinide with the

driving singularity) and must move in suh a way as to anel the singularity on the right-hand

side of (2.11). Motivated by a link between (2.11) and the well-known \Harry-Dym" equation, it

was onjetured in [48℄ that the anonial moving singularity in the NZST problem is of the form

g(z) �

�(t)

(z � z

0

(t))

1=3

as z ! z

0

(t),

for some �(t), z

0

(t). It is easy to show that the oeÆients in this leading-order singularity, whih

is of ourse muh larger than log(z � z

0

) as z ! z

0

, satisfy

_z

0

=

4T

p

3�

3

:

We know that in the ZST limit we need _z

0

= 0, and we also expet � = 0 for the generi antirak,

so dependene like � � T

k

for 0 < k < 2=3 would do, for instane. If our generi ZST antirak

is a sensible T ! 0 limit of some NZST antirak solution, and if the onjeture of [48℄ about

the anonial NZST singularity is orret, then there must be a seondary logarithmi singularity,

whih an persist as T ! 0, and whih will dominate in this limit.

It is still the ase that the free boundary annot ross internal singularities of g(z) while the

solution exists. Given the photographi evidene of [73, 11℄, and the exellent agreement with the

ZST solutions of [45℄, one therefore expets very little variation in z

0

(t) for large time. Further

progress with the NZST problem is diÆult, and we do not pursue it.

7.5 Results from formal asymptotis

Having set the sene by presenting some exat ZST antirak solutions, we now digress a little

to onsider some results due to King et al. [56℄, whih rely on formal asymptotis in the neigh-

bourhood of singular points of the ow. We mentioned this work in x7.1, iting the result that in

the ill-posed ZST sution problem, there exists no solution to the problem for t > 0 if the initial

free boundary �
(0) ontains a orner of internal angle � 2 (�; 2�). In fat, muh more general

results than this are obtained, whih we summarise below.

Consider the ZST sution problem, where the initial domain 
(0) is nonanalyti, having a

orner of internal angle � in �
(0) at x = 0 (�gure 7.9). Then:

1

Solutions to the ZST sution problem an be onstruted in whih the free boundary reahes a singularity

of the Shwarz funtion within �nite time, but suh solutions are the time-reversals of blowing problems with

nonanalyti initial data (see for instane [32℄), and therefore \pathologial" examples.
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Figure 7.9: The loal geometry with a orner of internal angle � in the uid.

� If 0 < � � �=2, a solution an exist for t > 0; if it does, the boundary �
(t) ontinues to

have a orner of angle � at x = 0.

� For �=2 < � < �, a solution an exist for t > 0; if it does, then for t > 0 the orner angle

swithes instantaneously to (� � �).

� For � = �, if �
(0) is analyti at x = 0 then the free boundary �
(t) may move suh

that 0 62 
(t) for t > 0, but if �
(0) is nonanalyti at x = 0 then either � = �+, and

there is no solution for t > 0, or else � = ��, and as long as the solution exists there is an

outward-pointing usp at x = 0.

� For � < � � 2� (exluding the ase of (4n+ 1)=2-power usps) there is never a solution for

t > 0.

Further to these results, King [57℄ onsidered the \borderline" ase � = � (with the free boundary

nonanalyti at x = 0) in more detail. In the simplest ase onsidered, an initial free boundary

x = �jyj

k

k 2 (1; 2); as y ! 0

is assumed (for the usual ZST sution problem, with the uid oupying the region to the right

of this urve). A neessary ondition for a solution to exist for t > 0 is found to be that � must

be positive, and if a solution does exist for t > 0, the subsequent free boundary must have an

outward-pointing usp �xed at the origin, desribed loally by

jyj = f(x; t) � � sin(k�=2)x

k

; as x! 0+:

The � < 0 ase orresponds to � = �+ in the possibilities itemised above; the free boundary has

a ontinuous tangent vetor but is nonanalyti, and we expet this situation to be regularised by

rak formation if T > 0 (or slit propagation in the limit T ! 0), as disussed in x7.1. When � > 0,

� = ��; again the free boundary is nonanalyti but with a ontinuous tangent vetor. In this ase,

however, a solution to the ZST problem an exist for t > 0 (the third of the list of possibilities).

In terms of our antirak theory, we interpret the stagnant outward-pointing usp as a limiting

ase of an antirak, somehow analogous to a slit, in that the free boundary is nonanalyti. Unlike

slits, though, we only expet suh solutions to our when we have nonanalyti initial data, and

also, surfae tension is not neessary (even in a limiting sense) for suh solutions to exist. In fat,

the dependene (or otherwise) on surfae tension is one of the main di�erenes between the rak

and antirak theories; for raks (and slits) surfae tension is vital if solutions to the models

are to exist at all, but for antiraks, sores of exat ZST solutions exist, whih an give good

agreement with observable free boundary shapes if we hoose the parameters orretly. However,
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surfae tension is the ruial mehanism whih selets the \right" solution; in partiular, suh

non-lassial solutions are only to be expeted in the limit T ! 0. In the next setion we onsider

how this works for simple \test ases".

7.6 Paterson's analysis

The ZST solutions presented in x7.3.3 su�er from the same lak of determinay as those of x7.3.2,

sine we have an in�nite family of possible solutions, and we are able to speify the number of

antiraks whih form, the position of their tips, and their widths. It is hoped that the addition

of surfae tension to the model will resolve this indeterminay. A linear perturbation analysis

was arried out by Paterson [73℄ for the problem of a sinusoidally-perturbed expanding irular

bubble, whih revealed that there is indeed a surfae tension dependent seletion mehanism at

work. We present a slightly modi�ed (and extended) version of this analysis.

Consider an almost irular bubble in an unbounded expanse of uid, expanding under the

inuene of a sink of strength Q > 0 at in�nity. We nondimensionalise the problem using the

following salings (where the subsript \dim" denotes the dimensional quantity):

length : r

dim

= ar; (7.23)

time : t

dim

=

�a

2

Q

t; (7.24)

pressure : P

dim

=

Q

M�

P; (7.25)

surfae tension : T

dim

=

aQ

M�

T: (7.26)

In the above, the lengthsale a is taken to be the bubble radius at the time the perturbation is

assumed to be imposed, and the quantity M is the mobility, M := b

2

=(12�). Veloities must be

saled with Q=(�a) to make them dimensionless, and the urvature of the interfae sales with

1=a.

In the dimensionless variables, using the notation r = R(�; t) to denote the free boundary in

plane polar o-ordinates (and with the rest of the notation as usual), the problem is

r

2

P = 0 in r > R(�; t); (7.27)

P = �T� on r = R(�; t); (7.28)

�P

�n

= �V

n

on r = R(�; t): (7.29)

Note that the sign of � is reversed ompared with the model of x1.2.1 beause here we take it to

be the dimensionless urvature measured relative to the bubble, rather than the uid domain (so

the urvature of the undisturbed free boundary is 1). The boundary ondition at in�nity is

P � �

1

2

log r; as r !1:

The \base state" solution (P

0

; R

0

) about whih we perturb is easily seen to be

P

0

(r; t) = �

1

2

log

�

r

R

0

(t)

�

�

T

R

0

(t)

; (7.30)

R

0

(t) =

p

t; (7.31)

in the dimensionless o-ordinates. Suppose that at time t = 1 (whih is the dimensionless start

time), some small perturbation is imposed on the free boundary,

R(�; 1) = 1 + � sinn�; 0 < �� 1:
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We assume that the solution to the perturbed problem an be expressed as a simple perturbation

expansion in the small parameter �,

P = P

0

+ �P

1

+ � � � ;

R = R

0

+ �R

1

+ � � � ;

where eah P

i

(r; �; t) must be harmoni in r > R(�; t). For the boundary onditions, we need the

expression for the urvature � of a general polar urve r = R(�; t); this is given by

� =

1

R

2

4

 

�

R

0

R

�

0

� 1

!

2

+

�

R

0

R

�

2

3

5

1=2

;

where the prime is understood to denote d(�)=d�. In terms of the asymptoti expansions, then,

the boundary ondition (7.28) beomes

P

0

+ �(P

1

+R

1

P

0r

) + �

2

(P

2

+R

1

P

1r

+

R

2

1

2

P

0rr

+R

2

P

0r

) + � � � (7.32)

= �

T

R

0

�

1�

�

R

0

(R

00

1

+R

1

) +

�

2

R

2

0

(2R

00

1

R

1

+

3

2

(R

0

1

)

2

+R

2

1

� R

0

(R

00

2

+R

2

)) + � � �

�

;

while (7.29) is

R

0t

+ P

0r

+ �[R

1t

+ P

1r

+R

1

P

0rr

℄ + �

2

[R

2t

+ P

2r

+R

1

P

1rr

+R

2

P

0rr

+

R

2

1

2

P

0rrr

℄ + � � �

= �

2

R

1�

P

1�

R

2

0

+ � � � ;

both holding on r = R

0

(t), having been linearised down onto this urve. We already have the

basi solution, so we an immediately write down the O(�) problem as

r

2

P

1

= 0 in r >

p

t,

R

1t

+ P

1r

+

R

1

2t

= 0 on r =

p

t,

P

1

�

R

1

2

p

t

=

T

t

(R

00

1

+R

1

) on r =

p

t,

R

1

(�; 1) = sinn�;

we are interested in the solution for times t > 1. The solutions to this system whih have bounded

pressure at in�nity are of the form

P

1

= A(t)

�

R

0

r

�

n

sinn�; (7.33)

R

1

= C(t) sinn�: (7.34)

Substitution into the boundary onditions reveals A and C to satisfy the oupled equations and

boundary onditions,

dC

dt

�

nA

p

t

+

C

2t

= 0; (7.35)

A�

C

2

p

t

+

TC

t

(n

2

� 1) = 0; (7.36)

C(1) = 1:

Eliminating A(t) gives the single equation for C(t),

dC

dt

= C

(n� 1)

2t

�

1�

2Tn(n+ 1)

p

t

�

; (7.37)
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with solution

C(t) = t

(n�1)=2

exp

�

��

�

1�

1

p

t

��

; (7.38)

where � := 2Tn(n

2

�1). A(t) may then be found from (7.35) or (7.36), but sine we are interested

in the free boundary rather than the pressure �eld, we only need �nd A(t) if we wish to solve for

orders �

2

and higher. We now onsider what information an be extrated from equation (7.37)

about wavenumber \seletion".

The ritial ondition for a perturbation to be maintained is dC=dt = 0, whih gives a quadrati

equation for the ritial wavenumber n



, from whih we �nd the ritial wavelength �



. The

solutions are

n



=

�

R

0

2T

+

1

4

�

1=2

�

1

2

; (7.39)

�



= 2�R

0

,(

�

R

0

2T

+

1

4

�

1=2

�

1

2

)

; (7.40)

where we substituted bak in for R

0

instead of

p

t, to emphasise the simple interpretation in terms

of the (approximate) bubble radius. In the dimensional variables we have

�



= 2�a

,(

�

Qa

2�MT

+

1

4

�

1=2

�

1

2

)

:

When the irumferene 2�a of the bubble is less than this ritial wavelength, the free boundary

is stable to small perturbations, and the interfae remains approximately irular. One the

irumferene has exeeded �



, the \growth fator" dC=dt is positive, and perturbations are able

to grow.

Further to this, Paterson onsidered whih, in an unstable situation, would be the fastest-

growing wavelength, sine this is the one we would expet to be observed in pratie. The

ondition for maximum growth is

�

�n

�

dC

dt

�

= 0;

and applying this to equation (7.37) gives the maximal-growth wavenumber n

m

and wavelength

�

m

as

n

m

=

1

p

3

�

R

0

2T

+ 1

�

1=2

; (7.41)

�

m

= 2

p

3�R

0

,

�

R

0

2T

+ 1

�

1=2

: (7.42)

Obviously the instabilities observed in the experiments of [73℄ (and [11℄) quikly develop to am-

plitudes beyond the sope of this linear stability; however, Paterson does �nd that the number of

�ngers whih develop (before seondary bifurations) is n

m

, and that when the �ngers �rst form,

they have the wavelength predited by this theory. Note the dependene of these maximal growth

parameters on the radius (and hene on time). Although the free boundary will not remain ap-

proximately irular for long one the instability has set in, these expressions indiate that we do

expet further bifurations to our. For example, if we interpret R

0

as the mean bubble radius,

we might expet seondary �ngering to our when R

0

has grown suh that the original n

m

has

inreased to n

m

+ 1.

This analysis was arried out with a view to explaining the observations of [73℄, but onsider

�rst a general hypothetial experimental situation in whih n �ngers develop (before any seondary
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bifurations). This value of n must, by the preeding analysis, satisfy the ondition (7.41) when

the instability �rst beomes apparent; at this stage, the dimensionless bubble radius R

0

is unity,

so the value of the dimensionless surfae tension parameter giving rise to this instability must

satisfy

T =

1

2(3n

2

+ 1)

: (7.43)

We then know the orresponding value of � (as de�ned in this setion), and hene if a suitable

value for � is hosen, we an trak the evolution of the interfae as predited by this stability

analysis, until the asymptoti expansion is no longer valid. From the boundary ondition (7.32),

we see that the perturbation expansion is only valid if the parameter � is muh smaller than the

dimensionless surfae tension, T . If T � 1, as turns out to be the ase in the experiments of [73℄,

then one the disturbane to the interfae is of the same order of magnitude as T , a new analysis

is needed.

For Paterson's experiment, the value of a (the bubble radius) at whih the instability visibly

sets in, an be observed from the time-lapse photographs. With this value of a the dimensionless

surfae tension T an be found from (7.26), and heked against the value (7.43) predited by the

theory. We then have all the information we need in order to onsider the di�erent stages of this

early antirak evolution.

7.6.1 The ase �� T

We refer bak to �gure 7.3. In our notation, the parameter values of [73℄ are

Q = 9:3 m

2

s

�1

; M = 3:6� 10

�4

m

4

dyne

�1

s

�1

; a � 3 m:

The dimensional surfae tension parameter T

dim

has a value of 63 dyne m

�1

, and the number of

�ngers n whih develops is 8. The value of the dimensionless surfae tension T (and hene of the

parameter �) as predited by (7.43) with n = 8 is

T = 1=386 = 2:59067� 10

�3

; (7.44)

� = 2:611; (7.45)

whih by (7.26) orresponds to a value a = 2:957 for the radius at whih the instability sets

in. Thus the observed values for a and n, with the other measured parameter values, do satisfy

approximately the expeted maximal growth onditions.

The solutions to the O(1) and O(�) problems are as given in (7.30), (7.31), and (7.33){(7.38).

We an in fat solve the problem to O(�

2

) in this phase of the evolution, to see what e�et (if any)

the higher harmonis are having on the solution. The equations may be written down immediately

from the earlier systemati linearisations of the boundary onditions. We omit the details, whih

are rather gruesome sine we �rst have to fully solve the order � problem and substitute from this

(and from the O(1) problem) into the boundary onditions. The solutions are of the form

P

2

(r; �; t) = A(t)

�

R

0

r

�

2n

os 2n� +B(t)

R

2

(�; t) = D(t) os 2n� +E(t);

and substitution of this form into the boundary onditions gives oupled equations for A and D,

and for B and E. The only quantity of interest is D(t), sine we are not interested in the pressure

�eld, and E(t) is only some additive funtion whih will not a�et the free boundary shape. Hene

we eliminate A(t) from the �rst of our pairs of equations. If we write

^

D(t) = exp

�

2�

�

1�

1

p

t

��

D(t);
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Figure 7.10: Graph showing the relative sizes of the oeÆients of the terms sinn�

(in the �R

1

term of R) and os 2n� (in the �

2

R

2

term of R) as funtions of time, in the

�� T r�egime. The sinn� oÆient is the upper urve.

and de�ne the parameter � := 12Tn

3

, we �nd the following ordinary di�erential equation for

^

D(t),

d

dt

(

^

D

t

n�1=2

e

��=

p

t

)

=

e

��=

p

t

4

�

2n� 1

t

2

�

2nT (8n

2

� 3)

t

5=2

�

:

The solution satisfying

^

D(1) = 0 (orresponding to a perfetly sinusoidal initial perturbation) is

found, by diret integration, to be

^

D =

t

n�1=2

2

�

(2n� 1)

�

2

�

1 +

�

p

t

� (1 + �) exp

�

��

�

1�

1

p

t

���

�

(8n

2

� 3)

3n

2

�

2

�

1 +

�

p

t

+

�

2

2t

� (1 + � +

�

2

2

) exp

�

��

�

1�

1

p

t

����

:

This expression does have a uniform limit as T ! 0, despite the presene of the 1=�

2

, 1=�

3

terms

on the right-hand side. If we expand the exponentials for small � we �nd

^

D =

(2n� 1)

4

�

1�

1

t

�

t

n�1=2

+O(�);

as � ! 0 (whih, as we shall see, agrees with the perturbation analysis for the ZST problem,

providing a hek on the analysis). With T given by (7.44), � = 15:917.

For the parameter values given here, it is easy to show (by omparison of the oeÆients;

�gure 7.10) that the term �

2

D(t) os 2n� (from �

2

R

2

) in the expression for the free boundary is

always negligible for times of interest, while the term �R

1

grows steadily aording to (7.38), until

its magnitude beomes omparable to T . This analysis is then no longer valid, and we pass to the

r�egime � � T . Sine the perturbation retains its initial shape, only beoming more pronouned,

this r�egime is not terribly interesting, but as we have seen, it is ruial in determining the number

of �ngers whih develop, and when they develop, in a given situation.

7.6.2 The ase 1� � � T

By the above observation that the term �

2

R

2

remains negligible throughout the r�egime � � T ,

it is reasonable to assume an initial perturbation � sinn� here. Writing T = �� for some O(1)
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quantity �, the solution is found to be

R = R

0

+ �R

1

+ �

2

R

2

+O(�

3

); (7.46)

where

R

0

=

p

t; R

1

= t

(n�1)=2

sinn�; (7.47)

and

R

2

=

(2n� 1)

4

�

1�

1

t

�

t

n�1=2

os 2n� � 2n�(n

2

� 1)

�

1�

1

p

t

�

t

(n�1)=2

sinn�

+

1

4

p

t

(1� t

n�1

): (7.48)

Setting � = 0 in here gives the ZST ase. Note that the (dimensional) bubble radius a will

have inreased during the �rst stage of the instability (during whih the perturbations grow

relatively slowly, by (7.38)), hene by the time this seond stage is reahed, the value of the

dimensionless surfae tension T will be smaller, by (7.26). Perturbations now grow quite rapidly,

and will quikly reah an amplitude larger than T . We thus onsider the �nal stage of the

small perturbation theory, when the perturbations are large ompared with the surfae tension

parameter (now somewhat smaller than (7.44), as ommented above).

7.6.3 The ase T � �� 1

The free boundary will now evolve aording to the solution (7.46), (7.47), (7.48), but with

� = 0, as long as this expansion remains valid. An evolution sequene based on the experimental

parameters of [73℄, is shown in �gure 7.11 (for dimensionless times t = 1; 1:15; 1:3). The value of

� used was 0.05, whih is muh greater than the value of T in (7.44), but still muh less than 1.

The initial stages of the antirak formation an be learly observed, as the e�et of the os 2n�

term from (7.48) grows. The ruial fator here leading to antirak, rather than rak formation,

is that the sign of the oeÆient of os 2n� is the same as that of sinn� (�gure 7.12); had it been

of opposite sign, we would have seen raks beginning to form.

7.6.4 Conlusions for Paterson's antiraks

In the preeding setions we have reviewed the experiments of [73℄, and extended the analysis

of that paper. We saw that, for small values of the dimensionless surfae tension T , the initial

perturbation analysis is only valid when the perturbations are of very small amplitude, and that

when the amplitude beomes omparable to T , a di�erent analysis is needed. Nevertheless, it is

during this initial stage that the wavenumber \seletion" ours. Higher-order terms (than the

�rst) in the perturbation expansion are irrelevant during this initial stage. With the �� T theory,

solving the problem to order �

2

, the early stages of antirak formation an be observed (�gure

7.11). This analysis itself then breaks down, and nonlinear theory is needed.

It is lear then that antirak \seletion" is determined at a very early stage of the instability,

when the perturbations are small ompared with the dimensionless surfae tension, whih is

itself small. For later times, surfae tension e�ets are negligible, and ZST theory gives a good

approximation to the free boundary shape. Given the degree of similarity between the exat ZST

solutions of [45℄ and the photographs of [73℄, it seems reasonable to onjeture that the nonlinear

r�egime referred to above is desribed by solutions of the kind in [45℄, at least until seondary

bifurations our, with the birth of new antiraks (and even suh bifuration an be desribed

by the exat ZST theory of [45℄, if we an predit when it will our). Note that the seletion

of the �nger widths, whih appears as an arbitrary parameter in the solutions of [45℄, is not

determined by this argument. It seems reasonable to assume, though, that the antirak widths

will be approximately 1=(2n) times the bubble irumferene at the time the instability sets in,

that is, a�=n. With the value of a found in x7.6.1 and n = 8, this does give a value for the

121



-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

AIR

FLUID

Figure 7.11: Evolution of the free boundary of Paterson's expanding bubble for dimen-

sionless times t = 1; 1:15; 1:3. This plot applies to the r�egime in whih the amplitude

of the perturbations is muh greater than T , so that the ZST perturbation theory is

appliable.
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Figure 7.12: Graph showing the oÆients of the terms sinn� (in the �R

1

term of R)

and os 2n� (in the �

2

R

2

term of R) as funtions of time, for the � � T r�egime. The

sinn� oeÆient is the one with initial value 1.

�nger widths whih agrees well with the experimental photos of [73℄. In general, for very small

values of T we expet to get many �ngers, by (7.43). Provided the dimensional surfae tension

T

dim

is small too, then by (7.26) the radius a should still be O(1), so that we get a very small

antirak thikness � = a�=n, as we expet in the small surfae tension problem. Sine for small

T , n � 1=

p

T by (7.43), we expet that � �

p

T (.f. the rak theory, where � � T

1=3

).

7.7 Fratal Hele-Shaw

As an interesting aside to the last setion, we present a \thought experiment" due to Howison [44℄

whih relies on the ideas introdued by the stability analysis. Reall that we found a minimum

wavelength (7.40) for a perturbation to the expanding bubble to be sustained, and also the

expeted number of �ngers n

m

whih then form (7.41). Suppose we have a situation where the

maximal growth rate orresponds to the value n

m

= 2. In this ase, two antiraks will start

to develop when the irumferene of the expanding bubble reahes the value R = 2�

m

; all the

bubble radius R

0

at this stage (whih we think of as the 0'th stage).

If we assume narrow antiraks, and a symmetri on�guration, then when the irumferene

of the bubble has doubled again, we expet to be able to \�t in" another two antiraks; the

bubble radius will be 4R

+

0

at this stage (where the \+" denotes the fat that we only expet these

new antiraks to form when we exeed this radius). Sine antirak tips remain stagnant, the two

original antiraks are now of length 3R

0

. Likewise, when the bubble radius has grown to 16R

+

0

,

we an �t in four new antiraks.

Under ideal onditions (whene \thought experiment") we may onsider this proess repeating

inde�nitely, with the bubble radius quadrupling between suessive bifurations. At the n'th stage

the bubble radius will be R

n

:= 2

2n

R

0

, with 2

n

antiraks already developed, and another 2

n

about to form. The longest of these will be those two whih formed at the n = 0 stage, now of

length

R

0

(2

2n

� 1);
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Figure 7.13: The evolving anti-slit struture at the stage n = 2, with 2 anti-slits of

length L

0

, 2 of length L

1

, and 4 new anti-slits about to form.

and the shortest will be those 2

n�1

whih formed at the (n� 1)'th stage, now of length

R

0

(2

2n

� 2

2(n�1)

) =

3

4

2

2n

R

0

=

3

4

R

n

:

Analogous to slits (as the ZST limit of raks) we may onsider anti-slits as possible ZST limits of

antiraks, these being vanishingly thin \spikes" of uid left behind as the free boundary evolves

(�gure 7.13). In this limit we an evaluate the fratal dimension of the evolving struture quite

easily, by saling the expanding bubble (whih is now irular, penetrated by 2

n

spikes of varying

lengths) down onto the unit dis. Thus at the n'th stage we have a struture with

2 spikes of length L

0

:= 1� 2

�2n

;

2

1

spikes of length L

1

:= 1� 2

�2(n�1)

;

2

2

spikes of length L

2

:= 1� 2

�2(n�2)

;

.

.

.

2

k

spikes of length L

k

:= 1� 2

�2(n�k)

;

.

.

.

2

n

spikes of length L

n

:= 1� 2

�2

� 3=4;

with 2

n

new anti-slits about to form. Note that when we sale the problem in this way, 2

�2n

is the

smallest lengthsale we an onsider (although we take the large n limit), and when new anti-slits

form at eah stage, they immediately have length 3=4. The formula for the fratal dimension D

of suh a struture is given by Turotte [97℄ as

L = Ch

�(D�1)

;
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where L is the total length of the fratal urve, C is some onstant of proportionality, and h

is what Turotte refers to as the \measuring rod" length, whih is essentially a measure of the

resolution at whih we are onsidering the fratal. This formula holds in a limiting sense, as

h! 0. Here, h is just the lengthsale 2

�2n

, and L is twie the sum of the lengths of all the spikes

of uid (sine eah spike has two sides) plus the irumferene of the irle,

L = 2

n

X

k=0

2

k

L

k

+ 2�

=

12

7

2

n

� 2 +

2

7

2

�2n

+ 2�

�

12

7

2

n

; for large n:

Hene in the large n limit we must have

12

7

2

n

= C(2

�2n

)

�(D�1)

;

from whih C = 12=7, and the fratal dimension D = 3=2.

7.8 Craks revisited

We originally ited the experiments of [73℄ as evidene only for the antirak theory; however,

in the same paper, experiments are desribed onerning sution from the entre of an initially

irular dis of glyerine surrounded by air, whih is, of ourse, also an ill-posed problem. Time-

lapse photography is again used to study the evolution of the interfae, whih in this ase is seen

to be muh more irregular than for the expanding bubble. Fingers of air are observed to form, but

the larger ones impede the growth of the smaller, until: \Eventually, one �nger dominates, and

aelerates into the well". It is tempting to regard this instability as a rak; ertainly from the

photographs it is lear that during the latter stages of the motion the rest of the free boundary is

not moving muh relative to this dominant �nger, as in the rak theory. We remind the reader

again at this point of the numerial solutions of [55℄ for sution from an initially-irular dis of

uid. Although the sution point here was o�-entre, a rak-like morphology was omputed for

small surfae tension, and we might expet a similar result here.

The analysis that was arried out for the expanding bubble in x7.6 may be repeated for the

problem of an approximately irular blob of visous uid, ontrating under the ation of a point

sink (of strength Q > 0) at the origin. With the same nondimensionalisations, the problem is

as in (7.27){(7.29), but with the sign of the right-hand side of (7.28) reversed. The asymptoti

ondition on P is now

P �

1

2

log r; as r ! 0:

The base state solution here is

P

0

(r; t) =

1

2

log

�

r

R

0

�

+

T

R

0

; (7.49)

R

0

(t) =

p

1� t: (7.50)

We again assume that a perturbation � sinn� is imposed on the free boundary, and seek an

asymptoti solution. With all notation as in x7.6, the solution for R

1

is found to be of the form

R

1

(�; t) = C(t) sinn�; (7.51)

where C(t) satis�es the equation and boundary ondition

dC

dt

=

(n+ 1)

2(1� t)

C

�

1�

2Tn(n� 1)

p

1� t

�

; C(0) = 1:
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This has solution

C(t) = (1� t)

�(n+1)=2

exp

�

�

�

1

p

1� t

� 1

��

0 � t < 1; (7.52)

(reall that � := 2Tn(n

2

�1)). From the ritial ondition for a perturbation to the free boundary

to be maintained, dC=dt = 0, we �nd the values for n



and �



,

n



=

�

R

0

2T

+

1

4

�

1=2

+

1

2

;

�



= 2�R

0

,(

�

R

0

2T

+

1

4

�

1=2

+

1

2

)

:

Again, there is a minimum radius, below whih the visous blob is stable to perturbations, and

above whih perturbations will grow. (This ritial radius a



an be found by solving �



= 2�R

0

,

with R

0

� 1, to get a ritial value for the surfae tension parameter T , then solving for a



from

(7.26).) The maximal growth rate in an unstable situation orresponds to the wavenumber n

m

and wavelength �

m

given by

n

m

=

1

p

3

�

R

0

2T

+ 1

�

1=2

;

�

m

= 2

p

3�R

0

,

�

R

0

2T

+ 1

�

1=2

;

exatly as obtained for the expanding bubble problem. The observed free boundary shapes for

this problem are muh less regular than for the expanding bubble, as we expet from this analysis:

an initially perturbed (unstable) boundary will begin to form the requisite number of �ngers, n

m

,

but as the radius dereases, the number of unstable wavelengths whih an be aommodated

dereases also (ontrast this with the bubble problem, where as the radius inreases, more unsta-

ble wavelengths an be aommodated, and seondary bifurations our). Those �ngers whih

are slightly larger will thus grow at the expense of the smaller ones, inevitably giving irregular

patterns.

Agreement between the theory and experiment is not so good as for the antirak ase, with

more �ngers initially observed than predited by n

m

. We may still look at the theory of the small-

time evolution, however, to see what this suggests. Again there will be three di�erent r�egimes of

the instability within the sope of linear theory: the very early stage during whih � � T , and

the later stages, 1 � � � T , and 1 � � � T . Sine the results are similar to the antirak ones,

we do not go into detail.

7.8.1 The ase �� T

The solution to this problem has been arried out to order �

2

; the terms R

0

and R

1

are given in

(7.50), (7.51) and (7.52), and the term R

2

has the form

R

2

(�; t) = C(t) os 2n� +D(t):

The additive funtion D(t) is of no onsequene, and if we write

C(t) =

^

C(t) exp

�

�

2�

p

x

�

;

for x := 1� t, then we �nd

^

C =

x

�(n+1=2)

2

�

(2n+ 1)

�

2

�

�

p

x

� 1� (� � 1) exp

�

��

�

1

p

x

� 1

���

�

(8n

2

� 3)

3n

2

�

2

�

�

2

2x

�

�

p

x

+ 1�

�

�

2

2

� � + 1

�

exp

�

��

�

1

p

x

� 1

����

:
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As for the antirak problem, with the parameter values of [73℄, the size of �

2

C(t) is negligible

ompared with the size of �R

1

, for all times for whih the perturbations are small ompared with

T (in fat, C(t) itself is everywhere very small for times of interest, while the oeÆient of sinn� in

R

1

grows monotonially, ausing this expansion to beome invalid). Hene the perturbations are

still approximately sinusoidal in the � � T r�egime. When �nding the value of the dimensionless

surfae tension to use, the value a = 7 was used in (7.26), this being obtained visually from the

photograph in �gure 10 of [73℄; the mobility M has the same value as in x7.6, and the sution

rate Q was 1.04 m

2

s

�1

.

7.8.2 The ases 1� � � T , 1� �� T

If we assume the surfae tension to be T = �� for some order-one quantity �, then with the initial

perturbation � sinn�, the solution to the perturbation problem, to order �

2

, is

R = R

0

+ �R

1

+ �

2

R

2

+O(�

3

);

where

R

0

=

p

1� t; R

1

= (1� t)

�(n+1)=2

sinn�; (7.53)

(7.54)

R

2

=

(2n+ 1)t

4(1� t)

n+3=2

os 2n� +

2n�(n

2

� 1)

(1� t)

(n+1)=2

�

1�

1

p

1� t

�

sinn�

+

1

2

p

1� t

�

1�

1

(1� t)

n+1

�

: (7.55)

As for the antirak problem, the ZST analysis is obtained from this merely by setting � = 0.

There will be some period during whih evolution follows the � 6= 0 solution, but when the

perturbations are larger than T , evolution will be aording to (7.53), (7.55), with � = 0.

A typial evolution sequene in this r�egime for n = 8 (based on observations from [73℄), is

shown in �gure 7.14; in this ase we see the initial stages of rak formation. The value hosen for

� was 0.05. When the amplitude of the perturbations beomes omparable to unity this analysis

breaks down, and nonlinear theory is needed. In partiular, as mentioned earlier, although these

early stages of the instability may give a quite regular pattern, a slightly larger perturbation will

grow at the expense of smaller ones as the blob radius dereases, and fewer unstable wavelengths

are able to \�t in".

7.9 The \urvature onjeture"

The work of xx7.6 and 7.8 provide the �rst real evidene for our onjeture regarding raks and

antiraks, and when they will form. We saw that the expanding bubble ase led to antiraks, and

that there is evidene that we expet raks in the small surfae tension limit of the ontrating

visous blob problem. These \prototype problems" loosely suggest that, in a given sution prob-

lem, if the overall shape of the uid domain is onvex, we expet the instability to be manifested

via rak formation, whereas if it is onave, we expet antirak formation to our.

This statement is very woolly, and obviously does not over all eventualities (e.g. at free

boundaries). We now attempt to larify matters a little. Firstly, when we refer to the \over-

all shape" of the free boundary, we mean that the free boundary be onvex/onave on some

lengthsale whih is large ompared to the rak/antirak width, � say. (Obviously, on the O(�)

lengthsale the free boundary must be onave where a rak is forming, and onvex where an

antirak is forming, simply by the nature of the tip geometries|see x7.5 for the results of the

loal analysis in the limiting ase �! 0.) This onvexity/onavity need not be global, however,

as we may imagine a situation like �gure 7.15 ourring. In both ases we have in mind the

problem with small positive surfae tension, whih is neessary for both rak and antirak prob-

lems, sine although ZST solutions an give good agreement with observations for the antirak

problem, the parameter T is still needed to selet the right solution in a given situation.
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Figure 7.14: Evolution of the free boundary of the ontrating visous blob in the

r�egime �� T , so that the ZST theory is appliable. The early stages of rak formation

are apparent prior to breakdown of the linear theory.
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than the crack width

Free boundary concave on

a lengthscale greater than

the anticrack width

Figure 7.15: A free boundary with rak and antirak development.

If this onjeture is true, then we would expet a solution like the travelling-wave Ivantsov

parabola (an exat ZST steady solution, with pressure at large distanes growing like the square-

root of the distane from the parabola tip) to destabilise via antirak formation, sine the free

boundary is globally onave here. In fat there is an exat solution, whih is essentially a

perturbation of the Ivantsov parabola, and whih does give rise to antiraks.

2

The mapping

funtion from the right-half plane onto the uid domain is given by

z = w(�) = �

2

+ b

0

� + 

0

log(� + d) + e; (7.56)

where b

0

and 

0

are positive onstants (with 

0

> 0, otherwise the solution undergoes �nite time

blow-up via usp formation, just as we needed �

i

> 0 for the solutions of x7.3.2) and d and e are

funtions of time. This map gives a solution to the P-G equation (2.6) provided the onditions

b

0

e(t)� 2

0

d(t) = At+ k

1

;

e(t) + d(t)

2

+ b

0

d(t) + 

0

log d(t) = k

2

;

are satis�ed, for some positive onstant A (the negative pressure gradient at in�nity in the �-

plane). A large-time balane in these equations requires

e(t) �

At

b

0

; d(t) � exp

�

�

At

b

0



0

�

(the Ivantsov parabola itself has 

0

and d(t) identially zero, and e(t) = At=b

0

). The antirak

tip is at

z

tip

= w(0) = 

0

log d(t) + e(t)

� k

2

� d(t)

2

+ b

0

d(t)

� k

2

as t!1;

2

We owe this observation to Dr K. Kornev of Mosow.
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Figure 7.16: The \Ivantsov" antirak solution.

and is thus asymptotially stagnant, as we expet from an antirak solution. Thus, if the pa-

rameter 

0

is hosen to be small, the free boundary shape (for large times) is approximately a

travelling-wave parabola, with a stagnant, narrow strip of uid left behind along the real axis

(see �gure 7.16). If we had a ZST solution with a onvex paraboli free boundary, our onjeture

suggests that this should lead to usp formation within �nite time, and hene rak formation (in

the limit of small positive surfae tension); however, there is no known exat solution of the P-G

equation for this geometry.

We should point out that there are de�nite ounter-examples to our onjeture, although it

may be argued that we would not expet suh solutions to be observed in pratie. Firstly, in

[46℄, Howison presents a spei� ase of the radial �ngering solutions (7.22) of [45℄, whih is an

expanding bubble solution, yet whih an lead to �nite-time usp formation (whih we expet to

be regularised by rak formation in the T ! 0 limit). This is a onsequene of a judiious hoie

of mapping parameters and initial onditions, however. In partiular, the number of �ngers is

hosen as n = 4, whereas in reality the number of �ngers whih develops is determined by (7.26)

and (7.43). For small values of surfae tension suh as we have in mind, this will lead to large

values of n, and evolution as in the experiments of [73, 11℄.

There are also exat ZST \ontrating blob" type solutions, driven by a point sink at the

origin, whih an give rise to antirak-type strutures. These are given by the family of mapping

funtions from the unit dis,

w(�) = b� + �

N

X

k=1

$

�k

log(1 + $

k

�); (7.57)

where � is some positive onstant, b(t) and (t) are positive funtions of time (where  2 (0; 1)),

N is a positive integer, and $ is an N 'th root of unity. This map is a solution of the P-G equation

(2.4) provided the following onditions are satis�ed,

d

dt

(b(b+N�)) = �

Q

�

;
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Figure 7.17: Antirak-type struture generated by the map (7.57) with N = 4,

� = 0:2, b(0) = 0:755, (0) = 0:887. We see the onset of uspidal blow-up, after whih

we expet ontinuation by rak or slit evolution towards the point sink.

131



-1 -0.8 -0.6 -0.4 -0.2 0.2

-3

-2

-1

1

2

3

0.2 0.4 0.6 0.8 1

-2

-1

1

2 Crack

FLUID

Anticrack

FLUID

(b)(a)

Figure 7.18: The rak (a) and antirak (b) geometries generated by maps (7.58) and (7.59) with � = 0:1.

b+ �

N

X

k=1

$

�k

log(1 + 

2

$

k

) = �;

for some onstant �. This an generate evolving free boundaries of the kind in �gure 7.17; however,

these solutions always ultimately blow up via usp formation (at whih point we expet the rak

regularisation to ome into e�et), and in any ase the T > 0 analysis of x7.8 suggests that rak

formation is what we expet to observe in a real \ontrating blob" experiment.

7.10 Extremal onformal maps

We now onsider briey rak and antirak geometries (and their slit and \anti-slit" limits) in

terms of extremal onformal maps, and univalent funtion theory. Consider mapping the right-half

�-plane onformally onto a uid domain whih we assume to ontain either a single (stationary,

for simpliity) rak, or antirak. A rak an be realised as the image of the right-half �-plane

under the map

z =

p

(� + �)

2

+ 1 (0 < �� 1); (7.58)

(�gure 7.18 (a)) where � is a measure of the rak thikness. This map has a uniform limit

� ! 0, whih gives a so-alled extremal map from the right-half plane onto itself, but with the

slit 0 � x � 1 removed. The term \extremal" indiates that, although this map is not itself

onformal on the boundary of the domain, <(�) = 0, it is a limit point of some set of maps whih

are all onformal on <(�) � 0. Hene in terms of onformal maps, a slit may be viewed as a

straightforward limit of a rak.

Antiraks, on the other hand, do not have a sensible anti-slit limit like this. A typial antirak

geometry is generated by the onformal map

z = � + � log(� + exp(�1=�)) 0 < �� 1; (7.59)

where again, � is a measure of the antirak thikness (�gure 7.18 (b)). This is the kind of free

boundary shape we expet, from all the exat ZST antirak solutions we found. However, it is

easily seen that this map does not have a uniform limit as �! 0. We an only interpret it when

� > 0, in whih ase it gives a smooth, narrow antirak with tip at x = �1.

Geometrially, the two ases are fundamentally di�erent. An anti-slit struture (of the kind

envisaged in x7.7) annot be realised as a limit point of some set of univalent funtions in the
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Figure 7.19: The \open sets" interpretation of the slit geometry.

way that a slit map an. To see why this should be so, onsider the topologial

3

de�nition of

ontinuity, in terms of open sets. A funtion between topologial spaes, f : X ! Y , is ontinuous

if and only if the inverse images (under f) of any open sets in Y are also open in X . The topology

of the uid domain (whih we identify with Y ), and the right-half �-plane (whih we identify with

X), is just the usual R

2

topology.

Without assuming any partiular form for a mapping funtion f between X and Y (but

hypothesising that it be at least ontinuous) we may make the following observations. For the

slit geometry, given a point z

�

on the slit boundary, we an always �nd some semiirular open

set U

�

� Y ontaining this point, the inverse image of whih will also be open in X (�gure 7.19).

Sine the edges of the slit are the only potential problem points, the funtion f will be ontinuous

in this ase. For the anti-slit geometry, however, given a point z

�

on the anti-slit itself, the only

kind of open set U

�

� Y whih also ontains the point is an open interval of points along the slit.

(The anti-slit has the topology of R, rather than of R

2

.) Sine boundary points map to boundary

points, the inverse image of this interval under the map must also be a line segment along the

imaginary axis in X . Suh a set is not open in the topology of X , sine we annot �t an `open

ball', around an interior point, within f

�1

(U

�

), and hene there an exist no ontinuous (and

ertainly no univalent) map between the right-half plane and an anti-slit domain|see �gure 7.20.

We may also interpret this result in terms of the Carath�eodory theorem of kernel onvergene

(see for instane [20℄, whose explanation we paraphrase below), a result of major importane in

geometri funtion theory. This theorem was also used in relation to the Hele-Shaw problem by

Hohlov & Howison [32℄, to derive estimates for geometri properties of the uid domain in the

injetion problem. Suppose we have some sequene of simply-onneted domains fD

n

g in the

omplex plane, all ontaining some �xed point z

0

(and none of whih is the entire omplex plane).

Let z = f

n

(�) be the onformal mapping from the right-half �-plane onto D

n

, normalised by the

onditions f

n

(1) = z

0

, f

0

n

(1) > 0. There are two possible ases distinguished by Carath�eodory.

First, suppose that z

0

is an interior point of the intersetion of the D

n

. Then the kernel of the

sequene fD

n

g is de�ned as the largest domain D whih ontains z

0

, and whih has the property

that eah ompat subset of D lies in all but a �nite number of the domains D

n

. The other

possibility is that z

0

is not an interior point of the intersetion. In this ase the kernel is de�ned

as D = f0g. In either ase the sequene fD

n

g is said to onverge to its kernel if every subsequene

has the same kernel.

3

For more details on preise topologial de�nitions see, for instane, [92℄.
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Figure 7.20: The \open sets" interpretation of the anti-slit geometry. The `set of boundary points' is not open

in the topology of X.

The basi theorem is as follows [20℄:

Theorem (Carath

�

eodory): Let fD

n

g be a sequene of simply-onneted domains,

with z

0

2 D

n

, n = 1; 2; : : :, and suppose f

n

maps the right-half plane X onformally

onto D

n

, and satis�es f

n

(1) = z

0

, f

0

n

(1) > 0. Let D be the kernel of fD

n

g. Then

f

n

! f uniformly on eah ompat subset of X if and only if D

n

! D 6= C . In the

ase of onvergene there are two possibilities.

1. If D = f0g, then f = 0.

2. If D 6= f0g, then D is a simply-onneted domain, f maps X onformally onto

D, and the inverse funtions f

�1

n

onverge uniformly to f

�1

on eah ompat

subset of D.

With a little modi�ation, the maps (7.58), (7.59) may be made to satisfy the onditions of the

theorem. Taking � to be some funtion of n whih tends to zero as n!1 (e.g. � = 1=n will do)

a suitable rak mapping sequene is found to be

f

n

(�) =

�

(� + �)

2

+ 1

(1 + �)

2

+ 1

�

1=2

;

whih has f

n

(1) = 1 for all n, and whih for small � (large n) desribes an approximate half-spae

having a rak with tip at

f

n

(0) =

1

p

2

�

1�

�

2

+O(�

2

)

�

:

In the notation of the theorem then, z

0

= 1 (the �xed point), whih lies within the domain D

n

for

all n. The kernel of this sequene of domains is the right-half plane minus the slit along (0; 1=

p

2),

whih is exatly the limit of the image domains D

n

as n!1. The mapping funtions onverge

uniformly to

f(�) =

p

1 + �

2

p

2

;
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whih is the map from X onto the kernel of the domain sequene, D (de�ned above). Hene we

have a straightforward example of ase 2 of the theorem.

A suitable antirak mapping sequene is

f

n

(�) =

1

2

�

� � 1 + � log

�

� + exp(�1=�)

1 + exp(�1=�)

��

;

whih has the �xed (interior) point z

0

= 0 (sine f

n

(1) = 0 for all n). For small � (large n) these

maps desribe antirak-type strutures, having antirak tips at the points

f

n

(0) = �

1

2

�

�

2

log(1 + exp(1=�)) < �1:

The limiting domain D

1

(whih is exatly the intersetion of all the D

n

) is the anti-slit struture;

the right-half plane, with an outward-pointing slit along (�1; 0). The �xed point z

0

= 0 is not an

interior point of this intersetion, so the kernel for this sequene is just D = f0g. Hene by the

theorem, there is no limiting funtion f whih will map X onto the anti-slit struture. Realling

the analysis desribed in x7.5, this result is not surprising, sine the results of that setion strongly

suggest that the orret \anti-slit" limit will in fat be an outward-pointing usp, rather than an

outward-pointing slit.

7.11 Summary

Our aim in this hapter has been to present a new theory of antirak solutions for the Hele-

Shaw problem, whih omplements the existing rak theory of [36, 62, 33℄, reviewed in x7.1.

The omplementary nature of the two is illustrated by pitures like �gure 7.7. Both raks

and antiraks may be viewed as regularisations of the ill-posed sution (or retreating visous

boundary) problem, though of very di�erent kinds.

Several exat ZST antirak solutions were given in xx7.3.1, 7.3.2, 7.3.3, but what we termed

the \generi antirak" (7.9) aptures all the essentials of the behaviour. Antirak tips are

asymptotially stagnant (the Shwarz funtion having a logarithmi singularity within the tip),

while the rest of the antirak annot \feel" the tip, and behaves like the travelling-wave solution

(7.14).

The analysis of the expanding bubble problem in x7.6 revealed that seletion of the antirak

width ours as soon as the instability sets in. One the antirak has formed, it is basially

stagnant, and does not inuene the rest of the free boundary. We summarise this, for a general

situation, by the statement that surfae tension e�ets at the antirak root govern antirak

seletion. Contrast this with the rak theory, where it is the surfae tension e�ets in the tip

whih govern the behaviour.

We also saw the ontrast between raks and antiraks in x7.10. The results there suggest

that, although extremal univalent maps provide a good framework for the rak/slit theory, they

are not suited to dealing with antirak strutures.

We ited experimental, numerial, and theoretial evidene in support of the rak and an-

tirak theories. In addition, for the antirak, there is supporting evidene from the formal

asymptotis of [56, 57℄ (x7.5). Based on the analyses of xx7.6 and 7.8, we made a onjeture

to the e�et that, whether rak or antirak formation ours may depend on the urvature of

the retreating free boundary. We point out, though, that raks must remain as the dominant

stabilising mehanism, in that they are the only omponent of the irregular morphology that an

a�et the smooth part of the boundary. Antiraks do not a�et it; the free boundary an `sprout'

them, and arry on its way otherwise unhanged.

The overall piture we have in mind in this hapter is that the free boundary for a general

sution problem (with small positive surfae tension) will be the union of some array of smooth

omponents, raks, and antiraks (�gure 7.21). Note, however, that for suh a free bound-

ary on�guration to our, the antiraks must develop �rst, sine there are three timesales

in operation|antiraks are stagnant relative to the motion of the smooth omponents of the

boundary, whih are themselves stationary relative to the rak propagation.
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Figure 7.21: The free boundary for a general sution problem (with small surfae

tension).
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Chapter 8

Disussion and further work

8.1 Comparison of Hele-Shaw and Stokes ow

One of our aims in this thesis has been to highlight the similarities and di�erenes between Hele-

Shaw ow and Stokes ow. Although we have mentioned suh points of omparison as they

ourred, it is helpful to summarise and disuss them here.

� Both Hele-Shaw and Stokes ow are quasistati free boundary problems, by whih we mean

that the time dependene enters the problem only through the kinemati boundary ondi-

tion.

� Both are governed by ellipti p.d.e.'s; the pressure �eld for Hele-Shaw is harmoni, and the

streamfuntion for Stokes ow is biharmoni. (Note that in Hele-Shaw, sine the pressure

is a veloity potential for the ow, its harmoni onjugate is a streamfuntion, whih is also

harmoni.) Both problems are thus amenable to attak by similar omplex variable methods.

In general, one might expet a seond-order p.d.e. to be simpler than a fourth-order one,

but as we have seen in hapters 2 and 3, the NZST Stokes ow problem is very muh

more tratable analytially than the NZST Hele-Shaw problem. Reall, in this ontext, the

omments of x3.6.2, where we stated that the mapping funtion whih gives a solution to

the ZST Stokes ow problem will also give a solution to the NZST problem, but the same

is not true for the Hele-Shaw problem.

Although it is more usual to onsider the surfae tension driven Stokes ow problem, with a velo-

ity �eld whih is everywhere analyti (sine this arises in real-world situations suh as sintering),

muh of the work in this thesis has been for the singularity driven ZST problem, whih is the

usual Hele-Shaw senario. We have thus been able to make diret omparison between the two.

� In x5.4.2 we have stated that with one tehnial assumption �(0) = 0 (for Stokes ow), the

same onformal map will yield solutions for both the Hele-Shaw and Stokes ow problems

(ZST, and singularity-driven) in the same geometry. However, we also saw that if we have

more than one singularity in the ow (inluding singularities at in�nity), the Stokes ow

solution will, in general, be diÆult to realise in pratie, having moving singularities. This

is not the ase for Hele-Shaw ow; the basi reason (as disussed in x5.1) is that the Shwarz

funtion evolution for Stokes ow is determined in the �-plane, while for Hele-Shaw it is

determined in the physial plane. Hene only for Hele-Shaw ow an we expet to be able

to math the singularities of the Shwarz funtion with those of the ow.

� Both ZST problems are time-reversible. From this one may dedue that for both problems

a ontrating visous blob, unless it is a irle with sution from the origin, must undergo

�nite time blow-up before all uid has been extrated.
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� It is a simple matter to demonstrate that a ZST Hele-Shaw ow with an advaning/retreating

visous boundary, is stable/unstable, respetively (the latter, whih we loosely refer to as

the Hele-Shaw sution problem, is well known to be ill-posed). By ontrast, Stokes ow is

neutrally stable to rigid-body motions, and the question of stability of advaning/retreating

visous boundaries does not arise. However, we are able to analyse nearly-irular \bubbles"

and \blobs" in ZST Stokes ow, and we �nd that an expanding/ontrating bubble or blob

is stable/unstable respetively (see appendix A). For Hele-Shaw ow, the above stability

result means that a ontrating/expanding bubble is stable/unstable respetively, while an

expanding/ontrating blob is stable/unstable respetively (see xx7.6, 7.8). The Hele-Shaw

instability is muh more dramati than the Stokes ow, as omparison of (7.38) and (7.52)

(with � = 0, and for large n) with (A.6) and (A.3) shows.

Our belief is that the ZST Hele-Shaw instability leads to either antirak formation, or �nite-

time blow-up via usp formation or self-overlapping of the free boundary. It is thought that

the only possibilities for Stokes ow are the latter two; no examples of Stokes antiraks are

known.

� In the ase of 3/2-power uspidal blow up (whih is always terminal for the ZST problems),

the behaviour of the veloity �elds at the usp as the blow up time t

�

is approahed is very

di�erent in the two ases. In Hele-Shaw, the veloity beomes unbounded; for a ontrating

visous blob of the kind onsidered in [49℄, the speed at the usp behaves like

speed �

1

p

t

�

� t

as t! t

�

;

while for Stokes ow,

speed � O(1) as t! t

�

:

� For 5/2-power uspidal blow-up it is possible for the solution to evolve through the usped

on�guration. An example of this behaviour for ZST Hele-Shaw ow arose in x5.3 (and many

others exist in the literature); for NZST Stokes ow see [85℄|we do not give an example

in this thesis. Note though, that in the ubi polynomial example of x6.2, 5/2-power usp

formation is terminal for the ZST Stokes ow problem, whereas for the analogous Hele-Shaw

problem, it is not [50℄. Our results there show that in the T ! 0 limit, the 5/2-power usp

beomes a 3/2-power usp, although it is a borderline ase. It is possible that nonzero

surfae tension is neessary to have ontinuable uspidal solutions (meaning that the free

boundary be nonanalyti only for an instant, before smoothing again) for the Stokes ow

problem.

� For both problems, a T ! 0 regularisation may be onsidered. For Stokes ow we saw

that this leads to solutions whih have persistent usps in the free boundary (hapter 6, the

\weak solution" onept). For Hele-Shaw, the onjetured senario is the slit model (hapter

7), with an air slit propagating into the uid domain from the usp, moving in�nitely fast

relative to the rest of the free boundary. Note that \weak" Stokes ow solutions are not

time reversible, as the usped \similarity" solutions of [49℄ demonstrate. A time-reversal

for slit solutions an be proposed, however, sine we would expet the slit to ontrat bak

along its length to the usp, after whih the free boundary would instantly smooth, and

lassial theory take over.

One of the most striking similarities between the two problems is the existene of the \moments",

whih obey the same evolution equations for the point sink (or soure) problem, although they

are di�erently de�ned (xx2.5, 3.6, 3.6.2).

Underlying this di�erene in de�nition is the fat that the singularities of the Shwarz funtion

for Hele-Shaw are determined in the physial domain, whereas for Stokes ow (in the ase �(0) = 0)

they are determined within the unit dis in �-spae. Reall the reperussions that this had for
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many-singularity problems: the ZST Hele-Shaw results are readily extended to ope with suh

problems, but the Stokes ow results are not.

Another analogy between the two problems is the existene of a Baiohi transform for eah

(xx2.6, 3.9.1). Again these are di�erently de�ned; like the \moments", the integrals in the de�ni-

tions are arried out in physial spae for Hele-Shaw, and in �-spae for Stokes ow.

8.2 Further work

At some points in this thesis we have been unable to omplete the solution to partiular problems.

In other plaes we hose to leave a problem at a ertain stage, when the work ould have been

extended in various diretions. We list below some of the more interesting and important areas

for future study related to the work of the thesis.

1. We have seen that, unlike the ZST Hele-Shaw theory, the ZST Stokes ow theory of hapter 3

an only deal with many driving singularities (or singularity-driven problems on unbounded

domains) if we allow them to move, leading to solutions whih are somewhat ontrived.

Essentially the same diÆulty arose in x5.4.2 where, to avoid a moving singularity, we

required the solution to have �(0) 6= 0. This led to a very ompliated formula for the

onformal map, and we were unable to solve the problem fully. It is possible that there is a

better way of attaking suh problems (perhaps not involving omplex variable methods?).

Further investigation is needed if we are to develop a omprehensive theory to deal with

time-dependent problems of this kind (note that the existing methods are perfetly adequate

for steady problems).

2. It was mentioned in x8.1 above that although Hele-Shaw slit solutions are reversible in time,

the \weak" similarity solutions of [49℄, with persistent usps, are not|would injetion into

a usped on�guration give an expanding usped shape of similarity type, or would the free

boundary smooth instantly? This is an interesting open question, and may be ompared

with the Hele-Shaw results of [56℄, where weak solutions to the injetion problem (with

an aute-angled orner in the initial free boundary) are found to exhibit \waiting time"

behaviour. In suh solutions, the orner persists for the waiting time, at whih the orner

angle jumps to its supplement, then instantaneously smooths.

3. Reall the omment in footnote (3) of hapter 3, that the governing equations (3.18) have

the form of a general onservation law. This enables a possible weak formulation to be

written down, whih we did not pursue. It would be interesting to investigate this point

further, in partiular, to see if it an be linked to the \weak solution" theory of hapter 6.

It is possible that the ZST breakdown time t = t

�

may be assoiated with a shok surfae,

aross whih the form of the solution hanges, and that Rankine-Hugoniot onditions may

be assoiated with persistent usps. This suggestion is highly speulative as yet.

4. The rak/antirak theory of hapter 7 is inomplete. More work needs to be done on the

rak and slit theories, whih were already known to be ill-posed and under-determined,

respetively (and whih we did not attempt to extend). Although we saw how the antirak

\seletion at the root" worked for the expanding bubbles and ontrating blobs of Paterson's

experiments [73℄, we do not yet have a full understanding of the role played by surfae tension

in general antirak solutions, and in partiular, we do not have a lear idea of what we

expet in the T ! 0 limit (if raks beome slits, what do antiraks beome? Setion 7.10

implies that the theory of extremal univalent maps annot help us in this ase). Finally,

although in x7.9 we onjeture that the urvature of the free boundary may determine whih

partiular instability is observed in a given situation, this is still a very tentative suggestion,

whih needs baking up with some hard evidene.
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Appendix A

Stability of blobs and bubbles in

Stokes ow

In this appendix we show how omplex variable methods may be used to perform a simple linear

stability analysis of expanding and ontrating irular blobs and bubbles in ZST Stokes ow. We

use known, exat solutions, in a suitable small parameter limit, to dedue our stability results.

A.1 The perturbed irular blob

Howison & Rihardson [49℄ presented exat solutions for the soure or sink driven evolution of a

visous blob, desribed by the onformal map

z = w(�) = a(� �

b

n

�

n

);

for positive integer n, and time-dependent parameters a and b whih may both be assumed real

and positive by a suitable hoie of axes. The equations governing the ZST evolution of a and b

are given as

a

2

b = k; (A.1)

dS

dt

=

d

dt

�

�a

2

�

1 +

b

2

n

��

= �Q; (A.2)

for some positive onstant k. Here, S(t) denotes the area of the uid domain, so Q > 0 for a

point sink at the origin, and Q < 0 for a soure. If we onsider the ase b = � � 1, then on the

free boundary,

jzj = a(1�

�

n

os(n� 1)� +O(�

2

));

whih is just a sinusoidal perturbation to an expanding or ontrating irular blob (i.e. linear

stability theory).

To lowest order, (A.1) and (A.2) give the solution for �(t) as

�(t) =

�k

S(t)

: (A.3)

Hene we see that � is growing in time for a point sink (S(t) dereasing), whih means an unstable

situation, and dereasing in time for a point soure, i.e. a stable situation, the growth or deay

being algebrai in t. Thus for visous blobs, we have the same situation as for Hele-Shaw ow

(see x7.8).
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A.2 The perturbed irular bubble

The analogous bubble problem was solved by Tanveer & Vasonelos [96℄. The onformal map

for this ase is

z = w(�) = a

�

1

�

�

�

n

�

n

�

;

for positive integer n, where again a > 0 and 0 < �� 1. The free boundary here is suh that

jzj = a(1�

�

n

os(n+ 1)� +O(�

2

));

and the ZST equations governing the parameters are

a

2

� = k; (A.4)

dB

dt

=

d

dt

�

�a

2

�

1�

�

2

n

��

= Q; (A.5)

for some positive onstant k, where now B(t) denotes the bubble area, so Q > 0 for a sink at

in�nity, i.e. a growing bubble, and Q < 0 for a shrinking bubble. Combining (A.4) and (A.5)

gives the evolution of �(t) (to lowest order) as

�(t) =

�k

B(t)

; (A.6)

so a growing bubble is stable (� dereasing), while a shrinking bubble is unstable. This result is

in diret ontrast to the orresponding Hele-Shaw result of x7.6, where we saw that expanding

bubbles are unstable (giving rise to antiraks), while ontrating bubbles are stable.
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Appendix B

Results used for the ubi

polynomial map

In this Appendix we give the exat and asymptoti expressions for the funtions f

+

(0; t) and

f

0

+

(0; t) whih we omitted from the text in hapter 6.

Using the de�nition (3.8) we �nd

f

+

(0) �

1

�a

Z

�

0

d�

[b

2

+ (� 1)

2

+ 2b(1 + ) os � + 4 os

2

�℄

1=2

;

and f

0

+

(0) �

1

�a

Z

�

0

os � d�

[b

2

+ (� 1)

2

+ 2b(1 + ) os � + 4 os

2

�℄

1=2

;

the forms of whih funtions hange as we ross the urve b

2

= 4 in V (aording to whether the

denominator has real or omplex roots as a funtion of os �); f

+

(0) itself is ontinuous aross

this urve, however. In b

2

< 4 we use formula 3.145.2 in Gradshteyn & Ryzhik [30℄ (heneforth

G & R), and also the asymptoti result

K(1� �) � �

1

2

log(�=8) � �

1

2

log � as �! 0; (B.1)

where K( � ) is the omplete ellipti integral of the �rst kind. We �nd that

f

+

(0) =

2K(k

1

)

�a

p

(+ 1)

2

� b

2

; where k

2

1

:=

4� b

2

(+ 1)

2

� b

2

;

�

�2

�a

p

4� b

2

log(1� ) as  " 1;

 = 1 being the only singularity within this part of V . In b

2

> 4 we need formulae 3.147.6 and

3.147.4 of G & R (in regions  > 0,  < 0 respetively) together with (B.1) to dedue that

f

+

(0) =

2K(k

2

)

�a

�

p

b

2

� 4+ (1� )

�
where k

2

2

:=

4(1� )

p

b

2

� 4

[

p

b

2

� 4+ (1� )℄

2

�

�1

�a(1� )

log(1 + � b) as (1 + � b) # 0;

b = 1 +  now being the only line of singularities within V . Expliit formulae for f

0

+

(0) are muh

more ompliated; in b

2

< 4 we �nd

f

0

+

(0) =

�b(1 + )K(k

1

)

2�a

p

(1 + )

2

� b

2

+

1

p



fE(k

1

)F ( ; k

0

1

) +K(k

1

)(E( ; k

0

1

)� F ( ; k

0

1

))g ;

where (k

0

1

)

2

= 1� k

2

1

;  = sin

�1

(

b

2

p



); (B.2)
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here k

1

is as previously de�ned, E( � ); E( � ; � ) denote the omplete and inomplete (respetively)

ellipti integrals of the seond kind, and F ( � ; � ) denotes the inomplete ellipti integral of the

�rst kind (so K( � ) � F (�=2; � )). The key formulae used in �nding this expression were 259.07

and 410.02 in Byrd & Friedman [8℄ (heneforth B & F), along with various properties of ellipti

integrals and Jaobian ellipti funtions, all of whih may be found in B & F.

In b

2

> 4 we �nd

f

0

+

(0) =

2

�a(

p

b

2

� 4+ (1� ))

�

AK(k

2

)� (1 +A)�

�

2

1�A

; k

2

��

;

where A =

1

4

�

�b(1 + ) + (1� )

p

b

2

� 4

�

; (B.3)

again, k

2

is as previously de�ned, and �( � ; � ) denotes the omplete ellipti integral of the third

kind. In �nding this expression the formulae used were G & R 3.148.6 and 3.148.4 (in regions

 > 0 and  < 0 respetively).

In using these two books, are was neessary to aount for slight di�erenes in de�nitions.

Likewise, when arrying out numerial heks on the analysis, are was needed due to di�erent

inbuilt de�nitions in the software pakage Mathematia. The above assumes the de�nitions:

F (�; k) =

Z

�

0

d�

p

1� k

2

sin

2

�

=

Z

sin�

0

dx

p

(1� x

2

)(1� k

2

x

2

)

; (B.4)

E(�; k) =

Z

�

0

p

1� k

2

sin

2

� d� =

Z

sin�

0

p

1� k

2

x

2

p

1� x

2

dx ;

�(�

2

; k) =

Z

�=2

0

d�

(1� �

2

sin

2

�)

p

1� k

2

sin

2

�

=

Z

1

0

dx

(1� �

2

x

2

)

p

(1� x

2

)(1� k

2

x

2

)

:

The results of x6.2 require the asymptoti evaluation of the ratio f

0

+

(0)=f

+

(0) near eah of the

lines  = 1 and b = 1 + . This is not too bad for the ase  " 1, and fairly nasty for the ase

b # (1 + ); we give only brief details.

In b

2

< 4 results of B & F xx111{112 are used, together with (B.1) above, to dedue that as

 " 1, the term in urly brakets in G

0

+

(0) (B.2) is everywhere negligible ompared to the �rst

term. Hene we see that the asymptoti behaviour here is

f

0

+

(0)

f

+

(0)

� �

b

2

: (B.5)

To study the behaviour of f

0

+

(0) as b " (1 + ) in the region b

2

> 4 we must onsider the

ases  > 0 and  < 0 separately, sine these give di�erent types of behaviour in (B.3). We write

� = 1+�b and eliminate b to work with  and �, so that letting �! 0 orresponds to approahing

the univaleny boundary �V . We also de�ne the auxiliary parameter Æ := �

2

=(4(1� )

2

); this will

always be small sine we do not onsider the elliptial part of �V orresponding to blow-up via

overlapping of the free boundary, so  lies in the range �1 <  < 3=5. We �nd:

A = �1� 2Æ + � � � ; �(1 +A) = 2Æ + � � � ;

k

2

2

= 1� Æ

�

1 + 

1� 

�

2

+ � � � ; �

2

�

2

1�A

= 1� Æ + � � � :

We know the asymptoti behaviour of the �rst term in urly brakets in f

0

+

(0) (B.3), from (B.1).

The term outside, multiplying the urly braket, is also straightforward. Hene we only need to

�nd the behaviour of the seond term within urly brakets, whih to lowest order is

�(1 +A)�

�

2

1�A

; k

2

�

� 2Æ�(�

2

; k

2

):
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Suppose �rst that  2 (0; 3=5). Then by the above expressions, 0 < �

2

< k

2

2

< 1, and so aording

to the lassi�ations of B & F (p. 223) we have a ase II ellipti integral of the third kind (a

irular ase).

1

Formula 412.01 in B & F thus applies, giving the result in terms of the Heuman

Lambda funtion. Results from x150 of the book may then be used to arrive at the approximation

2Æ�(�

2

; k

2

) =

1� 

p



�

�

2

� sin

�1

�

1� 

1 + 

��

+O(Æ log Æ);

whih gives exellent agreement when heked numerially. This term will thus be everywhere

negligible ompared to the �rst term in the urly brakets (K(k

2

) being singular as k

2

! 1),

hene we get the approximation

f

0

+

(0) �

1

�a(1� )

log(1 + � b):

It follows that for  in this parameter range we will have

f

0

+

(0)

f

+

(0)

� �1;

as we approah the boundary.

For  2 (�1; 0) (still using (B.3)) we have 0 < k

2

2

< �

2

< 1, whih is a ase III ellipti integral

of the third kind (a hyperboli ase). Thus formula 414.01 of B & F applies, and it is relatively

easy to see that

2Æ�(�

2

; k

2

) '

1� 

p

�

K(k

2

)Z(�; k

2

) for � = sin

�1

�

�

k

2

�

=

�

2

�

2

p

�Æ

1� 

+ � � � ;

where Z( � ; � ) denotes the Jaobi Zeta funtion (disussed in x140 of B & F). Then

f

0

+

(0) �

�K(k

2

)

�a(1� )

�

1�

1� 

p

�

Z(�; k

2

)

�

;

so that

f

0

+

(0)

f

+

(0)

� �1 +

1� 

p

�

Z(�; k

2

):

Results of x140 and x100 in B & F show that for small Æ,

Z(�; k

2

) �

1

K(k

2

)

log

 

2

p

�

1 + 

+

�

1�

4

(1 + )

2

�

1=2

!

:

Note that  = 0 is not a problem point, despite the fator 1=

p

� in the above, beause for small 

we may expand the logarithmi term appearing in the expression for Z(�; k

2

). The only problem

is at  = �1; away from this point we an see that

f

0

+

(0)

f

+

(0)

� �1:

Near  = �1, the funtion Z(�; k

2

) will no longer be negligible aording to the above. Here we

have

f

0

+

(0)

f

+

(0)

� �1 + 2

�

1 +

log �

log(1 + )

�

�1

= �1 + 2

�

1 +

log �

log(�+ b)

�

�1

;

1

The ase  = 0 is the speial ase �

2

= k

2

, and provides a hek on the analysis in both regions  > 0,  < 0.

144



for  lose to �1 (or, b small and positive). So, for instane, if we take b = �� for some order one

quantity � we will have

f

0

+

(0)

f

+

(0)

! 0 as �! 0:

In partiular, this will be the ase as we approah the univaleny boundary along the phase path

b � 0. We thus have a nonuniform limit, with

f

0

+

(0)

f

+

(0)

! �1 as �! 0 (B.6)

everywhere exept  = �1 (or b = 0); at this point the limit is zero.
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Appendix C

The Stokes ow veloity �eld in

terms of w(�; t)

It is useful to have an expression for the Stokes ow veloity �eld in terms of the mapping funtion,

so that we an easily hek on the behaviour at \problem points", suh as at in�nity, for problems

on unbounded domains, or near \usps", in the T ! 0 problem. We now derive suh an expression,

starting from (3.41).

The form of this expression will depend on the behaviour of � at the origin. Consider �rst

the ase �(0) = 0, so that equations (3.14) and (3.18) apply. Substitution from these equations

into (3.41) yields, after a ertain amount of manipulation, the result

2(u � iv) = �w

t

(1=�) + w

t

(�) +

w

0

t

(�)

w

0

(�)

�

�w(1=�)� w(�)

�

�

T

2�

( �w(1=�)� w(�))

�

�

��

[�(2f

+

(�) � f

+

(0))℄ +

w

00

(�)

w

0

(�)

�(2f

+

(�)� f

+

(0))

�

+

T

2�

�

�w

0

(�)(2f

+

(�) � f

+

(0))�

1

�

�w

0

(1=�)(2f

+

(�) � f

+

(0))

�

: (C.1)

This has some symmetry, but is still very umbersome, save in the ZST ase, when most of the

terms vanish. Clearly, the analogous expression for �(0) = A 6= 0 will be even worse, but note

that by equations (3.15) and (3.19), terms in A and T are quite separate. Hene if we just �nd

the ZST version of (C.1) for this ase, the NZST version (should we need it) will follow by adding

on the surfae tension terms from (C.1). Setting T = 0 in (3.15) and (3.19) and substituting into

the formula (3.41) gives the result

2(u� iv) = �w

t

(1=�) + w

t

(�) +

2A

w

0

(0)

�

�w

0

(1=�)

�

1�

1

�

2

�

+ w

0

(�)(1�

�

�

2

)

�

+

1

w

0

(�)

( �w(1=�)� w(�))

�

w

0

t

(�) +

2A

w

0

(0)

�

��

[w

0

(�)(1� �

2

)℄

�

; (C.2)

or, in terms of the saled time variable � introdued in x3.8,
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w

0

(0)

A

(u� iv) = �w

�

(1=�) + w

�

(�) +
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(1=�)

�
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1
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2
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2
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1
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: (C.3)
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