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Abstra
t

The time-dependent free boundary problems of Hele-Shaw 
ow and slow vis
ous 
ow (Stokes 
ow)

are studied, using 
omplex variable methods.

The �rst 
hapter introdu
es the two problems; the mathemati
al models are presented, and

brief literature reviews are given. Chapter 2 is a review of known results for the Hele-Shaw

problem, and develops the 
onformal mapping ideas whi
h are 
entral to the thesis. In 
hapter 3,

existing work for the Stokes 
ow problem is reviewed and extended, and new results are presented,

prin
ipally for the (singularity driven) zero surfa
e tension problem on a bounded 
ow domain.

Chapter 4 dis
usses an extension of the work of the previous 
hapter, as applied to sintering

problems in the glass industry. Problems on unbounded 
uid domains are 
onsidered in 
hapter

5, for both Hele-Shaw and Stokes 
ow.

Chapter 6 is 
on
erned with singularity-driven Stokes 
ow, in the limit of small positive surfa
e

tension. Established theory of so-
alled \weak solutions" is reviewed, and applied to a new

example.

In 
hapter 7, the existing \
ra
k" theory of Hele-Shaw 
ow is presented, and a new, 
omple-

mentary \anti
ra
k" model is developed. Finally, in 
hapter 8, we summarise and suggest ideas

for further work.
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Chapter 1

Introdu
tion

1.1 Survey of the thesis

This thesis is 
on
erned with two di�erent free boundary problems: the Hele-Shaw problem, and

the problem of two-dimensional slow vis
ous 
ow, or Stokes 
ow, as it is 
ommonly known. Most

of the new results we present are for the latter; however, the (
omplex variable) methods of

atta
k we use for both have many similarities, and sin
e histori
ally the use of su
h methods for

the Hele-Shaw problem predates their use for Stokes 
ow, we shall review the Hele-Shaw problem

�rst. The 
omplex variable methods used are, in any 
ase, probably more straightforward when

applied to Hele-Shaw 
ow, so this approa
h has the added advantage of introdu
ing the ideas to

the reader as gently as possible.

Our aim throughout the thesis is to present as uni�ed an a

ount as possible; hen
e wherever

pra
ti
able we shall keep the same notation for the two problems, this being largely that used by

Ri
hardson [82℄ for the Stokes 
ow problem. Also in the interests of 
oheren
e and 
ontinuity,

we do not stri
tly segregate the two problems, but highlight similarities and 
ontrasts between

the two as these arise. Sin
e so mu
h more literature exists for the Hele-Shaw problem, su
h

questions of similarities or di�eren
es generally arise as we �nd a result for Stokes 
ow whi
h has

a Hele-Shaw \analogue", or whi
h is quite di�erent from the existing Hele-Shaw result.

The remainder of this 
hapter is devoted to introdu
ing the two problems, giving a little

physi
al ba
kground for ea
h. The governing equations and boundary 
onditions are derived, and

brief literature reviews are presented.

In the next two 
hapters solution methods for both problems are des
ribed, using te
hniques

from 
omplex variable theory. The Hele-Shaw work of 
hapter 2 is basi
ally review; we present

it �rstly as ne
essary ba
kground, and se
ondly be
ause our results for Stokes 
ow provide in-

teresting analogues, and the possible link between the two problems has, ex
ept for the work of

Howison & Ri
hardson [49℄, been largely ignored in the literature. Chapter 3, whi
h 
on
erns

Stokes 
ow, 
ontains mainly new work. With the ex
eption of xx3.1 and 3.3 (whi
h review the

work of Ri
hardson [82℄, but whi
h present a new perspe
tive on it), and x3.9 (whi
h is based on

an idea due to King [58℄), the work is original (unless otherwise stated). Work whi
h is 
losely

related to that of 
hapter 3, but whi
h would break the 
ow if in
luded there, is presented in


hapter 4. This 
on
erns models of slender vis
ous �bres experien
ing tra
tion, and is partly a

review of the work of [42℄, and partly new.

The examples 
onsidered in 
hapter 3 are all for �nite domains. Chapter 5 extends the dis
us-

sion to unbounded 
uid domains, to reveal possible 
ompli
ations that 
an arise with the Stokes


ow problem, but not in Hele-Shaw. Apart from the review material in x5.2, and x5.4.1, all the

work in this 
hapter is original. Both 
hapter 3 and 
hapter 5 are largely (though not ex
lusively)


on
erned with the zero-surfa
e tension problems. The limiting 
ase of small, positive surfa
e

tension in Stokes 
ow is the subje
t of 
hapter 6, using ideas developed by Howison & Ri
hardson

[49℄. After reviewing these ideas, a new example is given, and dis
ussed at some length. From

x6.2 to the end of the 
hapter is new work.
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The perspe
tive shifts somewhat in 
hapter 7, whi
h dis
usses \
ra
k" and \anti
ra
k" so-

lutions to the Hele-Shaw model. Se
tion 7.1 reviews the established theory of 
ra
ks, while the

remainder of the 
hapter is a blend of review, and original work (the distin
tion is made 
lear in

the text). The work that is reviewed, however, is presented in a di�erent 
ontext in the light of

our 
ra
k/anti
ra
k theory.

Finally, we dis
uss our results, and suggest some possible dire
tions for further work in 
hapter

8.

1.2 The Hele-Shaw problem

We begin by giving a short introdu
tion to Hele-Shaw 
ow, the �rst of our free boundary problems.

A Hele-Shaw 
ell 
onsists of two rigid parallel plates some small distan
e (b say) apart, between

whi
h is sandwi
hed one or more (immis
ible) Newtonian in
ompressible vis
ous 
uids whi
h 
an

be inje
ted, su
ked out, or subje
ted to pressure gradients. The problem is to model the 
ow of

the 
uid within the 
ell. It dates ba
k to Hele-Shaw's original paper [31℄, published in 1898. The

emphasis there was on the ability of the Hele-Shaw 
ell to reprodu
e faithfully the streamlines for

invis
id irrotational 
ow past obsta
les pla
ed in the 
ell, providing remarkable visual veri�
ation

of theoreti
al results. We shall be 
on
erned with the evolution of a 
uid domain with a free

boundary (adja
ent to a zero pressure region), under the a
tion of pres
ribed pressure gradients.

The problem has been extensively (though not 
ontinuously) studied sin
e Hele-Shaw's time.

The slender geometry of the 
ell means that the problem is e�e
tively two-dimensional, being

independent of the 
o-ordinate normal to the plane of the 
ell, whi
h greatly simpli�es matters;

parti
ularly fortuitous is the 
onsequen
e that 
omplex variable te
hniques (su
h as 
onformal

mapping) 
an be applied with 
onsiderable su

ess. We shall be using 
omplex variable methods

almost ex
lusively throughout the thesis.

The problem is of inherent theoreti
al interest, but there are various other reasons for wanting

to study it: the mathemati
al model is the same as that for many important physi
ally-o

urring

moving boundary problems, in
luding 
ow in porous media [75℄, �ltration [28℄, pollution of ground-

water [76℄, problems in oil and gas re
overy [75℄, [41℄, ele
tro
hemi
al ma
hining [61℄, 
rystal

growth [72℄, inje
tion moulding, and so on. In parti
ular, it is a spe
ial 
ase of the one-phase

Stefan model for phase-
hange [86℄, the two models 
oin
iding in the limit as the spe
i�
 heat of

the medium tends to zero.

1.2.1 The basi
 equations

Consider �rst the more general two-phase (or \Muskat") problem of �gure 1.1, where the gap

between the plates is �lled with two 
uids of di�erent, 
onstant vis
osities �

1

, �

2

, o

upying

regions 


1

, 


2

respe
tively (see for example [22℄ for a dis
ussion). If b is the gap width and l the

linear dimension of the Hele-Shaw 
ell then under the assumption that b � l the Navier-Stokes

equations redu
e

1

to

u

i

= �

b

2

12�

i

rp

i

; r:u

i

= 0 ; i = 1; 2 ;

where p

i

is the pressure in 
uid i and all quantities depend only on the 
o-ordinates in the plane

of the 
ell, (x; y), and time, t. Hen
e the pressure is a velo
ity potential for the 
ow, and

r

2

p

i

= 0 in 


i

(t) ; i = 1; 2 :

There are two 
onditions holding on the free boundary �
 between the two 
uids. Firstly we have

the dynami
 boundary 
ondition (DBC), whi
h 
omes from a for
e balan
e at the free boundary,

and is usually taken to be

p

2

� p

1

= �T� : (1.1)

1

See for example [71℄ for the details.
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Figure 1.1: The two phase Hele-Shaw problem.

Here, T is the surfa
e tension 
oeÆ
ient and � is the 
urvature in the (x; y)-plane (positive when

the domain 


1

is 
onvex). This form of the DBC ignores any three-dimensional e�e
ts due to the


urvature of the free boundary in the plane of the 
ell. A more a

urate 
ondition is given by

M
Lean & Sa�man [65℄, namely

p

2

� p

1

= �T

�

��

2

b


os�

�

; (1.2)

where � is the 
onta
t angle between the menis
us and the 
ell plates at the free boundary. If, as

in [65℄, � is assumed to be 
onstant, we again arrive at (1.1) without loss of generality; however

if � is not 
onstant then (1.2) and (1.1) are very di�erent, so 
aution is 
learly advisable. Even

(1.2) is not exa
t, sin
e it relies on the assumption that the advan
ing vis
ous 
uid 
ompletely

expels the re
eding 
uid (i.e. there is no `wetting' of the plates), whi
h is not the 
ase in general

(this is dis
ussed in [74℄). Nonetheless, it is usual in the literature to adopt either (1.1), or the

simpler \zero surfa
e tension" boundary 
ondition (see below) when solving problems.

We also have the kinemati
 boundary 
ondition (KBC), en
oding the fa
t that 
uid parti
les

whi
h are initially on the boundary must remain there (that is, �
 is a material 
urve),

v

n

= �

b

2

12�

i

�p

i

�n

; i = 1; 2 ;

whi
h is derived by equating the normal 
omponents of the 
uid velo
ity to the normal velo
ity

v

n

of the boundary. To 
lose the system we need to spe
ify 
(0), and some driving me
hanism

for the 
ow; for instan
e, if we have a point sink of strength Q > 0 at the origin, the singularity

in the pressure is p � (Q=2�) log r as r ! 0; for a point sour
e of strength Q, the sign is reversed

in this singular behaviour.

From now on we assume that 
uid 2 has negligible vis
osity (air, or va
uum). In the limit

�

2

! 0, the solution in region 


2

tends uniformly to p

2

= 
onstant, where the value of the 
onstant

may vary for di�erent 
omponents of 


2

(we do not yet know that 


2

is 
onne
ted). If we take 


1

to be simply 
onne
ted, then 


2

(if it is �nite) will be 
onne
ted, and p

2

must assume the same


onstant value throughout 


2

; without loss of generality we take this to be zero. Then, dropping

suÆ
es, and making a trivial nondimensionalisation, we arrive at the simpler one-phase model:

r

2

p = 0 in 
(t) ; (1.3)

p = T� on �
(t) ; (1.4)

�p

�n

= �v

n

on �
(t) ; (1.5)
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with pres
ribed pressure driving me
hanism. Without the assumption of simple 
onne
tedness we

would need boundary 
onditions analogous to (1.4) on ea
h separate portion of the free boundary,

but with extra arbitrary additive 
onstants on the right-hand sides, and with the restri
tion that

p be single-valued. Multiply-
onne
ted 
uid domains are 
onsidered in detail in [84℄.

We shall in the main 
onsider situations where T is small, and repla
e (1.4) by the approximate

\zero-surfa
e tension" (hen
eforth \ZST") 
ondition,

p = 0 on �
(t) : (1.6)

This may be justi�able provided the 
urvature of the free boundary is nowhere of the order of 1=T

(that is, as long as the boundary is reasonably smooth), and is 
ertainly desirable, sin
e the ZST

problem is very mu
h more tra
table. Caution is ne
essary, however, sin
e we have no guarantee

that an initially \reasonably smooth" boundary will remain so for the duration of the motion.

We defer further dis
ussion of these matters until x1.4.

1.3 The Stokes 
ow problem

We now introdu
e the se
ond of our two free boundary problems: the problem of two-dimensional

slow vis
ous 
ow, or Stokes 
ow, with time-dependent geometry. Despite the undeniably three-

dimensional nature of most real-world low Reynolds number

2


ows, the two-dimensional prob-

lem is invaluable as an aid to understanding many physi
al phenomena, either as a preliminary

\paradigm" problem, or be
ause the geometry is slender in some sense, so that asymptoti
 meth-

ods may be applied to yield a two-dimensional problem at �rst order. Being so mu
h simpler than

the three-dimensional problem whi
h generally requires heavy 
omputation, it is often worthwhile

doing a two-dimensional version of the problem �rst, providing a sensible one exists.

Real-world situations whi
h 
an be modelled by Stokes 
ow are numerous. The dynami
s of

bubbles and drops trapped within a low Reynolds number 
ow [1℄, [77℄ is one very general example,

relevant to many physi
al pro
esses. The rheology of emulsions, mixing in multi-phase vis
ous

systems, and bubbles trapped within a vis
ous 
uid su
h as molten glass, are all des
ribable by this

model. Fully three-dimensional (unsteady) geometries are diÆ
ult to des
ribe mathemati
ally;

however, two-dimensional drops and bubbles are easily modelled [78, 80℄, [96℄, and whilst 
learly

physi
ally unrealisti
,

3

su
h models provide a useful guide before embarking on the full problem.

Axisymmetri
 geometries are also reasonably simple [101℄, [70℄, parti
ularly if, as mentioned above,

the drop or bubble is slender (su
h as may o

ur in an extensional 
ow), so that asymptoti


methods may be used to simplify the problem [7℄, [43℄.

The dynami
s of two-dimensional vis
ous blobs (surrounded by invis
id 
uid) is also of rel-

evan
e [38℄, [82℄. This 
an model vis
ous sintering, a phenomenon 
ru
ial to many physi
al

pro
esses. A review of its appli
ations is given in [100℄; a spe
i�
 example whi
h we shall 
onsider

in 
hapter 4 is the sintering of vis
ous �bres, su
h as arises in opti
al �bre manufa
ture [42℄, [85℄.

Finally, we mention another interesting real-world example whi
h 
an (at least in 
ertain 
ow

r�egimes) be modelled by two-dimensional Stokes 
ow. This is the stru
ture of foams, whi
h may

be thought of as thin vis
ous sheets (the lamellae) joined together along \Plateau borders", whi
h

are basi
ally `tubes' of vis
ous 
uid, and are where most of the liquid of the foam resides.

1.3.1 The basi
 equations

Before making any more general remarks, we derive the equations and boundary 
onditions whi
h

govern slow vis
ous 
ow. In this thesis we are 
onsidering the two-dimensional motion of a simply-


onne
ted domain of 
uid (again denoted by 
(t) and taken to lie in the (x; y)-plane), whi
h we

2

This dimensionless parameter is de�ned by Re=�UL=�, where U is a typi
al 
ow speed, L is a typi
al length-

s
ale of the 
ow, � is the 
uid density, and � is the vis
osity. It is a measure of the ratio of inertial e�e
ts to

vis
ous e�e
ts in the 
ow.

3

But see Ri
hardson [80℄: \. . . the [two-dimensional℄ solutions derived show remarkable similarities with the

observed behaviour of [the three-dimensional bubbles en
ountered in pra
ti
e℄. . . , suggesting that often the essential

physi
s is retained, even if one is solving the `wrong' problem!"
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assume is dominated by vis
ous, rather than inertial e�e
ts. The Reynolds number of the 
ow

will thus be small, and so we use the Stokes 
ow equations (see for instan
e [6℄ or [71℄ for the

details),

rp = �r

2

u; r � u = 0; (1.7)

holding within 
(t). All notation here is as for the Hele-Shaw problem. We also need boundary


onditions on the free boundary �
(t). There are two stress boundary 
onditions, or SBC's,

(derived from an elementary for
e balan
e) the �rst of whi
h requires the shear stress to be


ontinuous a
ross the free boundary, and the se
ond of whi
h says that the jump in the normal

stress (as we pass from the 
uid to the air) is given by T�, where T is the 
onstant 
oeÆ
ient

of surfa
e tension and � is the 
urvature of the free boundary (measured as before). These two


onditions may be written as a single ve
tor equation,

�

ij

n

j

= �T�n

i

i = 1; 2; (1.8)

where �

ij

is the usual Newtonian stress tensor,

�

ij

= �pÆ

ij

+ �

�

�u

i

�x

j

+

�u

j

�x

i

�

;

and n = (n

i

) is the outward normal to �
. If U is some typi
al 
ow speed, it is 
lear from (1.8)

that an important parameter of the 
ow is the Capillary number, Ca = �U=T , whi
h measures

the relative e�e
ts of vis
osity and surfa
e tension. We also have the usual kinemati
 boundary


ondition (KBC),

u � n = v

n

; (1.9)

v

n

being the outward normal velo
ity of the free boundary. Sin
e the 
ow is two-dimensional and

in
ompressible, there exists a streamfun
tion  (x; y; t) su
h that

u =

� 

�y

; v = �

� 

�x

:

To 
lose the problem, any singularities in the 
ow (su
h as sour
es, sinks, dipoles, et
.) must also

be spe
i�ed. Most of our solutions will involve su
h driving singularities.

Taking the 
url of the �rst of equations (1.7) reveals that  must satisfy the biharmoni


equation in the 
ow domain,

r

4

 = 0:

Like (1.3), this equation has the extremely useful property that its solutions are expressible as

fun
tions of 
omplex variables (the so-
alled Goursat representation of solutions) so that again

many powerful results from 
omplex variable theory 
an be drawn upon. We return to this point

in 
hapter 3.

1.4 Literature Reviews and Dis
ussion

1.4.1 Hele-Shaw Flow

Any review of Hele-Shaw 
ow, unless it is to be a thesis in itself, must be highly sele
tive be
ause

of the vastness of the existing literature. The problem has been studied using 
omplex variable

theory (see for example the work of Ri
hardson [79, 81, 84℄, or Howison [48℄ for a review); numeri
al

methods [65℄, [98℄, [54, 55℄; rigorous existen
e-uniqueness theory [18℄, [26, 27℄, [12℄, [56℄ (via a weak

formulation of the problem); \phase �eld" theory [9℄; exponential asymptoti
s [94℄; not to mention

of 
ourse a large body of experimental work (see for instan
e [87℄, [59℄, [73℄). The referen
es given
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here are very restri
ted; one 
ould easily give ten or more for ea
h item of the list above. We

simply 
hose a representative few, to give an idea of the wide spread of work that has been done.

Mu
h of the Hele-Shaw literature deals ex
lusively with the ZST Hele-Shaw problem. As we


ommented in x1.2.1, this is mu
h more tra
table than the NZST problem, but there are potential

diÆ
ulties whi
h it is appropriate here to expand upon.

Firstly, a simple linear stability analysis for a sinusoidally-perturbed planar travelling wave

front may be 
arried out for the ZST, two-phase (Muskat) problem. This reveals that a free bound-

ary advan
ing into a more/less vis
ous 
uid is always unstable/stable, respe
tively. With non-zero

surfa
e tension (NZST) the same is still true; however, higher wavenumbers (shorter wavelengths)

are stabilised. For the one-phase ZST problem the net result is that an advan
ing/retreating

vis
ous front is stable/unstable respe
tively, with an analogous result for the NZST problem (see

x7.3.2). We refer to these two 
ases as \blowing"/\su
tion" (or \inje
tion"/\su
tion") problems,

respe
tively, there being a fundamental di�eren
e between the two.

Se
ondly, we note that the ZST Hele-Shaw problem is time reversible: if we 
hange the signs

of p and t in (1.3), (1.6), (1.5), and reverse the driving singularity, the problem is un
hanged.

Consider the paradigm problem in whi
h the 
ow is driven by a single point sour
e of strength

Q > 0 at the origin. If we start from an initially empty 
uid domain, the solution is easily seen

to be an expanding 
ir
le of vis
ous 
uid, with radius R(t) =

p

Qt=�. It follows that, for 
ow

driven by a point sink of strength Q at the origin, only if 
(0) is a 
ir
le 
entred on the origin will

we be able to extra
t all the 
uid from the 
ell. Any other initial domain must lead to �nite-time

blow-up of the problem. This is an example of a more general result: the ill-posedness of the ZST

Hele-Shaw problem with a retreating free boundary (the \su
tion" problem). Only those solutions

whi
h are time-reversals of well-posed problems with advan
ing free boundaries (\inje
tion" or

\blowing" problems), whose analyti
 behaviour 
an be tra
ed ba
k to time t = �1 or whi
h

started from initially empty 
uid domains, will avoid �nite-time blow-up.

This breakdown of solutions is often via the formation of a 
usp in the free boundary (whi
h

the theory assumes to be analyti
).

4

For T � 1 the assumption is that the ZST theory holds good

until times very 
lose to breakdown, at whi
h point the high 
urvature at a single point means that

surfa
e tension e�e
ts must be
ome important|mathemati
ally, the boundary 
ondition p = 0 is

no longer a valid approximation to p = T� when � be
omes large.

The NZST Hele-Shaw problem is notoriously diÆ
ult (mu
h more so than the NZST Stokes


ow problem, as we will see). This diÆ
ulty is tied in with the ill-posedness referred to above;

taking the NZST boundary 
ondition (1.4) amounts to a perturbation of the boundary data,

whi
h is well known to often have disastrous 
onsequen
es for an ill-posed problem|even a tiny


hange in the data is liable to 
ause a large 
hange in the solution.

A signi�
ant body of literature is 
on
erned with the idea of regularising the ill-posed ZST

\su
tion problem". We have already noted that su
h ZST solutions invariably break down within

�nite time, often via 
usp formation in the free boundary, whi
h is physi
ally una

eptable. The

problem must 
learly be modi�ed in some way if this breakdown is to be avoided, but hopefully

without having to 
onsider the full NZST problem, although this seems the obvious thing to do.

Other types of regularisation whi
h have been studied (none very su

essfully) in
lude employ-

ing a \kineti
 under
ooling" boundary 
ondition, where the jump in pressure a
ross �
 is taken

to be proportional to the normal velo
ity v

n

of �
, or a \vis
osity" type of regularisation

5

, whi
h

gives rise to a phase-�eld model. Both of these ideas are 
onsidered in Hohlov et al. [33℄. In a

series of papers [36, 62, 33℄, these authors develop a novel kind of possible regularisation for the

small surfa
e tension problem. Supposing one has a 
ow driven by a point sink, then their idea

is that ZST theory will apply until times 
lose to blow-up (so an almost 
usped 
on�guration has

formed), at whi
h point a thin \
ra
k" of air will enter the 
uid domain and propagate rapidly

towards the sink. Whilst this is happening, the rest of the free boundary remains smooth, and

4

Cuspidal blow-up is not the only possibility; for instan
e, solutions 
an break down via 
orners forming in the

free boundary [56℄. Breakdown may also o

ur via the free boundary beginning to \overlap" itself (see x2.7), so

that at the instant of breakdown, the 
uid domain 
hanges from simply to multiply 
onne
ted. With the 
urrent

theory the solution 
annot be 
ontinued; however if one has a theory appli
able to multiply 
onne
ted domains,

the possibility exists of 
ontinuing the solution beyond blow-up time|see Ri
hardson [84℄.

5

The term \vis
osity" refers to the kind of solution, and should not be 
onfused with physi
al vis
osity.
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hardly moves at all. This has an interesting ZST limit; ZST theory applies until the 
lassi
al solu-

tion breaks down with 
usp formation, then a slit (i.e. a 
ra
k of zero thi
kness) propagates into

the 
uid, its evolution being on a times
ale su
h that the smooth part of the boundary a
tually

remains stati
. Su
h solutions are \weak", in the sense that the free boundary is nonanalyti
. It

is 
onje
tured that the solution would still break down in �nite time though, when the 
ra
k or

slit rea
hes the sink (the models, and this 
onje
ture are supported by the numeri
s of [69℄, [55℄).

These ideas are dis
ussed further in 
hapter 7.

Other weak solutions have been found by King et al. [56℄, who study 
uid domains that

initially have nonanalyti
 free boundaries 
ontaining 
orners. Both the su
tion (ill-posed) and

inje
tion (well-posed) problems are 
onsidered, and lo
al similarity solutions are 
onstru
ted near

the 
orners, in a wedge geometry. Surprisingly, their work reveals that solutions to both the

inje
tion and su
tion problems exist whi
h have persistent 
orners, 
ontrary to the usual 
onje
ture

that `inje
tion always smooths' (that is to say, that the free boundary for t > 0 will be analyti
,

even if �
(0) is not).

In x1.2.1, we 
ommented on the diÆ
ult nature of the NZST boundary 
ondition. Remarkably,

when one 
onsiders how extensively the Hele-Shaw problem has been studied, the NZST problem

is still largely intra
table, with very few �rm analyti
al results existing. Du
hon & Robert proved

the existen
e of 
lassi
al solutions to the NZSTmodel, and Es
her & Simonett [26℄ proved existen
e

and uniqueness for the same problem, with general initial 
onditions. Chen et al. [12℄ did the

same for the zero spe
i�
 heat Stefan problem (note that these results are all lo
al in time).

Steady expli
it solutions have been presented in [24℄, [99℄ (although those of [99℄ are in a highly

arti�
ial geometry). Modern 
omputing power, and fast, e�e
tive numeri
al s
hemes mean that

an ever-in
reasing number of NZST numeri
al solutions are available (see [54, 55℄, [65℄, [69℄, [98℄,

for instan
e).

No review of the Hele-Shaw problem would be 
omplete without some mention of the famous

Sa�man-Taylor \�ngering" problem. In 1958 Sa�man & Taylor [87℄ 
ondu
ted experiments in

whi
h regular, evolving \�ngers" of air were observed penetrating a 
hannel of vis
ous 
uid. For

small values of the surfa
e tension parameter the width of these �ngers was almost exa
tly half

the 
hannel width, and the authors 
onstru
ted exa
t travelling-wave solutions [87℄ (and later,

exa
t time-evolving solutions, [88℄) to the ZST problem, whi
h gave free boundary shapes remark-

ably similar to the (large-time) experimental observations. However, their solutions 
ontained an

arbitrary parameter, the �nger width �. It was believed that the addition of small positive sur-

fa
e tension to the model would resolve this indetermina
y, but all early attempts to do this

via perturbation analysis failed, the limit T ! 0 being singular. Numeri
al results were more

satisfa
tory [65℄, [98℄, but the analyti
al explanation de�ed resear
hers until the so-
alled `mi-


ros
opi
 solvability' hypothesis [13℄, [34℄, [91℄, whi
h 
laims that the \sele
tion" of a parti
ular

value of � is governed by terms in the perturbation expansion whi
h are trans
endentally small

in the surfa
e tension parameter T . Rather than the 
ontinuum of solutions found for the ZST

problem, solutions in fa
t exist only for a dis
rete set of values of (�� 1=2). For T � 1, or large

Capillary number, (� � 1=2) approa
hes zero, in agreement with the observations of [87℄. For a


omprehensive review of the Sa�man-Taylor problem, see [89℄.

Relatively re
ent experiments (Kopf-Sill & Homsy [59℄ (1987)) show that, under 
arefully

monitored 
onditions, narrow, evolving �ngers may be observed in low surfa
e tension 
ows.

These �ngers are stable ex
ept at very low surfa
e tension, when they destabilise via dendriti


side bran
hing and tip splitting. Su
h observations may provide eviden
e for the \
ra
k" theory

mentioned above. Radial �ngering has also been observed experimentally [73℄, [12℄ and fami-

lies of ZST solutions 
onstru
ted [45℄ whi
h give boundary shapes in good agreement with the

experiments|we return to these solutions in 
hapter 7.

1.4.2 Stokes 
ow

We now turn our attention ba
k to our se
ond free boundary problem. The two-dimensional

Stokes 
ow problem has generated a good deal of mathemati
al interest from the 1960's onwards,

the last few years in parti
ular providing a wealth of new results, stimulated primarily by Hopper
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[37, 38, 39℄ and Ri
hardson [82℄ (where he generalises his steady-state work of [78, 80℄). This new

spate of a
tivity in the 1990's stems from the independent dis
overy of the above two authors that

many families of exa
t, time-dependent solutions to the problem 
an be found in 
losed form.

This is a remarkable fa
t, given the apparent awkwardness of the boundary 
onditions for

positive surfa
e tension. It is perhaps even more surprising when we 
onsider how little progress

has been made on the 
orresponding NZST Hele-Shaw problem, whi
h at �rst glan
e one feels

ought to be the simpler of the two, being governed by only a se
ond order (Lapla
e) rather than

a fourth order (biharmoni
) p.d.e.. Of 
ourse, steady solutions to the NZST Stokes 
ow problem

have been around for years, many authors having published papers in the 1960's and 1970's (for

example, in roughly 
hronologi
al order, Garabedian [29℄, Ri
hardson [78, 80℄, Bu
kmaster [7℄,

Youngren & A
rivos [101℄).

More re
ently still, Howison & Ri
hardson [49℄ have 
onsidered time-evolving problems (for

both the NZST and ZST 
ases) in
orporating a driving me
hanism at a �nite point within the


uid domain. Su
h problems have already been extensively studied for ZST Hele-Shaw 
ow, and

there are very many results available for 
omparison in this 
ase. Of parti
ular interest for Stokes


ow is the 
ase where the surfa
e tension parameter is small and positive, sin
e experiments with

real, high-vis
osity 
uids (in approximately two-dimensional geometries) demonstrate that the

liquid-air free boundary 
an adopt an almost 
usped 
on�guration. In fa
t to the naked eye the

boundary appears to have an a
tual 
usp, with magni�
ation needed to dis
ern the �nite 
urvature

at this point|see for example Jeong & Mo�att [52℄, or Joseph et al. [53℄. We 
onsider Jeong &

Mo�att's work further in 
hapter 5.

We shall see that, if we approximate this physi
al situation with the assumption that surfa
e

tension is zero we have the situation that arose for Hele-Shaw 
ow; solutions for the \su
tion

problem" almost invariably break down within �nite time. Like the ZST Hele-Shaw problem,

the ZST Stokes 
ow problem is time-reversible, so, as there, we expe
t 
ontra
ting vis
ous blobs

to break down within �nite time (ex
ept in the trivial 
ase of a 
ontra
ting 
ir
ular dis
 with a

sink at the origin). This breakdown 
an o

ur in the same ways as those listed for Hele-Shaw in

footnote (4). The distin
tion here between \su
tion" and \inje
tion" is not so 
lear, however. For

the Hele-Shaw problem it is a simple matter to demonstrate the instability of a retreating vis
ous

front (see x7.3.2, for example), and both expanding bubbles and 
ontra
ting blobs are therefore

unstable. Stokes 
ow, on the other hand (in the absen
e of singularities) is invariant under rigid-

body motions (see x3.1), so a travelling wave planar front is neutrally stable, whether advan
ing

or retreating. Contra
ting or expanding bubbles and blobs 
an be analysed, however, and it is

found that, in 
ontrast with Hele-Shaw, 
ontra
ting 
ir
ular blobs and bubbles are unstable, while

expanding blobs and bubbles are stable (this is shown in appendix A). For Stokes 
ow we tend to

reserve the term \su
tion problem" (with its 
onnotations of instability) for the unstable problem

driven by a sink at a �nite point within the 
uid, and not for the stable situation of an expanding

bubble with a sink at in�nity.

Given the experimental observations 
ited above, it seems fair to assume that the ZST theory

holds good until times very 
lose to breakdown, at whi
h point the high 
urvature at a single

point brings surfa
e tension e�e
ts into play, preventing a
tual breakdown. Analogous to the

\p = 0 on �
" approximation be
oming invalid for Hele-Shaw, here, the boundary 
ondition

[�

nn

℄

�


= 0 is no longer a valid approximation to the 
ondition [�

nn

℄

�


= T� when � be
omes

large. Antanovskii ([2, 3℄ and several other papers) has also studied 
usped 
on�gurations in slow


ow, using 
omplex variable te
hniques to obtain steady solutions to the NZST problem.

The introdu
tion of small positive surfa
e tension into the ZST problem (with driving me
h-

anism) may be regarded as a regularisation of this problem, su
h as we dis
ussed in x1.4.1 for

the Hele-Shaw problem, only not so diÆ
ult. The T ! 0 limit of this regularisation has been


onsidered, and solutions having persistent 
usps in the free boundary have been found to exist

(see [49℄; also 
hapter 6). Su
h solutions may be 
ontrasted with the \slit" limit of the Hele-Shaw

\
ra
k" model, indi
ating perhaps that we do not expe
t to �nd the phenomenon of �ngering in

slow vis
ous 
ow. We return to this point in x8.1.

It may be obvious, but we should point out that it is only for problems with a driving singularity

that the ZST problem is nontrivial; if no driving singularity was present then any initial domain
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(0) would be an equilibrium domain in the absen
e of surfa
e tension. When we do have a

driving me
hanism, it is often the 
ase in pra
ti
e that this is the dominant e�e
t in the 
ow,

hen
e the ZST approximation. The NZST solutions of [49℄ demonstrate the 
ompeting e�e
ts of

a 
ow singularity and surfa
e tension.

Despite our opening remarks about the existen
e of many exa
t (time evolving) solutions to

the NZST problem, the fa
t remains that the ZST problem is very mu
h simpler, and admits

very many exa
t, 
losed-form solutions, whi
h would be just too messy to attempt analyti
ally

for positive surfa
e tension. Moreover, all is not lost when ZST solutions break down via 
usps,

sin
e as mentioned above we 
an use dire
t asymptoti
 methods to examine the e�e
t that surfa
e

tension will have as we approa
h a 
usped 
on�guration, and the T = 0 approximation be
omes

invalid. These observations, together with the independent mathemati
al interest of our �ndings,

justify our 
lose study of the singularity-driven ZST Stokes 
ow problem.

For 
ompleteness, we also mention work that has been 
arried out on solutions for bubbles in

in�nite 
uid domains (we shall return to unbounded 
ow domains in 
hapter 5). Many of the

early steady solutions for Stokes 
ow were for bubbles, for example the papers of Youngren &

A
rivos [101℄ (1976), Bu
kmaster [7℄ (1972) and Ri
hardson [78, 80℄ (1968, 1973). More re
ently,

time-dependent analyti
al solutions have been presented for two-dimensional bubbles (Tanveer &

Vas
on
elos [95, 96℄ (1994, 1995)), and numeri
al solutions for three-dimensional axisymmetri


bubbles (Nie & Tanveer [70℄ (1996)). All of these bubble solutions are for the NZST Stokes 
ow

problem; however like the 
ases mentioned earlier, many of the solutions exhibit \near 
usps"

in the free boundary, so that ZST theory 
ould be used for times less than the predi
ted ZST

breakdown time. The last three 
ited works also allow for the interesting possibility that bubbles

may \pin
h o�", with two sides of the bubble meeting in the middle, and 
onsequent 
hange of

topology.
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Chapter 2

Complex variable methods for

Hele-Shaw 
ow

2.1 Preliminaries

In this 
hapter we introdu
e the idea that will be followed throughout the thesis: the appli
ation

of 
omplex variable methods to solve the free boundary problem. The work we present is spe
i�


to the Hele-Shaw problem, but the general approa
h is widely appli
able, and this 
hapter will

familiarise the reader with key 
on
epts su
h as 
onformal mapping, analyti
 
ontinuation of

identities holding on some boundary, univalen
y 
on
erns, and so on. There are several di�erent

possible approa
hes to the ZST problem; we present a few of the better-known. The aim of this


hapter is not to present new work, but to give a review of well-do
umented methods, and our

dis
ussion is largely theoreti
al, with few examples of the appli
ation of the methods. For further

examples, the referen
ed texts are more than adequate. Unless we state otherwise, it should be

understood that the work of this 
hapter pertains to the ZST 
ase, and hen
eforth the 
omplex

variable z is taken to be x+iy, where (x; y) are 
o-ordinates in the (two-dimensional) 
uid domain.

The 
ru
ial fa
tor whi
h allows us to apply su
h 
omplex variable methods to the Hele-Shaw

problem is that the pressure p is harmoni
 within the 
uid domain 
(t), so there exists a fun
tion

W(z; t) (the 
omplex potential of the 
ow), analyti
 within 
(t) (ex
ept at driving singularities

of the 
ow), su
h that

p = �<fW(z; t)g: (2.1)

We will suppress the time dependen
e of the various fun
tions ex
ept where ne
essary for emphasis.

One of the earliest methods of solution is due to Polubarinova-Ko
hina [75℄ and Galin [28℄,

and the method des
ribed in the following se
tion is based on their work.

2.2 The Polubarinova/Galin approa
h

The main diÆ
ulty in solving free boundary problems is fairly obvious; it is that we do not know,

at the outset, the position of the boundary on whi
h we must apply our boundary 
onditions|

it must be determined as part of the solution pro
ess. In fa
t, our investigations are almost

solely 
on
erned with this determination of the free boundary. Given that we are using a 
omplex

fun
tion representation of the pressure �eld, it seems a sensible thing �rst to transform to a simple,

known domain on whi
h we 
an solve the �eld equations. We thus introdu
e a time-dependent

univalent

1

map z = w(�; t), from the unit dis
 in �-spa
e (� = � + i�) onto 
(t) (�gure 2.1).

1

We refer forward to x2.7 for more dis
ussion of what exa
tly we mean by \univalen
y"; for the moment it is

enough to note that we require w(�; t) analyti
 (ex
ept possibly at a single point whi
h maps to in�nity in the 
ase

that we have an unbounded 
uid domain), and that the free boundary it des
ribes must be smooth and simple.
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(t)

�1

z = w(�; t)

�

0 0

y

x

i

Figure 2.1: The mapping from the unit dis
 onto the 
uid domain.

The existen
e of su
h a map is guaranteed by the Riemann mapping theorem (see for example

[68℄), and the map is uniquely determined if we insist that w(0; t) = 0 and w

0

(0; t) is real and

positive. Sin
e we now have two 
omplex planes to 
onsider, we shall often refer to the z-plane

as the physi
al plane. The method is well-illustrated if applied to the problem we have already

mentioned, that is, the 
ase where the 
ow is driven by a single point sink of strength Q > 0

situated at the origin. In this 
ase the asymptoti
 behaviour of the pressure near the origin is

known, and is identi
al to the asymptoti
 behaviour in the �-plane (as 
an be seen by performing

a trivial Taylor expansion). The 
omplex potential in the �-plane 
an then be written down as

�(�) =W(z(�)) = �

Q

2�

log � ; (2.2)

sin
e this has the 
orre
t singularity, and its real part vanishes on the unit 
ir
le.

The KBC (1.5) 
an be written in terms of the pressure p as

�p

�t

� jrpj

2

= 0 on �
 , (2.3)

using (1.6) plus the fa
t that the velo
ity �eld u = �rp in our dimensionless variables. We also

have

z = w(�; t) ) 0 = w

0

(�)�

t

+ w

t

(�) ) �

t

= �

w

t

(�)

w

0

(�)

:

Then, using (2.2) and (2.3) and noting that �

�

� = 1 on j�j = 1, we arrive at

<f�w

0

(�) �w

t

(1=�)g = �

Q

2�

on j�j = 1 ; (2.4)

a result known as the Polubarinova-Galin (P-G) equation. In some problems we �nd it easiest to

map from the right-half plane onto the physi
al domain (�gure 2.2). In this 
ase the free boundary

is the image of the imaginary axis, � = i�, under the 
onformal map, and the boundary 
ondition

on the 
omplex potential in the �-plane is

<(�(�)) = 0 on � = i�:

One solution for � is 
learly then

�(�) = A�; (2.5)

for some real 
onstant A (the negative pressure gradient at in�nity in the �-plane). The driving

me
hanism in the physi
al plane to whi
h this 
orresponds depends on the parti
ular mapping
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(t)

� x

z = w(�; t)

0

�

y

0

Figure 2.2: The mapping from the right-half plane onto the 
uid domain.

fun
tion proposed; for instan
e, if w(�) is linear in � at in�nity then we have a 
onstant pressure

gradient at in�nity, exa
tly as in the �-plane, but if w(�) is quadrati
 in � at in�nity (as in the

famous Ivantsov paraboli
 travelling wave solution [51℄) then the pressure only has square-root

growth at in�nity in the physi
al plane. The P-G equation for this mapping fun
tion is readily

found to be

<fw

0

(�) �w

t

(��)g = A on � = i�; (2.6)

in the same way that (2.4) was obtained.

These results enable many exa
t Hele-Shaw solutions to be 
onstru
ted, by \guessing" the

form of an appropriate mapping fun
tion w(�; t) with time-dependent 
oeÆ
ients. Substitution

in (2.4) with � = e

i�

(or (2.6) with � = i�) leads to a system of ordinary di�erential equations for

these 
oeÆ
ients, whi
h 
an (hopefully) be solved, yielding the time-dependent map, and hen
e

the evolution of the 
uid domain. The solution thus found will be valid until su
h time as the

mapping fun
tion 
eases to be univalent on the unit dis
.

An analogous equation arises in our study of the Stokes 
ow problem (equation (3.13)); there

however our approa
h is to make the equation global by analyti
ally 
ontinuing away from the

unit 
ir
le. We 
ould follow this approa
h here, but it would be rather 
umbersome in pra
ti
e

be
ause su
h an analyti
 
ontinuation 
annot be general, but must be spe
i�
 to ea
h 
ase. We

�rst need to propose a spe
i�
 form for the mapping fun
tion, sin
e only then do we know the

singularities of the 
ombination in 
urly bra
kets within the unit dis
 (whi
h will be due only

to the singularities of �w

t

(1=�), the other parts being analyti
 on j�j � 1). These singularities

would 
learly need to be known, sin
e any equation holding globally would need to have these

same singularities on the right-hand side. We do not pursue this point, sin
e the Stokes 
ow work

exploits it mu
h more satisfa
torily (we dis
uss why this is so in x3.6.2). For a detailed dis
ussion

of the pro
edure of analyti
 
ontinuation the reader is referred to [10℄ or [20℄.

2.3 The S
hwarz fun
tion

Equivalent to the analyti
 
ontinuation of the P-G equation, but mu
h simpler in pra
ti
e, is the

S
hwarz fun
tion approa
h whi
h we now outline. The S
hwarz fun
tion of the free boundary,

whi
h exists if and only if the boundary is an analyti
 
urve, is the unique fun
tion g(z; t), analyti


in some neighbourhood of �
, su
h that the equation

�z = g(z; t)

de�nes �
. If we have a Cartesian equation, F (x; y; t) = 0, for �
, the S
hwarz fun
tion may

be obtained by substituting for x = (z + �z)=2, y = (z � �z)=(2i), and solving for �z. Note that
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most analyti
 fun
tions of z will not be S
hwarz fun
tions, as they will not satisfy the 
onsisten
y


ondition,

z = g(g(z; t); t) � �g(g(z; t); t):

It 
an be shown (see for instan
e [17℄) that with notation as de�ned in this 
hapter, the following

identities hold at a point z on �
:

�z

�s

= (g

0

)

�1=2

; (2.7)

� = �i

h

(g

0

)

�1=2

i

0

=

i

2

g

00

(g

0

)

3=2

; (2.8)

v

n

= �

i

2

g

t

(g

0

)

1=2

; (2.9)

where s is ar
length along �
 and prime denotes d( � )=dz. Then on �
,

dW

dz

=

�W

�s

�

�z

�s

= �

�

�p

�s

+ i

�p

�n

�

(g

0

)

1=2

sin
e p = �<(W) ,

= iv

n

(g

0

)

1=2

using (1.5), (1.6),

=

1

2

�g

�t

using (2.9) .

Sin
e both sides of this last equality are analyti
 in some neighbourhood of �
, we may analyti
ally


ontinue away from �
 to dedu
e that it holds wherever both sides exist, that is,

dW

dz

�

1

2

�g

�t

: (2.10)

Important 
on
lusions may be drawn from this identity, about the nature of the possible singu-

larities of the S
hwarz fun
tion. The singularities of W(z) within 
(t) are given as part of the

problem spe
i�
ation (the driving singularities of the problem), hen
e the singularities of g(z) are

also spe
i�ed at su
h points. It is also possible that g(z) may have other singularities than these

within the 
uid domain, but su
h singularities, by (2.10), must remain �xed both in position and

strength within the physi
al domain. The singularities whi
h are external to 
(t), on the other

hand, may move around, and vary in strength. We note that, sin
e the S
hwarz fun
tion of an

analyti
 
urve must itself be analyti
 in some neighbourhood of the 
urve, and sin
e analyti
ity

of the free boundary is a mathemati
al requirement of our Hele-Shaw theory, it follows that if a

singularity of the S
hwarz fun
tion rea
hes the free boundary (or vi
e-versa), this must 
oin
ide

with solution breakdown. Expli
it 
al
ulation shows that 
uspidal blow-up of the ZST problem is

asso
iated with a moving, external singularity of the S
hwarz fun
tion rea
hing the free boundary

within �nite time; in the example to follow (x2.4), a square-root singularity of g(z) rea
hes the

boundary simultaneously with blow-up. It is also 
on
eivable that blow-up 
ould o

ur with the

free boundary moving inwards and rea
hing one of the internal singularities; although no expli
it

examples of this are known, they 
ould, in prin
iple, be 
onstru
ted as time-reversals of solutions

to the well-posed inje
tion problem, with appropriate singularities in the initial data. See for

example [48℄ for further dis
ussion of this point.

A version of equation (2.10) may also be obtained for the NZST problem, making use of

identities (2.7)-(2.9), and the boundary 
onditions (1.4) and (1.5). This has been 
ited many

times (see for example [48℄), and is

dW

dz

=

1

2

�g

�t

�

iT

2

d

dz

�

g

00

(g

0

)

3=2

�

; (2.11)

15



the unpleasant form of the extra surfa
e tension term on the right-hand side here gives warning

of how diÆ
ult the NZST problem will be. An analogous result 
an be found if one employs the

\kineti
 under
ooling" regularisation mentioned in x1.4.1, with the boundary 
ondition

p = �v

n

on �
,

(for some positive under
ooling parameter �) repla
ing (1.4); this is

dW

dz

=

1

2

�g

�t

�

i�

2

d

dz

 

g

t

p

g

0

(z)

!

;

whi
h is 
onsidered brie
y in [48℄.

Returning to the ZST problem, in terms of the mapping fun
tion w(�; t), we have

g(z) = �z = w(�) = �w(1=�); on j�j = 1.

The �rst and last terms in the above are analyti
 in some neighbourhood of the free boundary (in

the z- and �-planes respe
tively); we may then analyti
ally 
ontinue away from j�j = 1 to dedu
e

that they are equal wherever they are de�ned, hen
e

g(z) � �w(1=�): (2.12)

These ideas 
an be used to provide an alternative method of solution for the problem, whi
h we

now outline. For de�niteness, and to fa
ilitate 
omparison of the two approa
hes, we assume the


ow is driven by a single point sink at the origin. We again 
onsider guessing a suitable form for

the mapping fun
tion to 
ater for a parti
ular problem, but rather than using the P-G equation,

we use (2.12) to evaluate the S
hwarz fun
tion as a Laurent series in z about z = 0 (the su
tion

point). (2.10) then yields a Laurent expansion for dW=dz about z = 0. However, we know that

near z = 0, dW=dz � �Q=(2�z), and so we 
an in prin
iple solve the full problem by equating


oeÆ
ients in the prin
ipal parts of the Laurent expansions|all 
oeÆ
ients must vanish ex
ept

that of 1=z.

2.4 A simple example

To illustrate the appli
ation of the two solution methods outlined in xx2.2 and 2.3, we present a

simple (well-known) example. The simplest nontrivial mapping fun
tion to try is the quadrati


map,

z = w(�; t) = a

1

(t)� + a

2

(t)�

2

; (2.13)

with a

1

and a

2

taken to be real and positive without loss of generality, (a

1

> 0 by the normalisation


ondition of x2.2).

2

For the initial map w(�; 0) to be 
onformal, we require ja

1

(0)j > 2ja

2

(0)j.

First 
onsider the \P-G" method. Writing � = e

i�

in (2.13) and substituting dire
tly into (2.4),

we are able to equate terms having the same �-dependen
e to obtain the system of equations

a

1

_a

1

+ 2a

2

_a

2

= �

Q

2�

;

a

1

_a

2

+ 2_a

1

a

2

= 0;

whi
h are easily integrated to give the evolution until the solution breaks down. For this simple


ase, this happens when a

1

(t

�

) = �2a

2

(t

�

), at whi
h point a 3/2-power 
usp forms in �
, with

w

0

(�1; t

�

) = 0. The free boundary is initially a lima�
on, (�gure 2.3 (a)) with su
tion from some

point on the axis of symmetry, evolving into a 
ardioid, (�gure 2.3 (b)) at whi
h time the solution

breaks down.

2

If the 
oeÆ
ients a

1

, a

2

are non-real initially, we 
an always rotate the 
o-ordinates so that the 
uid domain

is symmetri
 about the x-axis, whi
h will ensure that the map relative to the new 
o-ordinates has real 
oeÆ
ients

(with the singularity still at the origin); this symmetry will 
learly then persist for t > 0. Moreover, if we have

a

2

< 0, then the transformation � ! ��, a

1

! �a

1

sets both 
oeÆ
ients to be of the same sign, so that we may

assume them both to be positive without loss of generality.
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(t

�

)


(0)

(b)(a)

Figure 2.3: The initial and �nal domains for the quadrati
 polynomial mapping.

Using the S
hwarz fun
tion approa
h, (2.12) gives

g(w(�)) =

a

1

�

+

a

2

�

2

:

Inverting z = w(�; t), noting that the origin must map to the origin when 
hoosing the bran
h of

the square root, gives

� =

a

1

2a

2

"

�1 +

�

1 +

4a

2

z

a

2

1

�

1=2

#

:

Near � = 0 = z,

1

�

�

a

1

z

�

1 +

a

2

a

2

1

z + � � �

�

; and

1

�

2

�

a

2

1

z

2

�

1 +

2a

2

a

2

1

z + � � �

�

:

Hen
e, near z = 0,

g(z) =

a

2

1

a

2

z

2

+

a

2

1

+ 2a

2

2

z

+ O(1) ;

and from (2.10) we dedu
e that

d

dt

(a

2

1

a

2

) = 0 ; (2.14)

and

d

dt

(a

2

1

+ 2a

2

2

) = �

Q

�

; (2.15)

exa
tly as before, but without having to integrate a system of ordinary di�erential equations. Of


ourse in this simple 
ase, \spotting" integrals of the o.d.e.'s resulting from the P-G equation is

trivial, but for more 
ompli
ated maps this may not always be the 
ase. Likewise, the Laurent

expansions involved in the S
hwarz fun
tion approa
h may not always be so painless, but in

general, this is the superior method. We shall see further appli
ations of both methods in 
hapters

5 and 7.

2.5 Ri
hardson's \moments" and the Cau
hy transform

We now review some useful ideas whi
h are due to Ri
hardson ([79, 81℄ and subsequent papers).

The moments of the (bounded) 
uid domain 
(t) with respe
t to the origin are de�ned by the
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formula

M

k

=

Z Z




z

k

dx dy k = 0; 1; 2; : : : ; (2.16)

and depend only on time t. Using Green's theorem in the 
omplex plane,

3

an alternative repre-

sentation is

M

k

(t) =

1

2i

Z

�
(t)

z

k

�z dz : (2.17)

Consider �rst the familiar 
ase of a single sink of strength Q at z = 0 (a sour
e if Q < 0). We

want to know how the moments evolve in time; using (1.5) we see that

dM

k

dt

=

Z

�


z

k

v

n

ds = �

Z

�


z

k

�p

�n

ds :

Now, on the free boundary, if � is the angle made by the tangent to �
 with the x-dire
tion and

s denotes ar
length along �
, then

dW

dz

=

�W

�s

=

�z

�s

= �e

�i�

�

�p

�s

+ i

�p

�n

�

= �ie

�i�

�p

�n

;

where we have used the Cau
hy-Riemann equations, together with the fa
t that �p=�s = 0 on

�
(t) (whi
h follows from (1.6)). It then follows, using the relation dz = e

i�

ds on �
(t), that

dM

k

dt

= �i

Z

�


z

k

dW

dz

dz : (2.18)

For this 
ase of the point sink singularity, dW=dz is analyti
 in 
(t) ex
ept at z = 0, near whi
h

dW=dz � �Q=(2�z). Using the Cau
hy theorem of 
omplex variable theory on (2.18) to deform

the 
ontour of integration �
(t) to a small 
ir
le about the origin, we see that

dM

k

dt

=

8

<

:

�Q k = 0 ;

0 k = 1; 2; : : : :

(2.19)

The result for k = 0 is simply an expression of 
onservation of mass, whilst the k = 1 equation

states that the 
entre of mass of the 
uid domain remains �xed. (This latter result tells us that

a ne
essary 
ondition for 
omplete extra
tion of all the 
uid is that the sink be situated at the


entre of mass of 
(0)). We mention here that the results for the k = 0 and k = 1 moments


an also be shown to hold for the NZST problem (see for example [69℄, where a NZST evolution

equation for the Cau
hy transform (2.21) is formulated, and used to prove this).

Equations (2.19) are readily generalised to the 
ase of su
tion with rates Q

i

(t) at points z

i

(1 � i � N) in 
(t), (�gure 2.4) with the result that [81℄,

dM

k

dt

= �

N

X

i=1

Q

i

(t)z

k

i

k = 0; 1; 2; : : : : (2.20)

We may see this by 
onsidering the 
ase of a single sink Q at z = a. Then, using (2.18) and

deforming the 
ontour �
(t) to a small 
ir
le about z = a, gives

dM

k

dt

= lim

�!0

�Q

2�i

Z

jz�aj=�

z

k

z � a

dz = �Qa

k

;

3

This theorem states that for a fun
tion f analyti
 on a domain D,

R R

D

f(z) dx dy =

1

2i

R

�D

�zf(z) dz, and is a

trivial 
onsequen
e of the usual Green's theorem in the plane.
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(t)

z

1

z

2

z

4

z

5

z

3

z

6

Figure 2.4: S
hemati
 diagram of a system of sinks Q

1

; : : :Q

6

at points z

1

; : : : z

6

within


(t).

by Cau
hy's integral formula. Equation (2.20) is then a trivial extension of this result to the 
ase

of many (possibly time-dependent) sinks.

4

We next introdu
e the 
losely related 
on
ept of the Cau
hy transform [81, 83℄, de�ned by

#(x; y; t) =

1

�

Z Z




dx

0

dy

0

z � z

0

; (2.21)

(where z

0

= x

0

+ iy

0

) the improper integral being understood when z 2 
. For z outside (`exterior'

to) 
, the right-hand side of (2.21) de�nes an analyti
 fun
tion of z, denoted by #

e

(z) (`e' for

`exterior'); expanding in a Laurent series gives

#

e

(z) =

1

�

1

X

k=0

M

k

z

k+1

: (2.22)

Writing A

i

(t) =

R

t

0

Q

i

(�) d� , (2.22) and (2.20) together imply

#

e

(z; t) = #

e

(z; 0) �

1

�

N

X

i=1

A

i

(t)

z � z

i

: (2.23)

The fun
tion #

e

(z) may be analyti
ally 
ontinued inside 
; this 
ontinuation will in general have

singularities within 
. In [83℄ it is shown that

#(x; y) =

8

<

:

�z � #

i

(z) z 2 
(t) ;

#

e

(z) z 2 
(t)




;

for some fun
tion #

i

(z) analyti
 inside 
(t). From its de�nition, #(x; y) is 
learly 
ontinuous

throughout R

2

and hen
e

#

e

(z) = �z � #

i

(z) on �
(t) :

4

These ideas are also generalised to the 
ase of a multipole singularity at the origin by Entov et al. in [24℄.
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In terms of the mapping fun
tion, this implies

#

e

(w(�)) = w(�) � #

i

(w(�)) ;

and, using �

�

� = 1 on �
 and analyti
ally 
ontinuing, we �nd

#

i

(w(�)) + #

e

(w(�)) = �w(1=�) : (2.24)

Sin
e w(�; t) is analyti
 in j�j � 1, the singularities of the right-hand side lie in j�j < 1 and, sin
e

#

i

(w(�)) is analyti
 there, (2.24) tells us that these singularities must be identi
al with those of

#

e

(w(�)).

Given #

e

(z; t) then (for whi
h we only need know #

e

(z; 0), by (2.23)), we are able to write down

the general form of the mapping w(�; t), then make a quantitative 
omparison of singularities in

(2.24) to �x w uniquely (bearing in mind the normalisation 
onditions of x2.2). A detailed example

of this pro
edure is given in x5.3.

The Cau
hy transform is also related to the S
hwarz fun
tion of the free boundary, g(z; t). In

general, g(z) will have singularities both inside and outside 
, and (with subs
ripts as before) we

may de
ompose it uniquely as

g(z) = g

e

(z) + g

i

(z) ; (2.25)

if we insist g

e

(z)! 0 as z !1. This de
omposition is often obvious, but if not, it 
an be 
arried

out using the Plemelj formulae (see for instan
e [10℄),

g

e

(z) =

1

2�i

I

�


g(�) d�

� � z

; for z 62 
; (2.26)

with an identi
al expression for g

i

(z) when z 2 
. (These expressions rely on the analyti
ity of

g(z) in a neighbourhood of the free boundary.)

Hen
e (2.12) may be written

g

i

(w(�)) + g

e

(w(�)) = �w(1=�) : (2.27)

Comparison with (2.24), appealing to the uniqueness of the subs
ripted fun
tions|
learly, #

e

(z)!

0 as z !1 from the de�nition (2.21)|reveals that

g

i

(z) � #

i

(z) ;

g

e

(z) � #

e

(z) :

Hen
e the time evolution of g

e

(z; t) is known (exa
tly as in (2.23)) and the method just des
ribed

of dedu
ing the right form of the mapping fun
tion may again be used if we know the S
hwarz

fun
tion of �
(0), and the sinks and sour
es driving the 
ow. In fa
t, it is not ne
essary to

demonstrate the above identities to see this; the same method using the S
hwarz fun
tion (instead

of the Cau
hy transform) may be dedu
ed from the identity (2.10) of x2.3, on
e we know we 
an

de
ompose the S
hwarz fun
tion in the manner of (2.25). We shall 
onsider similar \dedu
tive

methods" of �nding the mapping fun
tion for the Stokes 
ow problem in x5.4.

2.6 Transformation of the dependent variable

Some of the pre
eding ideas may be linked to an alternative approa
h, whi
h uses a transformation

of the dependent variable. This is often 
alled the Baio

hi transform, after Baio

hi [5℄, who �rst

introdu
ed it to solve for steady 
ow in a porous medium through a re
tangular dam (whi
h is

equivalent to a Hele-Shaw 
ow, as we remarked in x1.2). The transformation has been applied to

Hele-Shaw problems in, for example, [21℄, [60℄, [56℄, [57℄; we follow [57℄. It is not itself a 
omplex

variable method, but we in
lude it in this 
hapter be
ause it 
an be related to su
h methods, and

be
ause it is of independent interest. We shall 
onsider an analogous formulation for the Stokes
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ow problem in x3.9.1. The transformation is important in that it gives a weak formulation of the

problem, enabling non-
lassi
al situations to be dealt with (see for instan
e King et al. [56℄).

The approa
h di�ers slightly a

ording as to whether the problem is well-posed (the so-
alled

\inje
tion" or \blowing" problem, with an advan
ing free boundary) or ill-posed (the so-
alled

\su
tion" problem, with a retreating free boundary). We are able to 
lassify the problems in this

way be
ause of the maximum prin
iple for harmoni
 fun
tions; for the ZST problem with (for

example) a point sink, p = 0 on �
 must be the global pressure maximum, so the pressure is

everywhere negative within 
, and the free boundary must always retreat. A similar argument

applies for the point sour
e problem. A 
onsequen
e of this \monotoni
" behaviour of �
(t) is

that the free boundary may be represented in the form

5

t = �(x);

for x in regions 
rossed by the free boundary. (For the inje
tion problem this region is 
(t)\
(0);

for the su
tion 
ase it is 
(0)\
(t).)

We �rst de�ne the fun
tion u

0

(x) to be the solution to the (ill-posed) Cau
hy problem,

r

2

u

0

= 1 in 
(0); (2.28)

u

0

= 0 =

�u

0

�n

on �
(0);

u

0

must in general have singularities within 
(0) sin
e we are imposing two boundary 
onditions,

whereas only one is needed for a well-posed problem. The Baio

hi transform variable u(x; t) is

then de�ned as follows:

1. Inje
tion Problem:

u = u

0

+

Z

t

0

p(x; �) d� x 2 
(0);

u =

Z

t

�(x)

p(x; �)d� x 2 
(t)\
(0):

2. Su
tion Problem:

u = u

0

+

Z

t

0

p(x; �) d� x 2 
(t): (2.29)

For x in regions that the free boundary 
rosses (so that �(x) is de�ned), u may also be


onsistently de�ned as

u = �

Z

�(x)

t

p(x; �)d� x 2 
(t)\
(t

�

); (2.30)

where t

�

is an upper limit for the existen
e in time of the solution to the su
tion problem.

In either 
ase we then have the following free boundary problem for u:

r

2

u = 1 in 
(t); (2.31)

with

u = 0 =

�u

�n

on �
(t). (2.32)

5

The free boundary 
an always be written as f(x; t) = 0. In prin
iple, this 
an be solved to give t as a fun
tion

of (x; y), but this fun
tion will only be single-valued provided the free boundary never \moves ba
k on itself", and

also, will only be de�ned on the set of points 
rossed by the free boundary.
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Di�erentiating the de�nition of u with respe
t to time, it is 
lear that for both inje
tion and

su
tion 
ases,

p =

�u

�t

in 
(t): (2.33)

The problem (2.31), (2.32) for u(x; t) must be solved on 
(t) with pres
ribed singularities within


(t), whi
h are of two distin
t types:

1. Constant (in spa
e and time) singularities of u

0

(x), and

2. Those within 
(t) whi
h are time integrals of the known (driving) singularities of p (�xed

in spa
e).

Hen
e the basi
 \re
ipe" for solving problems is (see [35℄):

� Find the singularities of u

0

� u(x; 0) by solving the ill-posed Cau
hy problem (2.28);

� Find the interior singularities of u(x; t) using the 
omments above;

� Solve the free boundary problem (2.31) and (2.32) for u(x; t) with these singularities.

We 
an also link u to the S
hwarz fun
tion g of the free boundary. r

2

u = 1 and so the fun
tion

f de�ned by

f = u�

1

4

z�z

is harmoni
, whi
h implies f = <(F ) for some analyti
 fun
tion F . F

0

(z) � u

x

� iu

y

�

1

2

�z

is then also analyti
, away from singularities of u. Now, ru = 0 on the free boundary, so

F

0

(z) = �

1

2

�z = �

1

2

g(z) there. But g is analyti
 in a neighbourhood of �
 and hen
e by analyti



ontinuation we may dedu
e that

u

x

� iu

y

=

1

2

(�z � g(z)) ; (2.34)

wherever either is de�ned. Hen
e, using (2.29) and (2.1) we see that

g(z; t) = g(z; 0) + 2

Z

t

0

dW

dz

(z; �) d� ;

whi
h is exa
tly the result (2.10) obtained in x2.3 by more dire
t methods. Statements analogous

to (1), (2) and (3) hold for the S
hwarz fun
tion, as was noted there.

Su
h methods 
an also be used to treat modi�
ations of the 
lassi
al Hele-Shaw problem, for

instan
e squeeze �lms, where the walls of the 
ell are moved normally relative to ea
h other, or


ells with porous plates through whi
h su
tion 
an be applied; see for example [35℄.

It is also interesting that the problem satis�ed by the Baio

hi transform variable u is a version

of the so-
alled obsta
le problem of the variational 
al
ulus, if we impose the extra 
ondition that

u be positive everywhere on 
(t). This is the (well-posed) problem of determining the 
onta
t

region when an elasti
 membrane is stret
hed over some irregular rigid surfa
e or `obsta
le', so

that the membrane is in 
onta
t with only part of the obsta
le (see for example [22℄). The Baio

hi

variable u may be identi�ed with the membrane displa
ement.

It follows [46℄ that if we have a family of obsta
le problems parametrised by, and suÆ
iently

regular in, t, we may re
over a Hele-Shaw problem by forming p = �u=�t. This is very useful, sin
e

the obsta
le problem has been widely studied, and there exist many rigorous results whi
h 
an

be 
arried over for the Hele-Shaw problem. Of parti
ular interest is the question of singularities

in the free boundary. For the obsta
le problem on a simply-
onne
ted domain, it 
an be shown

[90℄, [64℄ that the free boundary is a pie
ewise analyti
 
urve, the only possible singularities being


usps of power (4n+ 1)=2, for integer n, i.e. having the lo
al behaviour

Y � O(X

(4n+1)=2

):
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In x5.3 we will see an example of a Hele-Shaw 
ow in whi
h the free boundary evolves (otherwise

smoothly) through a singularity of this kind, having a 5/2-power 
usp forming in the free boundary

whi
h then immediately disappears (see also [46℄, [50℄ in this 
ontext); presumably similar exam-

ples exist with the free boundary evolving through 9/2, 13/2,: : : power 
usps, although none has

yet been presented. Cusps of power 3/2, 7/2,: : : are not possible singularities of the free boundary

in the obsta
le problem, and hen
e represent terminal blow-up in the Hele-Shaw problem.

As a �nal point, we remark that the restri
tion u � 0 on 
(t), whi
h the Baio

hi transform

variable u is not subje
t to, is 
ru
ial to the well-posedness of the obsta
le problem. For the

ill-posed Hele-Shaw su
tion problem it 
an be shown that, although u must be positive in some

neighbourhood of �
(t) (indeed, the de�nition (2.30) requires u � 0 in the region 
(t)\
(t

�

)

whi
h �
(t) 
rosses, sin
e the pressure is everywhere negative for a su
tion problem), the time

integrals of the negative pressure singularities may lead to u being negative at some points within


(t). If su
h a \negativity region" appears, it must grow, be
ause, by (2.33), u is a de
reasing

fun
tion of time. Hen
e it will eventually meet the 
ontra
ting free boundary, at whi
h point the

solution must break down.

2.7 Univalen
y and 
onformality

We have referred several times in this 
hapter to the need for univalen
y and/or 
onformality of

the mapping fun
tion w(�; t). We now explain more pre
isely what we mean by these terms.

Definition (univalen
y/
onformality): A single-valued, analyti
 fun
tion w(�)

is said to be 
onformal in a domain 
 � C if its derivative never vanishes (or be
omes

unbounded) on 
. If, in addition, w never takes the same value twi
e, that is, if

w(�

1

) 6= w(�

2

) for all points �

1

and �

2

in 
, then w is said to be univalent on 
. It 
an

be shown (see [20℄) that 
onformality at a point �

0

is equivalent to lo
al univalen
e at

�

0

.

Univalen
y of the map is ne
essary on both theoreti
al and physi
al grounds. Theoreti
ally, the

pro
edure of analyti
 
ontinuation, whi
h has been used several times throughout the 
hapter

(and will also be used extensively in the next 
hapter for the Stokes 
ow problem), 
ertainly

requires 
onformality of w(�).

6

Physi
ally, if the map did assume the same value twi
e, this

would 
orrespond to two distin
t parti
les of 
uid o

upying the same spot in two-dimensional

spa
e, whi
h is not possible. Hen
e we require univalen
y a

ording to the de�nition above. All

of the general 
omments in this se
tion will pertain to both the Hele-Shaw and the Stokes 
ow

problems; where 
omments are parti
ular to only one of the problems, we make this 
lear.

The above justi�es our statement at the end of the last se
tion, that solutions found by the

method outlined there will be tenable \until su
h time as the mapping fun
tion 
eases to be

univalent on the unit dis
". This 
ould happen in several ways: for instan
e, by a zero of w

0

(�)

approa
hing the boundary j�j = 1 from outside (
orresponding to formation of an inward-pointing


usp or re
ex-angled 
orner in the free boundary); by a singularity of w

0

(�) rea
hing the boundary

(whi
h 
ould imply an obtuse or a
ute-angled 
orner, or an outward-pointing 
usp), or by loss

of the 1-1 
hara
ter of the map (so that physi
ally the 
uid domain interse
ts itself). In all the

examples we 
onsider, univalen
y 
an be lost only by 
usp formation or by self-overlapping, and

the following dis
ussion is restri
ted to these possibilities.

The map w will be a fun
tion of � and t, with the time dependen
e 
oming in via various

parameters in the map; for example if w is a polynomial then these parameters will just be the


oeÆ
ients of the polynomial. We have already seen one simple example of this type in x2.4. In

a general 
ase, if the map 
ontains N 
omplex parameters, then we have 2N real parameters.

Assuming that the map satis�es w(0; t) = 0, we are still free to 
hoose the orientation of the axes

within the 
uid (usually done by ensuring w

0

(0; t) > 0), whi
h redu
es the number of parameters

by two, and if we wish, we 
an eliminate a s
aling fa
tor from the problem (a measure of the area

6

If we are mapping to an unbounded 
uid domain then we will have a single point �

1

, within the unit dis
,

mapping to in�nity, i.e. an isolated singularity of w(�), but this is a spe
ial 
ase and the theory still holds.
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1
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1

= �2a

2

Figure 2.5: The univalen
y domain V , and phase traje
tories, for the \lima�
on" exam-

ple of x2.4. With a point sink, the phase paths are followed in the dire
tion of the arrows

(the nonunivalent region); with a point sour
e, the dire
tion is opposite. Interse
tion

with the boundary of V is asso
iated with the 
usped 
ardioid geometry.

of the 
uid domain) by suitably res
aling time. Thus we will have 2N � 3 real, time-dependent

parameters to 
onsider.

Only for 
ertain values of these parameters will the map be univalent on j�j � 1. There will

be some subset of the (2N � 3)-dimensional (or (2N � 2)-dimensional, if we do not eliminate the

s
aling fa
tor) parameter spa
e, V � R

2N�3

, su
h that if the parameter values lie within V then

we have univalen
y. We refer to V as a univalen
y domain. For the map of x2.4 with a

1

> 0

(a suÆ
iently simple example to make the res
aling of time unne
essary), V is the union of the

two domains a

1

> 2a

2

(in a

2

> 0), and a

1

> �2a

2

(in a

2

< 0). A valid solution to the problem


an then be represented as a traje
tory within V , with solution breakdown o

urring when the

traje
tory rea
hes the boundary, �V ; here, the solution traje
tories within V are given by (2.14)

as the 
urves

a

2

1

a

2

= k;

for 
onstants k (see �gure 2.5). The sense in whi
h (and the speed with whi
h) the paths are

followed is determined by (2.15).

In general �V will 
omprise di�erent regions, 
orresponding to the di�erent ways in whi
h

univalen
y 
an be lost; with obvious notation we 
an write

�V = �V


usp

[ �V

overlap

:

In all the 
ases we 
onsider, only at the boundaries between �V


usp

and �V

overlap

, or at isolated

\extremal" points of �V

overlap

, do we get types of 
usp other than 3/2-power (although more


ompli
ated s
enarios 
an easily be envisaged). In fa
t, for all the maps in this thesis, the only

possibilities are 3/2-power and 5/2-power 
usps. Examples of univalen
y domains arise in x5.3

(see �gures 5.4, 5.6 and 5.7) and in x6.2 (see �gure 6.4); the 
ase of the quadrati
 map 
ited above
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is not a very good illustration sin
e it a�ords only the possibility of breakdown via a 3/2-power


usp.

For a general polynomial mapping fun
tion it 
an be shown [32℄ that blow-up in the Hele-Shaw

su
tion problem 
an o

ur only by 
usp formation or self-overlapping; by far the most 
ommon

way for univalen
y to be lost is via formation of a 3/2-power 
usp. Polynomial mapping fun
tions

are dense in the set of 
onformal maps, in the sense that an arbitrary initial boundary shape

�
(0) 
an be approximated arbitrarily 
losely by a polynomial map (and hen
e, hopefully, the

evolution for t > 0 will be well-des
ribed by the solution for this map). For these reasons, 3/2-

power 
uspidal blow-up is sometimes referred to as the \generi
" situation for ZST Hele-Shaw

(or Stokes 
ow) solution breakdown. It has not been rigorously proved, but it is widely believed

that a positive surfa
e tension parameter T (however small), will prevent this generi
 solution

breakdown, for both problems. As a highly-
urved (near-
usped) 
on�guration is approa
hed,

large surfa
e tension for
es are generated, whi
h a
t to balan
e the stresses due to the driving

me
hanism, keeping the boundary smooth at that point. Experiments su
h as Jeong & Mo�att's

[52℄ for Stokes 
ow show, however, that the radius of 
urvature at the point where the ZST


usp would form may need to be extremely small for a for
e balan
e to be a
hieved. Solution

breakdown 
an 
ertainly still o

ur by the 
ow domain beginning to overlap itself, or possibly by

the formation of other types of 
usp. In parti
ular, solutions of the NZST Stokes 
ow problem

exist whi
h form a
tual 5/2-power 
usps in the free boundary within �nite time [85℄. Su
h 
usps

may be viewed as \geometri
ally ne
essary", in that they are a limiting 
ase of a set of solutions

whi
h blow up via self-overlapping, for whi
h positive surfa
e tension is not a means of preventing

blow-up, in the 
urrent theory.

For the NZST Hele-Shaw problem it is thought that solution breakdown may also o

ur via

the free boundary rea
hing the driving singularity (the \
ra
k" and \slit" theories; see x7.1). For

the NZST Stokes 
ow problem, at least for the 
ase of a point sink singularity, this last suggestion

may not be possible|this is dis
ussed in xx6.3 and 8.1.

For both problems then (leaving aside the possible 
ompli
ation of the free boundary rea
hing

the singularity, and types of 
usp other than 3/2-power), we expe
t that only in the ZST problem

do we only have to worry about breakdown via 
usp formation, whilst breakdown due to self-

interse
tion 
an o

ur in both the ZST and the NZST problems. 3/2-power 
usp formation in the

ZST Stokes 
ow problem 
an be avoided if, near breakdown time, we abandon the ZST assumption

and 
onsider some simple asymptoti
s (see 
hapter 6); as we have already noted though, this

perturbation of the problem is not so simple for Hele-Shaw 
ow. Dealing with self-interse
tion

is not easy for either of the ZST problems, sin
e we are then dealing with a multiply-
onne
ted


uid domain. To map to, for instan
e, a doubly-
onne
ted domain, we need to map from a

doubly 
onne
ted domain, su
h as an annulus. Moreover, with the presen
e of more than one

free boundary we have to allow di�erent boundary 
onditions to hold on ea
h boundary (this


ompli
ation was noted in x1.2.1 before deriving (1.4) and (1.6), and a similar situation arises

with the boundary 
ondition (3.4) in x3.1 for the Stokes 
ow problem). We do not 
onsider su
h


ompli
ations in this thesis; it was mentioned in x1.4.1 that Ri
hardson [84℄ has 
arried out an

extensive study of the multiply-
onne
ted Hele-Shaw free boundary problem.

2.8 Summary

In this 
hapter we have reviewed a sele
tion of well-known results for the Hele-Shaw problem,

with the dual aims of familiarising the reader with the Hele-Shaw problem, and of presenting

a 
oherent introdu
tion to the appli
ation of 
omplex variable methods to the free boundary

problem. The order of presentation was roughly 
hronologi
al, beginning in x2.2 with the ideas of

Polubarinova-Ko
hina [75℄ and Galin [28℄. This introdu
ed the 
on
ept of mapping 
onformally

from some simple geometry onto the unknown 
uid domain, an idea whi
h is 
entral to the thesis.

The work of [75℄ and [28℄ (dating ba
k to 1945) was of immense histori
al importan
e for a wide

range of free boundary problems (in parti
ular, porous medium and �ltration problems, as well

as the Hele-Shaw problem). The key \P-G" equations (2.4) and (2.6), satis�ed by the 
onformal
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mapping on the unit 
ir
le and on the imaginary axis respe
tively, were derived, whi
h provided

one of the earliest methods of �nding solutions to the pressure driven Hele-Shaw problem.

More re
ent 
on
epts were then introdu
ed (the S
hwarz fun
tion, Ri
hardson's moments, the

Cau
hy transform, the Baio

hi transform), and possible appli
ations to the solution of the free

boundary problem were dis
ussed. These 
on
epts were shown to be 
losely linked; Ri
hard-

son's moments are the 
oeÆ
ients of the prin
ipal part of the Laurent expansion of the Cau
hy

transform, and the Cau
hy transform is essentially equivalent to the S
hwarz fun
tion of the free

boundary. The Baio

hi transform is related to the S
hwarz fun
tion through (2.34). The link

between the S
hwarz fun
tion and the 
omplex potential of the 
ow was also demonstrated (x2.3),

a mu
h deeper result than the P-G equation, sin
e it holds not just on the free boundary, but

globally.

We 
on
luded the 
hapter with a dis
ussion of the univalen
y of the mapping fun
tion w(�; t),

whi
h is 
ru
ial if the theory outlined in the previous se
tions is to be valid.

This 
hapter lays down the groundwork for the rest of the thesis. Similar 
omplex variable

methods are to be employed throughout, and we �nd many results for the Stokes 
ow problem in


hapter 3 whi
h parallel those listed above. On the other hand, some of the Stokes 
ow results

may be 
ontrasted with the 
orresponding Hele-Shaw results; these are dis
ussed as and when

they arise, and summarised in x8.1.
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Chapter 3

Complex Variable methods for

Stokes 
ow

In the previous 
hapter we gave an overview of some of the ways in whi
h 
omplex variable methods

may be applied to solve the Hele-Shaw problem. The important 
on
ept of time-dependent


onformal maps from some known, simple domain onto the 
uid domain was introdu
ed, so that

the problem redu
es to solving for the time-dependent 
oeÆ
ients of this map. We saw how

useful the pro
ess of analyti
 
ontinuation 
an be in transforming boundary 
onditions to global

equations (an idea whi
h will be used even more extensively throughout this 
hapter). We de�ned

the S
hwarz fun
tion of the free boundary, found the relation with the mapping fun
tion, and

showed how (at least for the zero-surfa
e tension problem) it is simply related to the 
omplex

potential of the 
ow. An in�nite set of 
onserved quantities was found to exist for the 
ase of


ow driven by a single point sink at the origin, and the analogous result for more than one sink

was given. Also, dedu
tive methods for �nding the 
orre
t fun
tional form for the 
onformal map

were des
ribed.

A natural question to ask now, sin
e we are using similar 
omplex variable methods to atta
k

the Stokes 
ow problem, is: \
an we �nd Stokes 
ow analogues of any of these Hele-Shaw results?"

Thus, in this 
hapter, we are mainly 
on
erned with the ZST, singularity-driven, Stokes 
ow

model. Provided the Capillary number of the 
ow is large (that is, the surfa
e tension parameter

is small), the driving singularity may be supposed to dominate the evolution, and the ZST model

should provide a good approximation to the motion. The two examples of driving me
hanisms we


onsider are a point sour
e (or sink) within the 
ow, and a dipole. As for the Hele-Shaw problem,

the ZST model has the advantage of being mu
h easier to deal with analyti
ally, but also the

disadvantage that solutions of interest often blow up within �nite time.

3.1 Ri
hardson's approa
h

The idea of applying 
omplex variable methods to two-dimensional slow vis
ous 
ow is not a new

one. The formulation we use 
losely follows that of Ri
hardson [82℄, and we use almost identi
al

notation.

1

Sin
e Stokes 
ow is quasistati
, we suppress time dependen
e in the notation, ex
ept

where needed for emphasis. As mentioned in x1.3.1, biharmoni
 fun
tions may be expressed

in terms of 
omplex-valued fun
tions, using the Goursat representation (see for example [10℄).

Writing z = x+ iy, the biharmoni
 streamfun
tion 
an thus be written as

 (x; y) = �=f�z�(z) + �(z)g; (3.1)

for fun
tions �; � analyti
 on the 
ow domain ex
ept at driving singularities of the 
ow. All

physi
al quantities of interest 
an be written in terms of these \Goursat fun
tions" � and �, for

1

The main di�eren
e in notation is that we de�ne X (�) = �(w(�)) (equation (3.5)), whereas in [82℄, X(�) :=

�

0

(w(�)), whi
h we 
onsider 
onfusing.
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instan
e the (
omplex) velo
ity �eld is easily veri�ed to be

u+ iv = �(z)� z�

0

(z)� �

0

(z); (3.2)

and the pressure is

p = �4�<f�

0

(z)g: (3.3)

The two SBC's (1.8) 
an be 
ombined to give a single 
omplex boundary 
ondition. We note that

if s is ar
length along �
, then the normal n to the 
uid domain is given by n = (dy=ds;�dx=ds),

and also that if � is the angle made by the tangent to �
 with the x-axis, then the 
urvature �

is given by d�=ds. Hen
e on �
,

dz

ds

= e

i�

)

d

2

z

ds

2

= i�e

i�

= i�

dz

ds

:

Then, writing (1.8) as separate 
omponents, adding the se
ond to i times the �rst, and taking

the 
omplex 
onjugate, yields

�4�i

�

2

 

��z

2

d�z

ds

+ p

dz

ds

= T�

dz

ds

;

so we 
an substitute for �(dz=ds) from above, and for the pressure from (3.3) and �nally integrate

with respe
t to ar
length s along �
 to obtain

�(z) + z�

0

(z) + �

0

(z) =

T i

2�

dz

ds

on �
(t): (3.4)

It should be pointed out that, although we stated earlier that we were 
onsidering 
(t) to be simply


onne
ted, (3.4) above is the �rst point at whi
h we have used this assumption. In performing the

integration along �
, we dropped an arbitrary 
onstant of integration. Provided we have only one

free boundary present, this is justi�able; however, if we have more than one free boundary (i.e. a

multiply 
onne
ted domain), we will have independent arbitrary 
onstants of integration for ea
h

one, only one of whi
h 
an then be taken to be zero without loss of generality. This assumption

greatly simpli�es the following analysis.

We again introdu
e a time-dependent 
onformal map, z = w(�; t), from the unit dis
 in �-

spa
e onto 
(t), whi
h is uniquely determined if we impose the usual normalisation 
onditions,

w(0; t) = 0 and w

0

(0; t) > 0 (see �gure 2.1).

Ri
hardson [82℄ derives two key equations ((2.18) and the unlabelled equation pre
eding (2.19)

in his paper) governing the 
ow evolution. To simply present these without justi�
ation would

be unduly 
onfusing, so we give a 
ondensed a

ount of the derivation of that paper, with full

a
knowledgement.

If we de�ne

�(�) := �(w(�)); X (�) := �(w(�)); (3.5)

then transformation of the left-hand side of (3.4) to the �-plane is straightforward. For the right-

hand side we need an expression for the 
omplex (anti
lo
kwise) tangent ve
tor dz=ds in terms

of �; for this we note that on �
 (so � = e

i�

for some � 2 (0; 2�)) we have

dz

ds

= w

0

(e

i�

)

d(e

i�

)

ds

= i�w

0

(�)

d�

ds

= i�

w

0

(�)

jw

0

(�)j

= i�fw

0

(�)=w

0

(�)g

1=2

; (3.6)

in the third equality here we used the fa
ts that jdz=dsj = 1 and that d�=ds is real and positive for

the anti
lo
kwise tangent. We shall want to analyti
ally 
ontinue (3.4) in the �-plane, a pro
ess

whi
h is 
ompli
ated by the presen
e of the square-root bran
h-point on the right hand side of
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(3.6). The troublesome term may be split up into parts analyti
 inside and outside the unit dis
,

writing

1

[w

0

(�) �w

0

(1=�)℄

1=2

=

1

jw

0

(�)j

= f

+

(�)� f

�

(�); (3.7)

where f

+

(�) and f

�

(�) are fun
tions analyti
 on j�j � 1; j�j � 1 respe
tively. This de
omposition

is unique if we also insist f

�

(�)! 0 as � !1. The fun
tions f

�

(�) have expli
it representations

obtained via the Plemelj formulae (
f (2.26); see [10℄),

f

�

(�) =

1

2�i

I

j�j=1

1

jw

0

(�)j

d�

(� � �)

; (3.8)

for j�j < 1 and j�j > 1 respe
tively, and f

+

(0) is easily seen to be real. These identities rely on

the assumption that w

0

(�) is nonvanishing in a neighbourhood of �
 (
onformality). A simple

argument reveals that the following identities are satis�ed:

f

+

(�) = f

+

(0)�

�

f

�

(1=�) and f

�

(�) = f

+

(0)�

�

f

+

(1=�): (3.9)

We now have all the information we need to formulate the SBC (3.4) in the �-plane. On the

right-hand side we use (3.6), (3.7) and (3.9), with the result (after a trivial rearrangement, and

use of the identity � = 1=

�

� on j�j = 1) that

�(�) +

T

2�

f

+

(�)�w

0

(�) = �w(�)

�

�

0

(1=�)

�w

0

(1=�)

�

�

X

0

(1=�)

�w

0

(1=�)

+

T

2�

f

�

(�)�w

0

(�) ; (3.10)

this is the �rst of the \key equations" and will hold not just on j�j = 1, but also elsewhere by

analyti
 
ontinuation.

We also need to formulate the KBC (1.9) in the �-plane. Firstly, note that (3.2) and (3.4)


ombine to give

(u+ iv)

�


= 2�(z)�

iT

2�

dz

ds

: (3.11)

Consideration of the motion of a general parti
le at the point w(e

i�(t)

; t) on the boundary gives

(u+ iv)

�


= i�w

0

(�; t)

d�

dt

+

�w

�t

(�; t);

equating these two expressions, we �nd that

1

�w

0

(�; t)

�

2�(�)�

�w

�t

(�; t)

�

+

T

2�

1

fw

0

(�) �w

0

(1=�)g

1=2

= i

d�

dt

on j�j = 1. (3.12)

Clearly, the real part of the left-hand side must then vanish on j�j = 1. Using (3.7) and (3.9) this


an be rewritten as

<

�

1

�w

0

(�; t)

�

2�(�)�

�w

�t

(�; t)

�

+

T

�

f

+

(�)

�

=

T

2�

f

+

(0) on j�j = 1; (3.13)

whi
h is the se
ond of our key equations, and is analogous to the Galin equation (2.4) of x2.2.

Ri
hardson spe
i�ed �(0) = 0 (so �(0) = 0 too), a 
onvenient 
hoi
e whi
h ensures a unique

solution to the problem (providing, of 
ourse, one exists). In this 
ase, [ � ℄ in (3.13) has a simple

zero at � = 0, as does its denominator (w

0

(0) 6= 0 sin
e the map is 
onformal). Hen
e the


ombination in 
urly bra
kets in (3.13) is analyti
 on the unit dis
, and sin
e it is also real at

� = 0, we may 
ontinue analyti
ally, removing the \<" from the left-hand side to get an equation

whi
h holds wherever the quantities are de�ned ((2.19) in [82℄). A trivial rearrangement then

gives

2�(�)�

�w

�t

(�; t) =

T

2�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t): (3.14)
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In many 
ases this assumption is reasonable, giving physi
ally a

eptable solutions; however in


ases where we have a driving singularity at the origin we may need to allow �(0) to be �nite but

nonzero, or possibly even in�nite, and the above pro
edure is not so simple.

Consider a Stokes 
ow driven solely by surfa
e tension, with no driving singularity in the


ow domain. It 
an be shown [82℄ that, where a solution exists, the equations and boundary


onditions for the problem spe
ify the solution only up to an arbitrary rigid-body motion, i.e.

there is nonuniqueness of the solution. A family of possible solutions to the problem then exists,

and 
an be obtained from any one solution by adding on arbitrary translations and/or rotations

to the velo
ity �eld.

To illustrate, suppose we have a Goursat solution pair (�

1

(z); �

1

(z)), satisfying all physi
al

requirements for a given problem; in parti
ular, we expe
t that the total momentum of the 
uid

domain should be zero.

2

Suppose also that �

1

(0) = A(t) 6= 0, where we assume A 2 R for

simpli
ity. Consider the se
ond Goursat pair,

�

2

(z) = �

1

(z)�A;

�

2

(z) = �

1

(z) +Az:

Clearly, the pressure �elds for these two Goursat pairs are identi
al by (3.3), and it is easily


he
ked that if the �rst pair satis�es the for
e balan
e 
ondition (3.4), then so does the se
ond

pair. However, the velo
ity �elds di�er a

ording to

u

2

+ iv

2

= u

1

+ iv

1

� 2A;

in obvious notation.

The pair (�

2

(z); �

2

(z)) has the feature that �

2

(0) = 0, whi
h as we shall see, simpli�es

the solution pro
edure 
onsiderably (in parti
ular, a polynomial mapping fun
tion will yield a

solution if and only if this 
ondition holds); however if the �rst solution is the physi
ally realisti


one, then this se
ond solution will have a nonzero net momentum (along the x-axis, in the 
ase

A 2 R). If there is no driving singularity in the 
ow, this is irrelevant; we may solve for the easier


ase �

2

(0) = 0, and subtra
t o� the appropriate velo
ity 
ontribution a posteriori, if ne
essary.

However, if we do have a �xed driving me
hanism su
h as a sour
e or sink in the 
ow, then doing

this gives rise to a solution whi
h is still 
ontrived, sin
e it will have a singularity translating in

some spe
i�ed way within the 
ow domain.

If we are only interested in solutions to the mathemati
al model then this is of little 
onse-

quen
e, sin
e mathemati
ally, the solutions are perfe
tly valid. However, if we are solving with

a parti
ular physi
al situation in mind, it is important to solve for the 
orre
t Goursat pair; we


annot then adjust the �nal form of the solution. Of 
ourse, if it were the 
ase that �(0) = 0

always gave the \
orre
t" solution this would not be an issue, but this is not so, as we shall see

in x5.4.2. Similar remarks apply to the nonuniqueness of solutions up to rigid-body rotation;

however, in all the situations we 
onsider, net angular momentum vanishes automati
ally, and

this is not a problem. We therefore 
onsider the theory for the more general 
ase �(0) 6= 0.

If �(0) = A(t) then the 
ombination in 
urly bra
kets in (3.13) is no longer analyti
 on the

unit dis
, but has a simple pole at the origin. The \analyti
 
ontinuation" for this 
ase must

therefore have a simple pole on the right-hand side, and it is relatively easy to write down the

global equation (after multiplying through by �w

0

(�)) as

2�(�)�

�w

�t

(�; t) =

T

2�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t)

+

2w

0

(�)

w

0

(0)

(A�

�

A�

2

): (3.15)

2

There may be 
ertain unusual problems where we wish to spe
ify a given, nonzero momentum for the 
uid

domain; this does not invalidate our dis
ussion, sin
e the 
hoi
e �(0) 6= 0 may not give us the desired value for

the momentum. We emphasise the zero-net-momentum 
ase only be
ause this is most likely to be the physi
ally-

relevant one.
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Note that, for this 
ase, the expression (3.2) reveals that �(0) represents a uniform stream su-

perimposed on the 
ow at the origin. Taking A =

�

A in the above then 
orresponds to 
hoosing

a dire
tion for this uniform stream (along the x-axis, here), whi
h will often be justi�able on

symmetry grounds. If �(�) has a simple pole at the origin, so that

�(�) �

B

�

+A+O(�) as � ! 0;

then if A and B are both real the analogous analyti
 
ontinuation of the KBC is

2�(�)�

�w

�t

(�; t) =

T

2�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t) +

2Bw

0

(�)

�w

0

(0)

(1� �

4

) +

2w

0

(�)(1� �

2

)

�

A

w

0

(0)

�

Bw

00

(0)

w

0

(0)

2

�

; (3.16)

with a somewhat more unwieldy expression if A and B are 
omplex. We 
ould 
learly go on to


onsider higher-order singularities of �(�) at the origin, but we do not do this; for the work of

this thesis it is enough to note that we are able to deal with su
h situations, should the need arise.

Note that by means of equations (3.10) and (3.14) (or (3.15), or (3.16)), we are, in prin
iple,

able to express all physi
al quantities in terms only of the mapping fun
tion w(�; t). Su
h an

expression for the velo
ity �eld, whi
h is sometimes useful, is given in appendix C.

An alternative perspe
tive is given by writing the momentum in integral form. If P = (P

1

; P

2

)

is the dimensionless momentum of the 
uid domain then we have

P := P

1

+ iP

2

=

Z Z




(u+ iv) dx dy

=

1

2i

Z

�


�z(u+ iv) dz ;

using the 
omplex form of Green's theorem (see footnote (3) in 
hapter 2). Now, (u + iv)

�


is

given by (3.11) and so

P =

1

2i

Z

�


�

2�(z)�

iT

2�

dz

ds

�

�z dz ;

whi
h, formulated in the �-plane, be
omes

P =

1

2i

Z

j�j=1

 

2�(�) +

T

2�

�

�

w

0

(�)

�w

0

(1=�)

�

1=2

!

w

0

(�) �w(1=�) d� : (3.17)

We do not expe
t surfa
e tension to alter momentum 
onsiderations, and we will be studying the

ZST problem in detail in any 
ase, so we 
onsider the ZST version of this momentum expression.

The integrand is su
h that we 
an apply the Residue Theorem, on
e we know the singularities

within the unit dis
. We assume that �(�) is regular ex
ept possibly at the origin (sin
e at present

we are allowing a driving singularity only there). Hen
e the possible singularities are at � = 0, and

at the singularities of �w(1=�) (whi
h will be the inverse 
omplex 
onjugates of the singularities of

w(�) in j�j � 1). From this it is 
lear that momentum 
onservation is intri
ately tied up with the

behaviour of �(�) at the origin.

3.2 Redu
tion to a single equation

We would like to simplify the problem to a single fun
tional equation, whi
h may also permit us

to see what kinds of mapping fun
tions w(�; t) will give solutions in parti
ular situations. To this

end, we note that the analyti
 
ontinuation of the KBC (either (3.14), (3.15), or (3.16), depending

on what kind of asymptoti
 behaviour we want �(�) to have near � = 0) gives �(�) in terms of the
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mapping fun
tion. We 
an then substitute for �(�) in (3.10) and rearrange slightly (repla
ing �

by 1=� and taking the 
omplex 
onjugate) to get a single equation for X

0

(�) whi
h holds globally.

We refer ba
k to equations (3.1) and (3.5) for the de�nitions of �(�) and X (�). For the 
ase in

whi
h �(0) = 0 the result is espe
ially simple, being

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ ; (3.18)

(the fun
tion f

+

(�) is de�ned by (3.7) and (3.8)); this equation is equivalent to equation (21) of

[38℄. If �(0) = A(t) (real and nonzero) the result is

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) +

2A

w

0

(0)

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

=

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ : (3.19)

Clearly, these equations

3

are mu
h simpler if we take T = 0, and in this 
ase we �nd some rather

interesting results, whi
h we dis
uss in subsequent se
tions of this 
hapter. For the general 
ase,

one �rst has to spe
ify the singularity in the 
ow, whi
h we take to be at the origin. From the

expressions for the velo
ity and streamfun
tion in terms of �(z) and �(z), we then know what

the behaviour of �(�) and X (�) near � = 0 must be. If �(�) is bounded at the origin then we

have to de
ide whether or not we are able to insist �(0) = 0, sin
e this will 
hange the governing

equations. In [82℄ and [49℄, the net momentum of the 
ows is dis
ussed. This 
ertainly ought

to be 
onserved, and for most physi
ally-realisti
 
ows it should be zero, whi
h, as 
ommented

earlier, is not always the 
ase with the assumption �(0) = 0. We 
ould 
onsider a blob of vis
ous


uid with nonzero net momentum, but this will usually be an arti�
ial situation. In general, the

velo
ity �eld in the neighbourhood of a singularity at the origin will have the form

u+ iv = [pres
ribed singularity℄ + [O(1) uniform stream℄ +O(z);

and in [49℄, it is 
onje
tured that a possible alternative 
ondition to impose is that the O(1)

uniform stream in this expression should vanish, for a physi
ally realisable 
ow.

By way of illustration, suppose we have a point sink of strength Q > 0 at the origin. It is easy

to see (by 
onsidering the lo
al velo
ity �eld or streamfun
tion) that the behaviour of �(z) and

�

0

(z) must be

�(z) = �(0) +O(z); �

0

(z) =

Q

2�z

+ �+O(z); as z ! 0, (3.20)

(sin
e �(0) � �(0)) where � is some O(1) quantity. Then near z = 0,

u� iv = �

Q

2�z

+ [�(0)� �℄ +O(z);

so �(0) is only one of two terms in this uniform stream superimposed on the point sink. Assuming

the 
onje
ture of [49℄ to be true, then, it is not immediately obvious in any given situation whether

we have suÆ
ient freedom to take it to be zero. We 
ould also 
onsider the velo
ity �eld in the

neighbourhood of other types of driving singularities su
h as vortex dipoles. This gives the same

in
on
lusive result; a pure vortex dipole of strength M at the origin (with no auxiliary sour
e or

sink) requires

�(z) = �(0) +O(z); �

0

(z) = �

M

z

2

+ �+O(z); as z ! 0,

3

It is interesting to note that these evolution equations have the form of a general 
onservation law, that is,

�P=�t+�Q=�� = 0 (a fa
t whi
h has also been noted by [16℄). The weak formulation of su
h a law takes the form

R

S

(P d� �Qdt) = 0, where the region of integration S will be the surfa
e of some 
ylinder in (�; t)-spa
e (P and

Q are evident from (3.18), (3.19)).
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for some (di�erent) O(1) quantity �, and so the velo
ity �eld near z = 0 is

u� iv =

M

z

2

+ [�(0)� �℄ +O(z):

In either 
ase, with the above 
onje
ture, solutions with �(0) = 0 
an only be found if � = 0 in

the lo
al expansion for �

0

(z).

3.2.1 Another global equation

We 
an derive another global equation using a slightly di�erent approa
h, whi
h is similar to that

adopted by Jeong & Mo�att [52℄ for the steady problem. The derivation relies on writing the

KBC in a di�erent way to that of x3.1.

Using u

t

(z), u

n

(z) to denote the tangential and normal 
omponents of the 
uid velo
ity

4

(both

real), at a point z on �
, and (u; v) to denote the usual (x; y) 
omponents of velo
ity, we have

(u+ iv)j

�


= (u

t

� iu

n

)

dz

ds

:

Hen
e from (3.2) we see that

�(z)� z�

0

(z)� �

0

(z) = (u

t

(z)� iu

n

(z))

dz

ds

on �
; (3.21)

and this boundary 
ondition holds together with the for
e balan
e 
ondition (3.4),

�(z) + z�

0

(z) + �

0

(z) =

T i

2�

dz

ds

on �
(t):

Rewriting these 
onditions in terms of � (this was done in x3.1 for the for
e balan
e 
ondition)

and using the expression (3.6) for the 
omplex tangent dz=ds, they be
ome:

�(�) � w(�)

�

0

(�)

w

0

(�)

�

X

0

(�)

w

0

(�)

= i�(U

t

(�) � iU

n

(�))

w

0

(�)

jw

0

(�)j

; (3.22)

�(�) + w(�)

�

0

(�)

w

0

(�)

+

X

0

(�)

w

0

(�)

= �

T

2�

�

w

0

(�)

jw

0

(�)j

; (3.23)

both holding on j�j = 1. We use the notation U

t

(�), U

n

(�) to denote the the tangential and

normal 
omponents of the 
uid velo
ity in the �-plane. Adding (3.22) and (3.23) gives

2�(�)

�w

0

(�)

=

1

jw

0

(�)j

(U

n

(�) + iU

t

(�) �

T

2�

) on j�j = 1:

We also have equation (3.12) from x3.1,

1

�w

0

(�; t)

�

2�(�)�

�w

�t

(�; t)

�

+

T

2�

1

jw

0

(�)j

= i

d�

dt

on j�j = 1.

Comparing these two equations we see that

U

n

jw

0

(�)j

= <

�

w

t

(�)

�w

0

(�)

�

; (3.24)

U

t

jw

0

(�)j

= =

�

w

t

(�)

�w

0

(�)

�

+

d�

dt

: (3.25)

4

These are measured so that u

n

> 0 if the motion is along the outward normal, and u

t

> 0 if the velo
ity is

along the anti
lo
kwise tangent ve
tor.

33



Addition of equations (3.21) and (3.4) yields

2=

�

�(z)

d�z

ds

�

=

T

2�

� u

n

;

whilst (3.4) alone gives

�(z)

d�z

ds

+ z�

0

(z)

d�z

ds

+ �

0

(z)

d�z

ds

=

iT

2�

:

Elimination of the quantity T=(2�) between these two equations gives

�(z)

d�z

ds

+ �z�

0

(z)

dz

ds

+ �

0

(z)

dz

ds

= �iu

n

)

d

ds

(�z�(z) + �(z)) = �iu

n

:

Clearly, for the steady problem, in whi
h u

n

� 0, this will just redu
e to the \streamline 
ondition"

that both the streamfun
tion and its biharmoni
 
onjugate (the Airy stress fun
tion; see x3.9)

may be taken to be 
onstant on the free boundary. For the time-dependent problem, we may

re
ast this equation in terms of � using the 
hain rule for the derivative with respe
t to �, and

equation (3.24); we �nd, after some rearrangement, the 
ondition:

�

��

�

X (�) + �w(1=�)

�

�(�)�

1

2

w

t

(�)

��

+

1

2

�

�t

(w

0

(�) �w(1=�)) = 0; (3.26)

holding on j�j = 1, and elsewhere, by analyti
 
ontinuation. This equation may be 
ompared with

those derived earlier, namely (3.18)

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ ;

(in the 
ase �(0) = 0), and (3.19)

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) +

2A

w

0

(0)

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

=

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ ;

(in the 
ase �(0) = A(t), real and nonzero). The main point to note about (3.26) is that it is

independent of the surfa
e tension parameter T , so has the same form for both ZST and NZST

problems; however, it does 
ontain both the unknown Goursat fun
tions, whi
h makes it less


onvenient to work with. It is a time-dependent generalisation of the \streamline 
ondition" for

the steady problem. If we wish to use (3.26) to solve problems, we must use it in 
onjun
tion

with the relevant expression for �(�) (examples of whi
h are given by (3.14), (3.15), (3.16) in

x3.1). Note that �(�) only appears in the parti
ular 
ombination �

�

(�) := �(�)�w

t

(�)=2, whi
h

simpli�es things a little. We shall return to this form of the equations in 
hapter 5.

3.3 Method of solution

We now re
onsider equations (3.18) or (3.19). The fun
tion f

+

(�) is de�ned in (3.8), albeit

awkwardly, in terms of the mapping fun
tion w(�), so on
e we have proposed a form for this

map (typi
ally a rational fun
tion of � with time-dependent 
oeÆ
ients), the only unknown in

the evolution equation is the fun
tion X (�). For a parti
ular problem we know exa
tly what the

singularities of X (�) within the unit dis
 are (the \driving singularities", some examples of whi
h

were given above); elsewhere on the dis
 X (�) must be analyti
. This is what enables us to solve

the problem; we must mat
h singularities in equation (3.18) or (3.19).
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Suppose we rewrite the relevant equation, pla
ing X

0

(�) on the left-hand side and everything

whi
h depends only on w(�) on the right. Firstly, we must ensure that we 
hoose a fun
tional

form for w(�) whi
h will give a singularity of the right order (and in the right pla
e) to mat
h with

that in X

0

(�) on the left-hand side. We 
onsider systemati
 pro
edures for doing this later on, but

often trial and error, or an \edu
ated guess" is good enough. The presen
e of the messily-de�ned

f

+

(�) on the right-hand side is not a problem at this stage, sin
e it is analyti
 on the unit dis
.

On
e we have de
ided on a parti
ular form for w(�), we have the task of evaluating the right-

hand side of the equation asymptoti
ally, near ea
h of its singularities. Any singularities for whi
h

there is no \mat
h" on the left-hand side must be eliminated by setting the 
oeÆ
ient to zero; if

there is a mat
h, the relevant 
oeÆ
ients must be equated.

Providing we have 
hosen a suitable form for the mapping fun
tion, this pro
edure should

yield a well-determined system of o.d.e.'s for the time-dependent 
oeÆ
ients in the map. Solving

these equations then gives the solution for the 
onformal map, and hen
e the evolution of the


uid domain 
(t), whi
h is valid until su
h time as the map 
eases to be univalent on the unit

dis
 (we refer ba
k to the 
omments of x2.7).

3.4 A simple example

We illustrate the te
hnique with a very simple solution, the ZST Hele-Shaw version of whi
h was

given in x2.4. This is one of a family of solutions presented by Howison & Ri
hardson [49℄, though

we use slightly di�erent notation. The mapping fun
tion used is

w(�; t) = a

1

� + a

2

�

2

; (3.27)

by 
hoosing axes suitably we may assume a

1

and a

2

to be real and positive, as explained in

x2.4. Parameter values satisfying a

1

� 2a

2

give maps univalent on the unit dis
 (whi
h des
ribe

lima�
on-shaped free boundaries); univalen
y is lost when a

1

(t

�

) = 2a

2

(t

�

), with the free boundary

be
oming a 
ardioid with a 3/2-power 
usp at the point z

�

= w(�1; t

�

). The 
ow is driven by

a single point sink at the origin, so that the Goursat fun
tions have the asymptoti
 behaviour of

(3.20). We take �(0) = 0: it 
an be easily seen that this is a ne
essary 
ondition for a solution of

the form (3.27). Then the equation governing the evolution is (3.18), with �(�) given by (3.14).

Near the origin, equation (3.18) be
omes

�

�t

[w

0

(�) �w(1=�)℄�

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ = �

Q

��

+O(1):

Asymptoti
 evaluation of the left-hand side gives singularities of orders 1=� and 1=�

2

, the 
oeÆ-


ients of whi
h must be equated to �Q=� and zero, respe
tively. We �nd

w

0

(�) �w(1=�) =

a

1

a

2

�

2

+

1

�

(a

2

1

+ 2a

2

2

) +O(1);

and

�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0)) =

a

1

a

2

�

f

+

(0) +O(1);

hen
e the resulting equations are:

d

dt

�

a

2

1

+ 2a

2

2

�

= �

Q

�

;

d

dt

(a

1

a

2

) = �

T

2�

a

1

a

2

f

+

(0):

The fun
tion f

+

(0) is found (by dire
t integration in (3.8)) to be

f

+

(0) =

2

�a

1

K

�

2a

2

a

1

�

;
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where K( � ) denotes the 
omplete ellipti
 integral of the �rst kind (see [8℄, [30℄, or appendix B).

The evolution is determined by solving these equations for a

1

(t) and a

2

(t). When T > 0 the

solution does not break down, and all the 
uid is extra
ted from the domain. Note that the

solution pro
edure does not require the determination of the Goursat fun
tions �(�) and X (�),

but should we wish to �nd them we 
an do so using (3.14) and (3.18). Likewise, we 
an �nd

physi
al quantities su
h as the pressure and the velo
ity �elds using expressions (3.3) (formulated

in the �-plane), and (3.41) or (C.1).

This parti
ular solution is an example of the kind dis
ussed in x3.1, in that it has a 
onstant,

nonzero 
omponent of momentum in the x-dire
tion, although the sink is �xed within the 
ow.

However, as stated there, it is still mathemati
ally tenable, even if physi
ally dubious.

Polynomial solutions are 
onsidered further in x3.6.1, and the work of [49℄, from whi
h this

example is taken, is reviewed in x6.1.

3.5 Zero surfa
e tension problems

The zero surfa
e tension (ZST) model is appropriate when the surfa
e tension 
oeÆ
ient is small,

and where we have a driving singularity in the 
ow whi
h dominates the motion (the Capillary

number, introdu
ed in x1.3.1, is large). This singularity might be of a very general kind, but in

mu
h of the theory we shall, for de�niteness, assume that we have a single point sink in the 
ow.

We re
all here the 
omment of x1.4.2 that the ZST Stokes 
ow is time-reversible; for the 
ase in

hand this means that if we let the 
ow evolve for some time under the a
tion of the point sink

(but not so long that solution breakdown o

urs!), stop the motion and repla
e the sink by a

sour
e of equal strength, the motion will be exa
tly reversed.

5

A 
onsequen
e of this fa
t is that

(for 
lassi
al solutions to the problem) unless our initial domain is a 
ir
le, with the sink at its


entre, 
omplete extra
tion of the 
uid 
annot o

ur. Solution breakdown will inevitably be an

issue then, for all ex
ept trivial 
ases of this problem.

We assume that the singularity is situated at the origin, z = 0, so that it is also �xed at the

origin in the �-plane. For a point sink of strength Q > 0 the lo
al behaviour of � and � is given

by (3.20), hen
e that of �(�) and X

0

(�) is given by

�(�) = �(0) +O(�); X

0

(�) =

Q

2��

+

�

�w

0

(0) +

Qw

00

(0)

4�w

0

(0)

�

+O(�); (3.28)

as � ! 0. With the assumption �(0) = 0, by (3.18) the governing equation is simply

�

�t

[w

0

(�) �w(1=�)℄ = �2X

0

(�); (3.29)

and the fun
tion �(�) is given in terms of the mapping fun
tion by the relevant analyti
 
ontin-

uation of (3.13),

�w

�t

(�; t) = 2�(�); (3.30)

we 
onsider this simplest 
ase �rst. The right-hand side of (3.29) is analyti
 on the unit dis
, save

for the simple pole at the origin spe
i�ed in (3.28). We begin by deriving an interesting result

of a very general nature; the existen
e of an in�nite set of 
onserved quantities for the problem.

For 
ompleteness and for future referen
e we shall also give the result for the 
ase of non-zero

surfa
e tension, although in this 
ase the quantities are not 
onserved, but evolve a

ording to a


ompli
ated system of nonlinear o.d.e.'s.

5

We really need the proviso here that we 
onsider only 
lassi
al solutions in whi
h the free boundary is analyti


for all times less than the breakdown time, sin
e in 
hapter 6 we shall see \weak" solutions where a nonanalyti


free boundary is permitted, and time-reversibility 
annot be inferred.
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3.6 The 
onserved quantities

Consider the quantities C

k

(t) de�ned by

C

k

(t) : =

Z Z




�

k

dx dy (k � 0)

=

1

2i

Z

�


�

k

�z dz

=

1

2i

Z

j�j=1

�

k

w

0

(�) �w(1=�) d�: (3.31)

Then, from (3.29), we see that

2i

dC

k

dt

=

d

dt

"

Z

j�j=1

�

k

w

0

(�) �w(1=�) d�

#

=

Z

j�j=1

�

k

�

�t

(w

0

(�) �w(1=�)) d�

= �2

Z

j�j=1

�

k

X

0

(�) d�

= �4�iRes

�

�

k

X

0

(�)

�

�=0

:

With a single point sink/sour
e at the origin, we have the asymptoti
 behaviour of (3.28), and

the above equations redu
e to

dC

k

dt

=

8

<

:

�Q k = 0 ;

0 k = 1; 2; : : : ;

(3.32)

thus revealing the 
onserved quantities. The �rst of these 
learly represents 
onservation of mass,

sin
e we have

Area of 
 =

Z Z




dx dy � C

0

:

This system may be modi�ed to deal with other singularities at the origin, for example multipoles

(the analogous Hele-Shaw multipole problem was 
onsidered by Entov et al. in [24℄). For instan
e,

if we have a dipole singularity at the origin (having the x-axis as streamline), so that the lo
al

behaviour is X (�) = M=(�w

0

(0)) + O(1), and �(�) = O(1), then the 
orresponding system of

equations is easily seen to be

dC

k

dt

=

8

>

>

<

>

>

:

2�M

w

0

(0)

k = 1 ;

0 k = 0; k � 2:

We note also that the above readily generalises from �

k

(in the de�nition of C

k

) to arbitrary

fun
tions h(�) analyti
 on the unit dis
, the result being

C

[h℄

(t) =

Z Z




h(�) dx dy =

1

2i

Z

j�j=1

h(�)w

0

(�) �w(1=�) d�

)

d

dt

C

[h℄

= �Qh(0); (3.33)

this 
an be useful for some initial and boundary value problems.

As promised, we now give the analogous result for the NZST problem. The pro
edure is

exa
tly the same, ex
ept we use (3.18) rather than (3.29), with the extra term on the right-hand
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side. Integration by parts is used to deal with this term, giving the system of equations for this


ase as

dC

k

dt

=

8

>

>

>

<

>

>

>

:

�Q (k = 0);

�

kT

�

"

f

+

(0)

2

C

k

+

1

X

r=1

f

(r)

+

(0)

r!

C

k+r

#

(k � 1):

(3.34)

The �rst equation is the same as for the ZST problem, this being the mass 
onservation result.

The f

(r)

+

(0) are obtained from (3.8) and are nonlinear fun
tions of the 
oeÆ
ients of w(�; t). Note

that if time is res
aled via

� =

T

�

t;

then the system (3.34) be
omes

dC

k

d�

=

8

>

>

>

>

<

>

>

>

>

:

�

�

T

Q (k = 0);

�k

"

f

+

(0)

2

C

k

+

1

X

r=1

f

(r)

+

(0)

r!

C

k+r

#

(k � 1):

Whenever T 6= 0 then, it 
an be s
aled out of the problem, provided we also res
ale the sink

strength Q.

Further progress on this NZST problem for the general mapping fun
tion looks de
idedly

unpromising and we do not pursue it further, although we re
all that, as mentioned earlier, the

NZST problem proves surprisingly tra
table in 
ertain individual 
ases.

3.6.1 Polynomial mapping fun
tions

We illustrate our results with the map

w(�) =

N

X

r=1

a

r

(t)�

r

: (3.35)

This will 
learly give a solution to both the ZST and NZST problems, by (3.32) and (3.34), sin
e

only the �rst N of the C

k

(t) are nonzero; moreover, the degree of the polynomial map must remain

the same throughout for both problems, as a 
onsequen
e of the invariants C

k

� 0 (k � N), and

C

N�1

6= 0. Bearing in mind the dis
ussion of x2.7, the 
oeÆ
ients a

r

(t) here must be subje
t

to various 
onstraints to ensure univalen
y of w(�), but we 
an only be spe
i�
 about these in

spe
ial simple 
ases, for example N � 3 (see [50℄, [15℄) or if a

r

= 0 for r 6= 1; N (see [49℄); for

the general polynomial they are too diÆ
ult. Assuming we have a univalent map then,

6

we may

evaluate the C

k

dire
tly from the de�nition (3.31),

C

k

= �

N�k

X

n=1

na

n

�a

n+k

0 � k � N � 1; (3.36)

all other C

k

being identi
ally zero. The nonzero invariants C

k

, and C

0

(0), are determined

by the initial 
onditions. Equations (3.32), when integrated, 
onstitute a set of nonlinear si-

multaneous equations for the 
oeÆ
ients a

r

(t) whi
h may be solved by starting with the last

6

It will in fa
t be suÆ
ient for our purposes to ensure that we start o� at time t = 0 with a univalent map,

sin
e the polynomial solution is bound to break down within �nite time anyway by the observation of x3.5. The


oeÆ
ients evolve smoothly with time, so we are at least guaranteed lo
al existen
e of the solution in time by doing

this.
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(C

N�1

=
onstant) and working ba
kwards. The evolution is then fully determined until su
h

time as the mapping (3.35) 
eases to be univalent.

In x3.4 we solved for the mapping fun
tion (3.35) in the 
ase N = 2. The results of this se
tion

give the same evolution equations mu
h more qui
kly; in the NZST 
ase equations (3.34) give

dC

0

dt

= �Q;

dC

1

dt

= �

T

2�

f

+

(0)C

1

;

with C

0

and C

1

given by (3.36) as

C

0

= �(ja

1

j

2

+ 2ja

2

j

2

); C

1

= �a

1

�a

2

;

this is exa
tly as we found in x3.4 (where we assumed real 
oeÆ
ients, without loss of generality).

Tanveer & Vas
on
elos [96℄ 
onsidered polynomial solutions for the 
omplementary NZST

problem of a bubble in an unbounded expanse of 
uid. Setting T = 0 in their analysis, one 
an

re
over 
onserved quantities similar to those above. The NZST polynomial solution for the spe
ial


ase in whi
h a

r

= 0 for r 6= 1; N has been found exa
tly by Howison & Ri
hardson [49℄; we shall

later use ideas from that paper to 
onsider the NZST 
ase for a 
ubi
 polynomial map in the limit

T ! 0.

3.6.2 Comparison with the Hele-Shaw problem | `Ri
hardson's Mo-

ments' and other matters

The results of this se
tion bear a strong resemblan
e to the theory of `Ri
hardson's moments' in

the ZST Hele-Shaw problem, whi
h we des
ribed in x2.5. The similarities and di�eren
es of the

Stokes 
ow and the Hele-Shaw problems were �rst remarked upon in [49℄, and the results of this


hapter add weight to their observations.

Re
all from x2.5 that the Hele-Shaw moments of the 
uid domain are de�ned by the formula

M

k

=

Z Z




z

k

dx dy =

1

2i

Z

�


z

k

�z dz k = 0; 1; 2; : : : ;

for the 
ase we have been 
onsidering here, namely 
ows driven by a single sink at the origin,

they are 
onserved in a manner identi
al to our C

k

,

dM

k

dt

=

8

<

:

�Q k = 0 ;

0 k = 1; 2; : : : :

The C

k

are de�ned by the integrals

C

k

=

Z Z




�(z)

k

dx dy =

1

2i

Z

�


�(z)

k

�z dz k = 0; 1; 2; : : : ; (3.37)

the similarity of these expressions with the de�nitions of theM

k

is striking. The apparent simpli
-

ity of the expression (3.37) is misleading, however, sin
e it presupposes knowledge of the inverse


onformal map, � = �(z). The derivation of the 
onservation laws required that we reformulate

the integrals in the �-plane, as

C

k

=

1

2i

Z

�


�

k

�w(1=�)w

0

(�) d�;

whi
h although super�
ially more 
ompli
ated, is a
tually more 
onvenient to work with.
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In addition, a version of the Stokes 
ow evolution equation (3.18) may be obtained for the

Hele-Shaw problem, whi
h in dimensionless form is

�

�t

[w

0

(�) �w(1=�)℄�

�

��

[2�(�) + w

t

(�) �w(1=�)℄ =

� T

�

��

�

2�w

0

(�) �w

0

(1=�) + w

0

(�) �w

00

(1=�) + �

2

w

00

(�) �w

0

(1=�)

�(w

0

(�) �w

0

(1=�))

3=2

�

; (3.38)

where �(�) is the 
omplex potential for the 
ow (so � = �p + i ), re
alling the de�nitions of

x2.2.

7

The form of the singularity on the right-hand side of this equation, as 
ompared with (3.18),

explains why the NZST Hele-Shaw problem is so mu
h less tra
table than the NZST Stokes 
ow

problem, despite being governed by only a se
ond-order (rather than a fourth-order) p.d.e.|in

general, if one assumes a spe
i�
 form for the mapping fun
tion w(�) at time t = 0 (one whi
h

works for the ZST problem; usually rational, or rational-logarithmi
), it is no longer guaranteed

that the same fun
tional form persists for t > 0. For the Stokes 
ow problem, at least with the

assumption �(0) = 0, we do have this guarantee (see [82℄); but in any 
ase this 
an be seen, more

or less, just by looking at the form of equation (3.18). To put it another way, for the Stokes 
ow

problem, if a parti
ular mapping fun
tion gives a solution to the ZST problem, this same map

will also give a solution to the NZST problem (re
all the 
omment made for the polynomial maps

in x3.6.1); this is very de�nitely not the 
ase for the Hele-Shaw problem.

Multiplying the ZST version of (3.38) by w(�)

k

and integrating around the unit 
ir
le yields

the moment 
onservation result (when we transform the result to an integral in the z-plane).

Writing the equations in this way highlights the di�eren
es, as well as the similarities, between

the ZST problems, and their methods of solution. Re
all that the S
hwarz fun
tion for an analyti



urve 
 is the unique (lo
ally analyti
) fun
tion g(z) su
h that the equation �z = g(z) de�nes 
,

with the identity

g(z) = g(w(�)) = �w(1=�)

holding. Considering the ZST version of (3.18), we see that sin
e X (�) must be analyti
 on the


ow domain ex
ept at driving singularities, the (non-driving) singularities of the S
hwarz fun
tion

within 
(t) for Stokes 
ow must remain �xed in the �-plane, whereas for Hele-Shaw 
ow we have

seen that they remain �xed in the physi
al plane. For Hele-Shaw, it is best to work in the physi
al

plane wherever possible, hen
e we use equation (2.11) rather than (3.38), while the equations of

Stokes 
ow are easiest to deal with when formulated in the �-plane. These observations tie in

with the above integral expressions (over the domains in physi
al spa
e for Hele-Shaw, and in

�-spa
e for Stokes 
ow) for the 
onserved quantities.

3.6.3 Sour
e/sink systems | a warning example

Given the results for Hele-Shaw, an \obvious" question to 
onsider next is whether the results

of x3.6 might be extended to systems of sour
es and sinks distributed throughout the 
ow do-

main (refer ba
k to �gure 2.4 for a typi
al geometry). It is instru
tive to do this, as it reveals


ompli
ations whi
h 
an arise with the solution method of x3.3. We may as well take one of the

singularities to be situated at the origin, and suppose the others to be at �xed points z

k

in 
(t)

(1 � k � N). Sin
e we have already stipulated w(0) = 0, w

0

(0) > 0, we assume the preimages

of these points under our 
onformal map to be time dependent, z

k

= w(�

k

(t)), say. The lo
al

behaviour of X

0

(�) at su
h a point will then be

X

0

(�) =

Q

k

2�(� � �

k

(t))

+O(1) as � ! �

k

(t), (3.39)

7

This is just equation (2.11) reformulated in the �-plane for dire
t 
omparison with the Stokes 
ow result. The


onserved quantities for Hele-Shaw 
an be derived without re
ourse to 
omplex variable theory, and extension to

higher spatial dimensions is straightforward|see for example [35℄|whi
h seems to be not the 
ase for Stokes 
ow.
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where Q

k

<; > 0 indi
ates that we have a sour
e/sink (respe
tively) of strength jQ

k

j. We shall

refer to \sinks" throughout, for simpli
ity, but it is understood that we have a sour
e if Q is

negative.

Before we attempt to derive invariants et
., we �rst pause to think about the restri
tions

equation (3.29) will impose on the 
hoi
e of mapping fun
tion w(�). Consider this equation near

one of the sinks Q

k

(not z = 0). If we are to have a balan
e of terms there (x3.3), then by (3.39)

we must have (integrating with respe
t to time)

w

0

(�) �w(1=�) = �

k

log(� � �

k

(t)) +O(1); (3.40)

for some �

k

, whi
h must be 
onstant if we are to avoid a logarithmi
 singularity in X

0

(�), whi
h

should not be present if we have a pure sink at z

k

. Even if we relax this assumption somewhat,

su
h a singularity is not physi
ally a

eptable, as 
an be seen by 
onsidering the expression for

the velo
ity �eld in terms of �'s (see (3.2)),

u� iv = �(�) � w(�)

�

0

(�)

w

0

(�)

�

X

0

(�)

w

0

(�)

: (3.41)

The �rst two terms on the left-hand side are regular (�(�) = w

t

(�)=2; so is regular everywhere),

as is 1=w

0

(�) in the third term, hen
e the only singularities here are those of X

0

(�). Logarith-

mi
 singularities in X

0

(�) will never be allowable within j�j � 1 then, sin
e they give rise to a

multivalued velo
ity �eld.

Returning to (3.40), sin
e w(�) is univalent on the unit dis
, the singularity on the right-

hand side must 
ome from �w(1=�) on the left-hand side, so that the mapping fun
tion must have

logarithmi
 bran
h-points outside the unit dis
 (at points 1=��

k

, to be spe
i�
; bran
h 
uts 
an

then be taken from these points to in�nity). The preimage of z = 0 is time-independent, so we

do not need a logarithmi
 singularity in �w(1=�) at the origin. Indeed, the presen
e of su
h a

singularity would be una

eptable, sin
e it would imply a logarithmi
 singularity in w itself at

the origin.

Possible solutions are thus very restri
ted by the presen
e of additional sinks. Seeking the

simplest options, we �rst attempt a solution with one 
entral sink Q and the others pla
ed

symmetri
ally about it, and of equal strengths Q

1

. The above analysis strongly suggests trying a

map of the form

w(�) = a� + b

k=N

X

k=1

$

k

log(1� 
�$

�k

);

where $ = e

2�i=N

, and 0 < 
 < 1, whi
h has the ne
essary singularities. The non-
entral sinks

here must be positioned at z

k

= w(
$

k

) (so �

k

� 
$

k

). Mat
hing singularities in (3.29) at � = 0

a

ording to the pro
edure outlined in x3.3 yields the o.d.e.

d

dt

[a(a� 
bN)℄ = �

Q

�

: (3.42)

When mat
hing at � = 
$

k

, the left-hand side of (3.29) has the lo
al behaviour

�

�t

[w

0

(�) �w(1=�)℄ =

�b

(� � 
$

k

)

�

a�


Nb

1� 


2

�

d


dt

+ $

�k

d

dt

�

b

�

a�


Nb

1� 


2

��

log(� � 
$

k

) +O(1);

so mat
hing the simple poles and eliminating the logarithm (re
all the earlier dis
ussion about


onstant �

k

in (3.40)) gives two more equations,

b

d


dt

�

a�


Nb

1� 


2

�

= �

Q

1

�

; (3.43)

and b

�

a�


Nb

1� 


2

�

= 
onstant. (3.44)
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This would all be �ne, were it not for the fa
t that we have not yet required that the sinks be

�xed in the physi
al plane. This imposes an extra 
ondition,

w(
) = 
onstant;

giving a total of four independent equations for the three unknown fun
tions a(t), b(t), 
(t).

One might expe
t that the diÆ
ulty 
ould be over
ome if, instead of assuming time-dependent

preimages �

k

(t), we tried to �x them in the �-plane. Similar arguments (for the problem with

symmetry) then lead us to a map with simple poles at � = $

k

=
 (instead of the logarithmi


singularities), where now 
 must be 
onstant, so we have one fewer unknowns. In this 
ase we get

one equation from mat
hing at the sink at z = 0, one from mat
hing at any of the sinks z = z

k

,

but again we have the further 
ondition that the sinks be �xed in the physi
al plane, so we have

a total of three independent equations for only two unknowns, a(t), b(t), and the system is still

overdetermined. The best we 
an do is to impose 
onditions (3.42), (3.43) and (3.44), and allow

the sinks to move in a manner di
tated by their solution, whi
h is not very satisfa
tory.

This \overdeterminedness" of the system of o.d.e.'s whi
h arises when we try to allow more

than one sink is a problem, sin
e we 
an see that it is not a feature of the parti
ular geometry

we assumed in this example, but will arise quite generally whenever we have more than one

singularity. Similar problems are en
ountered in 
hapter 5 in our dis
ussion of problems on

unbounded domains; there, we attempt to 
ir
umvent the diÆ
ulty by allowing �(0) 6= 0.

3.7 The S
hwarz fun
tion for the ZST problem

Re
all the results of x2.5, where the Hele-Shaw moment 
onstants were linked to the Cau
hy

transform of the 
uid domain (and hen
e to the singular part of the S
hwarz fun
tion of the

boundary), and a systemati
 method was presented of �nding the 
orre
t form of the mapping

fun
tion to solve the ZST Hele-Shaw problem with a parti
ular driving me
hanism. We now


onsider whether similar results might exist for the ZST Stokes 
ow problem.

The S
hwarz fun
tion is known to be analyti
 in some neighbourhood of the free boundary, so

we may write g(z) = h

0

(z) for some fun
tion h, whi
h will be analyti
 in the same neighbourhood

of �
. Then de�ning H(�) = h(w(�)) we �nd

H

0

(�) =

d

d�

(h(w(�))) = g(w(�))w

0

(�) = w

0

(�) �w(1=�); (3.45)

using the fun
tional identity (2.12), g(w(�)) = �w(1=�). Comparison of this expression (3.45) for

H

0

(�) with the de�nition (3.31) of the quantities C

k

(t) immediately reveals the C

k

to be the


oeÆ
ients of the prin
ipal part of the Laurent expansion of H

0

(�; t) about � = 0,

H

0

(�; t) =

1

�

1

X

k=0

C

k

�

k+1

+ (regular at � = 0);

this will hold regardless of any assumption about the behaviour of �(�) at the origin. Using the

de
omposition (2.27) on the S
hwarz fun
tion, and analogously on the fun
tion h(z), then writing

H

e

(�) = h

e

(w(�)), so that H

e


ontains all the singularities of H within the unit dis
, we have

H

0

e

(�; t) =

1

�

1

X

0

C

k

�

k+1

) H

e

(�; t) =

C

0

�

log � �

1

�

1

X

1

C

k

k�

k

: (3.46)

We use the notation h

e

and H

e

to 
onform with the Hele-Shaw work of x2.5, but with slight

relu
tan
e, sin
e the subs
ript \e" was introdu
ed to denote analyti
ity in the exterior of the 
uid
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domain. Although this is always true for the singular part of the S
hwarz fun
tion g

e

(z), the

fun
tion h

e

(z) has a logarithmi
 singularity at the origin, and hen
e also at in�nity.

8

Suppose we have the 
ase in whi
h �(0) = A(t) (nonzero and real). The equation governing

the evolution is then

�

�t

[w

0

(�) �w(1=�)℄ + 2X

0

(�) +

2A

w

0

(0)

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

= 0; (3.47)

and �(�) is given by

�(�) =

1

2

w

t

(�) +

A

w

0

(0)

w

0

(�)(1 � �

2

); (3.48)

using equations (3.19) and (3.15), with T = 0. Re
alling (3.45), it follows from (3.47) that

�X

0

(�) =

1

2

�

2

H

�t ��

+

A

w

0

(0)

�

��

�

(1� �

2

)H

0

(�)

�

;

whi
h may be integrated on
e with respe
t to �, giving

1

2

�H

�t

+

A

w

0

(0)

(1� �

2

)

�H

��

= �X (�): (3.49)

So, we have a partial di�erential equation whi
h must be satis�ed globally by the primitive of the

S
hwarz fun
tion, in the �-plane.

We want to take the singular part of (3.49) within the unit dis
, to get a p.d.e. for H

e

(�; t).

When doing this, we must remember to subtra
t o� the regular terms arising from the term

�(A�

2

=w

0

(0))�H

e

=�� on the left-hand side. The result is

1

2

�H

e

�t

+

A

w

0

(0)

(1� �

2

)

�H

e

��

= �

A

�w

0

(0)

(C

0

� + C

1

)�X

sing

(�); (3.50)

or, de�ning the s
aled time variable � by

d�

dt

=

2A(t)

w

0

(0; t)

; (3.51)

(the 
onstant of integration taken to be zero, so that the time origins 
oin
ide),

�H

e

��

+ (1� �

2

)

�H

e

��

= �

1

�

(C

0

� + C

1

)�

w

0

(0)

A

X

sing

(�): (3.52)

In the above, X

sing

(�) denotes the stri
tly singular part of X (�) within the unit dis
, whi
h will

be known pre
isely on
e we have spe
i�ed the driving singularity. For instan
e, with the point

sink at the origin, X

sing

(�) = Q=(2�) log �, whilst a dipole of strengthM at the origin, having the

x-axis as a streamline, gives X

sing

(�) =M=(w

0

(0)�).

De�ne the fun
tion

F(�; �) =

1

X

1

C

k

k�

k

: (3.53)

Then

H

e

(�; �) =

C

0

�

log � �

1

�

F(�; �); (3.54)

8

Note also that the 
on
ept of \exterior" 
annot be sensibly applied to the fun
tions in the �-plane, sin
e

although the domain fj�j � 1g maps to the interior of the 
uid domain, it is not the 
ase that fj�j � 1g maps to

the exterior of the 
uid domain. This is being rather pedanti
, however; the important thing is that the fun
tions

H

e

(�) and G

e

(�) 
ontain all the singularities of H(�) and G(�) within the unit dis
.
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and (3.52) be
omes

�F

��

+ (1� �

2

)

�F

��

=

C

0

�

+ C

1

+

�w

0

(0)

A

^

X

sing

(�); (3.55)

where

^

X

sing

(�) := X

sing

(�)�Q=(2�) log �, so we have subtra
ted o� any point sink behaviour. If,

for example, we have a 
ow driven only by a point sink, then

^

X

sing

(�) � 0, and the p.d.e. for F

is just

�F

��

+ (1� �

2

)

�F

��

=

C

0

�

+ C

1

; (3.56)

while if we have a dipole of strength M at the origin (and no point sink) driving the 
ow, then

(3.55) be
omes

�F

��

+ (1� �

2

)

�F

��

= (C

0

+

M�

A

)

1

�

+ C

1

; (3.57)

whi
h is essentially the same equation. In equation (3.56), C

0

(�) will be 
hanging in a

ordan
e

with mass 
onservation for a point sink, while in (3.57) C

0

will just be a positive 
onstant equal

to the area of the 
uid domain. We 
an solve su
h p.d.e.'s with relative ease. Consider the 
ase in

whi
h F(�; �) satis�es (3.56). We 
an simplify this equation by subtra
ting from F the quantity

R

�

C

1

(�

0

) d�

0

, so that we need only solve

�

^

F

��

+ (1� �

2

)

�

^

F

��

=

C

0

(�)

�

:

The equations of the 
hara
teristi
 proje
tions of this p.d.e. in the (�; �)-plane are

� = tanh(� + �);

the di�erent 
hara
teristi
s being given by varying the parameter �. Equivalently, the 
ombination

� = tanh

�1

� � �

is 
onstant along a 
hara
teristi
. On 
hara
teristi
s,

d

^

F

d�

=

C

0

(�)

tanh(� + �)

;

and so �nally the solution to the p.d.e. (3.56) is:

F(�; �) =

Z

�

0

C

0

(�

0

) d�

0

tanh(�

0

� � + tanh

�1

�)

+ f(tanh

�1

� � �)

+

Z

�

0

C

1

(�

0

) d�

0

; (3.58)

where f is some arbitrary fun
tion whi
h depends on the initial 
onditions imposed. The solution

of (3.57) also follows immediately from this, if we just repla
e C

0

by (C

0

+M�=A) in (3.58).

For the Hele-Shaw problem we are able to work out how the singularities of the S
hwarz

fun
tion g(z) vary in time (and spa
e), and, in 
ertain situations, dedu
e the form of the mapping

fun
tion from the fun
tional identity (2.27). This pro
edure was outlined in x2.5, and a detailed

example will be given in x5.3. For Stokes 
ow, the singular part of the S
hwarz fun
tion is given

by

G

e

(�) = g

e

(w(�)) = h

0

e

(w(�)) =

H

0

e

(�)

w

0

(�)

:
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We know also from the identity (2.27) that

g

i

(w(�)) +G

e

(�) = �w(1=�); (3.59)

and that the �rst term on the left-hand side here is analyti
 within the unit dis
. Hen
e the

singularities of �w(1=�) in j�j � 1 must be exa
tly those of G

e

(�), whi
h (in prin
iple) will tell us

the general form of the mapping fun
tion we must try if we wish to obtain a solution. In pra
ti
e,

we �nd it easier to make use of the equivalent relation (3.45), whi
h implies that the singular part

of the 
ombination w

0

(�) �w(1=�) within the unit dis
 is given by

[w

0

(�) �w(1=�)℄

sing

= H

0

e

(�):

We have H

e

(�) from the solution of (3.55), and the relation (3.54). The above equation then tells

us the singularities of �w(1=�) within the unit dis
, sin
e the mapping fun
tion itself is analyti


there.

A few remarks are in order before we move on. Firstly, if we do use the method outlined above

to �nd the form of the mapping fun
tion for a parti
ular geometry, we must remember that we

are working with a s
aled time variable, and so instead of using the governing equations in the

form (3.19) and (3.15) to determine how the parameters of the map evolve in time, we must �rst

res
ale time and use them in the form

w

0

(0)

A(�)

X

0

(�) +

�

��

(w

0

(�) �w(1=�)) +

�

��

�

(1� �

2

)w

0

(�) �w(1=�)

�

= 0; (3.60)

and

�(�; �) =

A(�)

w

0

(0)

�

�w

��

(�) + w

0

(�)(1� �

2

)

�

: (3.61)

Se
ondly, we have so far in this se
tion ignored the simpler 
ase in whi
h �(0) = A � 0. In this


ase, the p.d.e. satis�ed by H

e

(�) (now in terms of the original time variable, t) is just

�2X

sing

(�) =

�H

e

�t

: (3.62)

For the 
ase of a dipole singularity at the origin, this has solution

H

e

(�; t) = H

e

(�; 0)�

2M�(t)

�

; (3.63)

where �(t) is de�ned by

�(t) :=

Z

t

0

dt

0

w

0

(0; t

0

)

:

With a single point sink driving the 
ow the equation is even simpler sin
e the left-hand side is

fully known; the solution in this 
ase is

H

e

(�; t) = H

e

(�; 0)�

Qt

�

log �: (3.64)

Expli
it solutions for H

e

(�; t) are mu
h easier to deal with now, hen
e working out the form of

w(�) needed for a parti
ular geometry is a simpler task.

The example we 
onsider at length in x5.4 is the same for both 
ases A 6= 0, A = 0; it is

the problem of a vortex dipole pla
ed o�-
entre in an initially 
ir
ular 
uid domain (this is also

the example we give in x5.3 illustrating the analogous pro
edure for the Hele-Shaw problem, and

was motivated by a very similar Hele-Shaw problem solved by Ri
hardson [79℄). We present it

be
ause it highlights a problem whi
h 
an arise with Stokes 
ow solutions, whi
h does not o

ur

with Hele-Shaw problems: we 
an obtain solutions to the mathemati
al problem with relative
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ease, but they are not always physi
ally realisti
. Thus, in our example, we �nd that the solution

for the 
ase A = 0 is unlikely on physi
al grounds (with the large-domain limit having the dipole

singularity moving relative to the 
uid mass in some spe
i�ed way), whi
h is what leads us to


onsider the more 
ompli
ated 
ase.

Su
h behaviour means that we should, in general, treat Stokes 
ow solutions with 
ir
umspe
-

tion. In x5.4.2, we \solve" a �nite domain problem, and then take the large domain limit. It is

only when we do this that the unphysi
al nature of the solution be
omes apparent; for the �nite

domain 
ase it is not obvious that there is a problem. We might 
all su
h solutions \formal",

sin
e they are 
ertainly solutions to the mathemati
al problem, but are unlikely to be observed

in pra
ti
e.

3.8 The \moments" for the 
ase �(0) 6= 0

We now 
onsider the evolution equations satis�ed by the (ZST) Stokes 
ow \moments" in the


ase that �(0) = A is nonzero (but bounded). Clearly, they will no longer be 
onserved in this


ase. The governing equations are then (3.47) and (3.48); for simpli
ity, we assume the 
ow to be

driven by a single point sink at the origin. Following the pro
edure of x3.6, we multiply equation

(3.47) through by �

k

and integrate around the unit dis
. Using integration by parts on the extra

term 
ontaining the fa
tor A (whi
h in general will depend on time, sin
e A(t) := �(0; t)), and

with the C

k

(t) de�ned by (3.31), it is readily seen that the equations satis�ed are

dC

k

dt

=

8

>

>

<

>

>

:

�Q k = 0 ;

2Ak

w

0

(0)

(C

k�1

� C

k+1

) k = 1; 2; : : : ;

(3.65)

so in general we have a system of 
oupled di�erential equations to solve for the C

k

. An immediate


onsequen
e of these equations is that polynomial solutions no longer exist. If w(�) is a polynomial

of degree N , then re
alling (3.36) we have C

k

(t) � 0 for k � N . It then follows from the k = N

equation of (3.65) that C

N�1

� 0, and working ba
k through the system in this way we see that

all the C

k

will have to vanish identi
ally, and there 
an be no su
h solution. Hen
e, if there exist

solutions to this problem, they must be for non-terminating power series mapping fun
tions.

The system (3.65) is simpler when written in terms of the time variable � introdu
ed in (3.51)

of x3.7, sin
e we then have

dC

k

d�

=

8

>

<

>

:

�

Qw

0

(0)

2A

k = 0 ;

k(C

k�1

� C

k+1

) k = 1; 2; : : : :

(3.66)

The fun
tion F(�; �) introdu
ed (and solved for) in (3.53) of x3.7 is a kind of generating fun
tion

for the (k � 1) \moments", and we 
ould equally well have derived equation (3.56) by multiplying

the equations (3.66) (for k � 1) through by �

�(k+1)

=k and summing them. To re
over the

quantities C

k

(�), we need the derivatives (evaluated at � = 0) of the \usual" generating fun
tion,

de�ned by

F

1

(�; �) =

1

X

1

C

k

k

�

k

� F(

1

�

; �): (3.67)

The equation satis�ed by F

1

follows from (3.56) as

�F

1

��

+ (1� �

2

)

�F

1

��

= C

0

� + C

1

;

so that the solution is immediate from (3.58) as

F

1

(�; �) =

Z

�

0

C

0

(�

0

) tanh(�

0

� � + tanh

�1

�) d�

0

+ f

1

(tanh

�1

� � �)

46



+

Z

�

0

C

1

(�

0

) d�

0

; (3.68)

for some fun
tion f

1

whi
h depends on the initial 
onditions. Again, the solution for F

1

when we

have a dipole singularity at the origin (instead of the point sink) is obtained from this by repla
ing

C

0

(�

0

) by (C

0

+M�=A(�

0

)) in (3.68). Equating the 
onstant term on the right-hand side to zero

gives a \
onsisten
y 
ondition" whi
h must be satis�ed, namely

0 =

Z

�

0

C

0

(�

0

) tanh(�

0

� �) d�

0

+ f

1

(��) +

Z

�

0

C

1

(�

0

) d�

0

; (3.69)

equating the 
oeÆ
ients of � gives

C

1

(�) =

Z

�

0

C

0

(�

0

) se
h

2

(�

0

� �) d�

0

+ f

0

1

(��); (3.70)

whi
h is 
learly equivalent to (3.69). This equation, and the k = 0 equation of (3.66), provide


onstraints on C

0

(�), C

1

(�), and A(�).

3.9 The stress fun
tion

It has re
ently been noted by King [58℄ that it is possible to de�ne a kind of `Baio

hi transform'

for the Stokes 
ow problem (re
all the analogous transformation for the Hele-Shaw problem,

de�ned in x2.6). Here, the dependent variable we transform is the Airy stress fun
tion, whi
h we

now introdu
e. De�nitions vary slightly in the literature, but we de�ne the stress fun
tion, A,

to be a biharmoni
 
onjugate of the streamfun
tion  , so that in the Goursat representation we

have

A+ i = �[�z�(z) + �(z)℄: (3.71)

Alternatively, in terms of the stress tensor (�

ij

) the equations satis�ed by A are

�

11

= �p+ 2�u

x

= �2�A

yy

;

�

12

= �

21

= �(u

y

+ v

x

) = 2�A

xy

;

�

22

= �p+ 2�v

y

= �2�A

xx

;

whi
h shows that p = �r

2

A. The pressure is harmoni
 for Stokes 
ow, so it follows that A must

be biharmoni
. It is straightforward to work from the stress tensor de�nition to the form in (3.71).

To �nd the boundary 
onditions satis�ed by A we use the Goursat form. Firstly, the 
hain rule

gives

�A

�s

=

�A

�z

�z

�s

+

�A

��z

��z

�s

;

from whi
h we see, using (3.71), that on �
,

�2

�A

�s

=

dz

ds

(z�

0

(z) + �

0

(z) + �(z)) +

dz

ds

(z�

0

(z) + �

0

(z) + �(z))

=

dz

ds

�

iT

2�

dz

ds

�

+

dz

ds

�

iT

2�

dz

ds

�

using (3.4)

= 0:

Hen
e we may integrate along �
 to dedu
e that

Aj

�


= 0;
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without loss of generality. We may evaluate �A=�n on �
 similarly, noting that, sin
e dz=ds is

the 
omplex tangent, and dz=dn is the 
omplex normal to �
, we will have dz=dn = �idz=ds and

d�z=dn = i(d�z=ds). Then:

�2

�A

�n

= �i

dz

ds

�

iT

2�

dz

ds

�

+ i

dz

ds

�

iT

2�

dz

ds

�

= �

T

2�

�

T

2�

sin
e jdz=dsj = 1:

Hen
e within 
(t) and away from singularities, A satis�es the problem

r

4

A = 0;

with boundary 
onditions

A = 0;

�A

�n

=

T

2�

on �
(t).

The KBC (1.9) will also hold; however this has no \ni
e" interpretation in terms of the Airy stress

fun
tion.

3.9.1 The \Baio

hi transform" for Stokes 
ow

We are now ready to de�ne the \Baio

hi transform" for the Stokes 
ow problem. For simpli
ity,

we restri
t ourselves to the ZST problem, so that both boundary 
onditions for the stress fun
tion

are homogeneous. For the Hele-Shaw problem (see x2.6) we were able to appeal to the maximum

prin
iple for harmoni
 fun
tions to dedu
e that the free boundary behaviour is monotone, and

hen
e write the free boundary in the form t = �(x); however no su
h maximum prin
iple exists

for the biharmoni
 equation, so we 
annot do this here. We shall see that the desired transform

variable is just the time integral of the stress fun
tion, but we �nd it ne
essary to use a 
omplex

variable approa
h, in some sense the reverse of the dire
t method adopted for the Hele-Shaw

problem.

De�ne the variable u by the formula

u =

1

4

(z�z � h(z)�

�

h(�z)); (3.72)

where, as in x3.7, h(z) is a primitive of the S
hwarz fun
tion g(z), so that

g(z) = h

0

(z);

note that equation (3.72) is entirely equivalent to (2.34) derived for the Hele-Shaw problem in

x2.6. Sin
e g is analyti
 (ex
ept at isolated singularities), it is immediate that u satis�es the

Poisson equation,

r

2

u = 1 in 
(t):

To �nd the boundary 
onditions satis�ed by u, note that sin
e �
 is de�ned by the relation

�z = g(z),

�u

�z

=

1

4

(�z � h

0

(z)) = 0 on �
(t);

�u

��z

=

1

4

(z � h

0

(z)) = 0 on �
(t);

) ru = 0 on �
(t):
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Hen
e u = 0 on �
, if we 
hoose the 
onstant in h appropriately, and u satis�es the problem

r

2

u = 1 in 
(t);

u = 0 =

�u

�n

on �
(t):

Note that the derivation so far is entirely independent of the dynami
s of the problem; we 
ould, if

we wished, de�ne the Hele-Shaw (or indeed any two-dimensional free boundary problem) Baio

hi

transform from the starting-point (3.72).

We now assume slow vis
ous 
ow, and demonstrate the relationship with the stress fun
tion

in the spe
ial 
ase of zero surfa
e tension, with the assumption �(0) = 0. Re
alling the relation

(2.12) between the S
hwarz fun
tion and the mapping fun
tion, we see that

�u

��

=

w

0

(�)

4

(w(�) � �w(1=�))

)

�

2

u

�t ��

=

1

4

�

�t

�

w

0

(�)w(�)

�

�

1

4

�

�t

(w

0

(�) �w(1=�)) ;

=

1

4

�

�t

�

w

0

(�)w(�)

�

+

1

2

X

0

(�);

using (3.29) in the last step. Next, transferring (3.71) to the �-plane gives

�2A = w(�)�(�) + X (�) + w(�)�(�) + X (�);

di�erentiating this with respe
t to � and using (3.30) then yields

�4

�A

��

= w(�)w

0

t

(�) + 2X

0

(�) + w

0

(�)w

t

(�)

� 4

�

2

u

�t ��

:

Integrating with respe
t to � then,

A = �

�u

�t

+ �(t);

for some fun
tion of time, �. But we know that both A and u vanish on �
, and therefore also

on j�j = 1, so that �(t) must in fa
t be zero. Hen
e �nally,

u = �

Z

t

A(�; �) d�; (3.73)

(
.f. (2.30)) and we see that u is a \Baio

hi transform" of the stress fun
tion, in the �-plane.

3.10 Summary

This 
hapter is rather long, and 
ontains many di�erent ideas, whi
h it is helpful to summarise

before moving on to new things. We began in x3.1 by reviewing the work of [82℄, deriving the

equations, holding in the �-plane, whi
h govern slow vis
ous 
ow (either surfa
e tension driven,

or singularity driven). In this and subsequent se
tions we extended the work of [82℄, redu
ing the

problem to a single fun
tional evolution equation whi
h holds globally in the �-plane.

For the point-sink driven ZST problem (when the Goursat fun
tion � is assumed to vanish

at the origin) an in�nite set of 
onserved quantities of the motion was found in x3.6, whi
h are

analogous to Ri
hardson's moments for the Hele-Shaw problem (x2.5). The prin
ipal di�eren
e

between the Hele-Shaw moments and the Stokes \moments" is that the former are de�ned by

integrals over (or around) the 
uid domain itself, while the latter are best de�ned in terms of
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integrals over (or around) the unit dis
, whi
h is (so to speak) the 
uid domain in the �-plane.

Consequently, although the Hele-Shaw moments have a 
lear physi
al interpretation, this is not

so for the Stokes moments (with the ex
eption of the mass 
onservation result). Underlying these

results is the fa
t that the internal singularities of the S
hwarz fun
tion remain �xed within the


uid domain for Hele-Shaw 
ow, while for Stokes 
ow (with the assumption �(0) = 0) they remain

�xed within the unit dis
. In fa
t, Stokes 
ow is almost always best dealt with in the �-plane,

while it is often the 
ase that Hele-Shaw 
ow is more tra
table working within the physi
al plane.

A 
onsequen
e of this is that, while we are easily able to generalise the Hele-Shaw results to

more than one �xed driving singularity, this is not so for Stokes 
ow (x3.6.3)|in Hele-Shaw, the

preimages of the singularities 
an move around in the �-plane so long as they remain �xed in

the z-plane; in Stokes 
ow, with �(0) = 0, they must remain �xed in both the z-plane and the

�-plane. The moments were also solved for in the 
ase �(0) 6= 0 (x3.8), whi
h is a situation we


onsider further in 
hapter 5.

In x3.7 we 
onsidered the S
hwarz fun
tion for the ZST Stokes 
ow problem in some detail,

and saw how it is related to the Stokes 
ow moments. A p.d.e. governing the evolution of its

singularities was formulated, and a method outlined for dedu
ing the form of the mapping fun
tion

required for a given problem.

We 
on
luded in xx3.9 and 3.9.1 with another result (due to King [58℄) whi
h has a Hele-

Shaw analogue; we de�ned a \Baio

hi transform" u for the Stokes 
ow problem. The original

de�nition (3.72) was in terms of the S
hwarz fun
tion, but we then established that u is in

fa
t the time integral of the Airy stress fun
tion, evaluated in the �-plane (3.73). We did not

present any examples of the use of this transformed variable to solve problems; our interest is

purely mathemati
al, in that it demonstrates yet another parallel between the Hele-Shaw and

slow vis
ous 
ow problems.
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Chapter 4

Appli
ations to the glass industry

4.1 Introdu
tion

In this short 
hapter, we digress to dis
uss an extension of the theory of 
hapter 3 to models of

�bre drawing. We shall return to `ordinary' Stokes 
ow in 
hapter 5; this 
hapter may be skipped

without loss of 
ontinuity. The situation we have in mind is of one or more long vis
ous �bres,

whi
h are being stret
hed from either end, and possibly also twisted, su
h as may o

ur during

opti
al �bre manufa
ture. In real-life problems we do not expe
t this stret
hing and/or twisting

to dominate the motion, hen
e surfa
e tension e�e
ts are important, and we in
lude them.

The analysis of slender �bres under tension (and hen
e in extensional 
ow) relies on expansions

in inverse powers of the large aspe
t ratio (the \slenderness parameter", �). (The r�egime of interest,

in whi
h surfa
e tension is present at leading-order in the 
ross-
ow problem, is when the Capillary

number is of order 1=�. Surfa
e tension is not important in the 
ow along the �bre.) Broadly

speaking, for a thin �bre in extensional 
ow, the leading-order 
ow in any 
ross-se
tion normal

to the 
entre-line is two-dimensional Stokes 
ow, but with a non-zero 
uid divergen
e due to the

extensional 
omponent of the velo
ity. However, this may be dealt with by subtra
ting o� an

eigensolution, and the te
hniques of 
hapter 3 augmented to des
ribe the new 
ow-�eld.

We now summarise the model and the 
omplex variable formulation following Howell ([42℄,


hapter 4). We then simplify the equations as in x3.2, and interpret them in terms of the

\moments" introdu
ed in x3.6. The results are essentially equivalent to those obtained for the

stri
tly two-dimensional problem of 
hapter 3, but with the 
onve
tive derivative along the �bre,

�(�)=�t+ �(u(�))=�x, repla
ing �(�)=�t. A new solution, illustrating the theory, is given in x4.3.1.

4.2 The theory for a vis
ous �bre

Consider the situation for a single vis
ous �bre, under tension along its length (so that it is nearly

straight), and with velo
ity �eld u = (u; v;$) within the �bre. Following [42℄ we 
hange notation

slightly, 
hoosing axes su
h that the �bre is roughly aligned with the x-axis, and the �bre 
ross-

se
tion lies in the (y; z)-plane. The Reynolds number based on the 
ow along the �bre is assumed

to be O(1) so that the starting point is the full Navier-Stokes equations; however, the 
o-ordinates

in the �bre 
ross-se
tion are s
aled with �, the small slenderness parameter. The 
omponents of

velo
ity and the pressure are then expanded as power series in �, and the leading-order 
ow along

the �bre is seen to be extensional, that is, u

0

= u

0

(x; t) (the subs
ript \0" denoting leading-order).

As mentioned above, the 
ow in the 
ross-se
tion, (v

0

; $

0

), is not divergen
e-free, as the velo
ity


omponent u

0

a
ts as a distributed mass sink (or sour
e).

If we assume u

0

(x; t) to be known, then this \
ross-
ow" problem for (v

0

; $

0

) e�e
tively

de
ouples from the 
ow along the �bre, and an eigensolution of the leading order zero-surfa
e

tension problem 
an be found, whi
h has exa
tly the right non-zero divergen
e. This \ZST

eigensolution" 
an then be subtra
ted from the leading order 
ross-
ow problem, and the problem
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for the \residual" leading order 
ross-
ow (~v; ~$) (now divergen
e-free), and the residual pressure,

may be 
onsidered. It must be remembered that the 
ross-se
tion in whi
h we are working is

a fun
tion of both x and t, whi
h we denote by 
(x; t). Hen
eforth we drop subs
ripts, on the

understanding that we are 
onsidering only the leading-order problem for a �nite �bre, with the

full solution a power series in the slenderness parameter �. The length of the �bre is thus impli
itly

assumed to be in�nite. (In a real problem, boundary 
onditions would be imposed at the ends of

the �bre, spe
ifying the \pulling" velo
ity u there; hen
e here we expe
t to be able to spe
ify the

behaviour of u as x! �1.)

[42℄ uses an adaptation of the te
hniques of [82℄, presented in x3.1, working with the stream-

fun
tion  for the tilded 
ow �eld,

~v =

� 

�z

; ~$ = �

� 

�y

:

Using the familiar Goursat representation, with Z = y + iz, we have

 = �=f

�

Z�(Z) + �(Z)g;

for fun
tions � and � analyti
 within 
(x; t). As usual we then map the unit dis
 onto 
(x; t),

after �rst eliminating rotation and translation of 
(x; t), via

Z = Z

�

(x; t) + w(�; x; t)e

�i�(x;t)

;

where Z

�

(x; t) is the 
entreline of the vis
ous �bre, and �(x; t) represents the rotation. The usual

normalisation assumption, w(0; x; t) = 0 for all x and t, 
an then be made, and sin
e the fun
tions

� and � are regular throughout the 
uid domain, the assumption of [82℄ that �(0; x; t) = 0 
an

now be imposed without loss of generality. The analysis of [82℄ 
an then be followed through

almost exa
tly as in x3.1, and analogues of equations (3.10) and (3.13) found. These are

e

i�

�(�) +

T

2�

f

+

(�)�w

0

(�) = �(Z

�

+ w(�)e

�i�

)

�

�

0

(1=�)

�w

0

(1=�)

�e

i�

�

X

0

(1=�)

�w

0

(1=�)

+

T

2�

f

�

(�)�w

0

(�) ; (4.1)

holding on j�j = 1 (and elsewhere, by analyti
 
ontinuation), and

<

�

1

�w

0

(�)

�

2�(�)e

i�

� (w

t

(�) + uw

x

(�) +

1

2

u

x

w(�))

�

+

T

�

f

+

(�)

�

=

T

2�

f

+

(0) ; (4.2)

holding on j�j = 1. In these equations the dependen
e of the various fun
tions on x and t has

been dropped expli
itly, but is understood. All notation is exa
tly as in x3.1 (in parti
ular, the

fun
tions f

�

(�) satisfy (3.8) and (3.9)) and u is the leading-order extensional 
ow along the �bre.

Sin
e we may assume �(0) = 0, we are able to 
ontinue (4.2) analyti
ally by simply \removing

the <" from the left hand side, to get a global equation (whi
h is identi
al to (3.14) if there is no

x-dependen
e and if � = 0).

All analysis has so far been as in [42℄. We may now, as in x3.2, depart from this approa
h,

and derive a single fun
tional evolution equation for the mapping fun
tion, whi
h holds globally.

If we �rst repla
e � in (4.1) by 1=� and take the 
omplex 
onjugate, we 
an substitute in (4.1) for

�(�) from (4.2) to get an equation for X

0

(�) in terms of quantities depending only on the mapping

fun
tion. When doing this, it is helpful to de�ne the di�erential operators E := �

t

+ u �

x

+ u

x

=2,

and D := �

t

+ u �

x

+ u

x

, where the u

x

terms are understood to only multiply whatever fun
tion

the operator is a
ting on (so D is the usual 
onve
tive derivative). The general result is rather


ompli
ated, being

D [w

0

(�) �w(1=�)℄ + e

�i�

�

Z

�

�

��

�

E(w(�)) +

T

2�

�w

0

(�)(2f

+

(�) � f

+

(0))

�

+2e

�i�

X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�)� f

+

(0))℄ ; (4.3)
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but is analogous to (3.18) if we 
onsider the term in

�

Z

�

(whi
h is analyti
 on the unit dis
, as well

as being a perfe
t di�erential), and the term in X

0

(�), together, as a kind of \modi�ed" X

0

(�).

In any 
ase, there are obvious simpli�
ations whi
h 
an be made. For instan
e, if we assume

that there is no lateral motion of the �bre, so that its 
entreline is exa
tly aligned with the x-axis

and Z

�

= 0, then the se
ond term on the left-hand side is eliminated. If in addition there is

no twist applied to the �bre (� = 0), then we are only stret
hing it (via the term u(x; t)), and

the evolution equation for the 
ross-se
tion is exa
tly analogous to (3.18), with the operator D

repla
ing the �( � )=�t,

D [w

0

(�) �w(1=�)℄ + 2X

0

(�) =

T

2�

�

��

[�w

0

(�) �w(1=�)(2f

+

(�) � f

+

(0))℄ : (4.4)

4.3 \Conserved quantities" for �bres

A point to note about equations (4.3) and (4.4) is that, if we were to 
onsider the ZST versions,

then the analysis of x3.6 would follow through to give the in�nite system of 
onservation laws,

D(C

k

) = 0 k = 0; 1; 2; : : : ;

)

�C

k

�t

+

�

�x

(uC

k

) = 0 k = 0; 1; 2; : : : ;

for quantities C

k

(x; t) de�ned exa
tly as in (3.31). This just says that these \moments" are


onve
ted with the 
ow along the �bre in this simple 
ase, as we would expe
t, and is analogous

to the usual two-dimensional result that ZST Stokes 
ow is 
ompletely trivial in the absen
e of

driving singularities. For the NZST problem, we 
an write down the analogue of equations (3.34),

whi
h will hold here if we set Q = 0 and repla
e d( � )=dt by D, that is,

�C

k

�t

+

�

�x

(uC

k

) =

8

>

>

>

<

>

>

>

:

0 (k = 0);

�

kT

�

"

f

+

(0)

2

C

k

+

1

X

r=1

f

(r)

+

(0)

r!

C

k+r

#

(k � 1):

We emphasise that these equations still hold for the 
ase in whi
h we have twist, and/or lateral

motion of the 
entreline, sin
e the terms in equation (4.3) whi
h represent these e�e
ts are regular

on the unit dis
, and so vanish upon integrating around the unit 
ir
le. The k = 0 equation here

immediately reveals the general mass 
onservation result,

1

sin
e C

0

(x; t) is exa
tly the 
ross-

se
tional area of 
(x; t).

4.3.1 Example|the sintering of a bundle of �bres

Howell [42℄ gives an example of his analysis, solving the problem of two identi
al �bres (of initially


ir
ular 
ross-se
tion) sintering together under the a
tion of surfa
e tension as they are stret
hed

out. This is done for the simplest 
ase, Z

�

= 0 = �, using the method des
ribed in [82℄. If instead

equation (4.3) is used, with the method outlined in x3.3 of this thesis (but with the simpli�
ation

that now X (�) will be regular on the whole unit dis
, so that we only need mat
h singularities

in two terms of the equation), the p.d.e.'s governing the parameters of the mapping fun
tion are

mu
h more qui
kly obtained. The mapping fun
tion used to des
ribe the 
ross-se
tion is

w(�) = C

�

1

1� b�

�

1

1 + b�

�

=

2Cb�

1� b

2

�

2

;

1

In the work of [82℄ and [42℄, this result is only found as a by-produ
t of the analysis for ea
h spe
i�
 example


onsidered, by suitably manipulating the p.d.e.'s satis�ed by the parameters of the mapping fun
tion. In [42℄ the

result is found by elementary 
onsiderations elsewhere, but our method has the advantage of not relying on any

extraneous analysis.
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Figure 4.1: Typi
al 
ross-se
tions generated by the map (4.6) when n = 6. Pi
ture (a) is the 
usped 
on�guration,

while (b) is the kind of smooth 
ross-se
tion we might expe
t to observe in pra
ti
e.

for b and C both fun
tions of x and t. The stri
tly two-dimensional version of this problem

(and the problem of two unequal 
ylinders 
oales
ing under surfa
e tension) has been solved in

[37℄ and [82℄, and [42℄ uses mu
h of the analysis of the latter. Note that the problem is as yet

underdetermined, though, sin
e we have said nothing about u(x; t), whi
h appears in the equations

governing the parameters of the map.

The \missing link" is an axial stress balan
e for the �bre, diÆ
ult to manipulate analyti
ally,

given in [42℄ as

�

�x

�

3S

�u

�x

�

= ReS

�

�u

�t

+ u

�u

�x

�

�

T

2�

��

�x

; (4.5)

where S is the 
ross-se
tional area of 
, � is the 
ir
umferen
e of the 
ross-se
tion (i.e. the length

of �
), and \Re" is the Reynolds number based on the 
ow u along the �bre.

An obvious extension of this work is to 
onsider a mapping fun
tion of the form

w(�) =

nCb�

1� b

n

�

n

; (4.6)

with b 2 (0; 1) to ensure analyti
ity of the map, and C > 0 without loss of generality. In fa
t, for

the map to be univalent we require that

0 < b < b


rit

=

1

(n� 1)

1=n

;

the limit b ! 0, C ! 1 giving a 
ir
ular 
ross-se
tion, and the limit b ! b


rit

giving a \
ower-

shaped" 
ross-se
tion, having n inward-pointing 
usps (�gure 4.1 (a)). Su
h a map might represent

the later stages in the sintering of a bundle of vis
ous �bres as they are stret
hed out, provided

we 
ould be sure that the interior gaps between the �bres had 
losed up by this stage, so that the

analysis for a simply-
onne
ted 
ross-se
tion is appli
able.

We restri
t ourselves to working with equation (4.4), for simpli
ity. We have to mat
h sin-

gularities here only at the two points � = 0 and � = b within the unit dis
, appealing to the

symmetry of the map. Mat
hing at � = 0 simply yields the mass 
onservation result,

�S

�t

+

�

�x

(uS) = 0; (4.7)
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where a straightforward integration gives the 
ross-se
tional area S as

S =

�n

2

b

2

C

2

(1 + (n� 1)b

2n

)

(1� b

2n

)

2

:

Mat
hing at � = b yields another p.d.e.,

�b

�t

+ u

�b

�x

= �

Tb

2

(2f

+

(b)� f

+

(0)); (4.8)

these two equations (4.7) and (4.8) are equivalent to those given in [42℄ for the 
ase n = 2.

The fa
tor (2f

+

(b) � f

+

(0)) 
an be expli
itly evaluated from the formula (3.8) in terms of

ellipti
 integrals, with the result

2f

+

(b)� f

+

(0) =

2(1� b

2n

)

n�bC

K ((n� 1)b

n

) ;

where K( � ) denotes the 
omplete ellipti
 integral of the �rst kind (see appendix B, [8℄, or [30℄ for

a de�nition). In deriving this simple form for the right-hand side, use was made of the relation

[8℄

1

1 + (n� 1)b

n

K

�

2b

n=2

(n� 1)

1=2

1 + (n� 1)b

n

�

= K ((n� 1)b

n

) : (4.9)

We also need to utilise the axial stress balan
e (4.5) to 
lose the problem; however, the expression

obtained for the 
ir
umferen
e �(x; t) is more intri
ate,

� =

4bnC(n� 1)

1 + (n� 1)b

n

�

n(1 + (n� 1)b

2n

)

(n� 1)(1� b

n

)

2

�

�

�4b

n

(1� b

n

)

2

; k

�

�K(k)

�

;

where k = 2b

n=2

(n � 1)

1=2

=(1 + (n � 1)b

n

), and �( � ; � ) denotes the 
omplete ellipti
 integral of

the third kind (again, see appendix B, [8℄, or [30℄ for a de�nition). We 
ould use (4.9) on the

se
ond term here, but further analyti
al progress with the �rst term is diÆ
ult, and numeri
s must

be employed to 
omplete the solution. We do not pursue this work further; however we should

mention re
ent work by Ri
hardson [85℄, whi
h is 
on
erned with the sintering of an almost

arbitrary array of 
ir
ular 
ylinders of vis
ous 
uid. Many numeri
al solutions are presented, but

in this work the evolution is solely surfa
e tension driven, with no extensional axial velo
ity.

4.3.2 Conne
tedness 
onsiderations

We suggested that the problem 
onsidered in x4.3.1 might represent the later stages in the sintering

of a bundle of �bres, with the proviso that the \holes" between the �bres, whi
h would ne
essarily

be present at the outset, must have 
losed up before this analysis (whi
h relies on a simply


onne
ted 
ross-se
tion) 
an be appli
able. An obvious 
al
ulation is to 
he
k whether a 
ir
ular

hole in an unbounded, two dimensional 
ow domain, will indeed 
lose up under the a
tion of

surfa
e tension only.

The required 
onformal mapping from the unit dis
 onto the 
uid domain is just

w(�) =

a(t)

�

;

for real, positive a(t). This is di�erent to previous examples, in that the point � = 0 maps to

in�nity (rather than z = 0). Rather than reformulating the theory of xx3.2 and 3.3 to deal with

this, it is easier to use an ad ho
 method based on equation (3.10) and the boundary 
ondition

(3.13).

The fun
tion f

+

(�) is easily seen to be equal to 1=a everywhere (with f

�

(0) � 0). Equation

(3.13) then be
omes

2<(��(�)) = _a+

T

2�

; on j�j = 1;
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whi
h is trivial to 
ontinue analyti
ally, giving

�(�) =

1

2�

�

_a+

T

2�

�

:

Substitution into (3.10) gives

X

0

(�) =

a

�

�

_a+

T

2�

�

�

aT

2�

:

The �nal 
ondition needed is that the velo
ity vanish at in�nity (as � ! 0); the most general


onditions allowing this are given in 
hapter 5, by (5.30) and (5.31). Sin
e the 
ow is solely

surfa
e-tension driven, the pressure at in�nity (p

1

) must be zero in (5.30). Hen
e we require �(z)

to be bounded at in�nity, that is, �(�) must be bounded at the origin, giving the �nal result

_a = �

T

2�

) a(t) = a(0)�

T t

2�

:

The radius of the hole is exa
tly a(t), so the hole will 
lose in �nite time.

4.4 Summary

In this 
hapter, we have seen how the ideas introdu
ed in 
hapter 3 for the two-dimensional prob-

lem, may be extended to deal with the (three-dimensional) problem of vis
ous �bres undergoing

tra
tion (and torsion, although we did not elaborate on this point). This was a 
onsequen
e of the

slender geometry, whi
h meant that asymptoti
 methods 
ould be employed to make the problem

e�e
tively two-dimensional. We 
onsidered only �bres; however as was mentioned in x1.3, similar

asymptoti
 methods may be used for slender bubbles; see for example [7℄, [43℄.

As in 
hapter 3, \moments" of the 
ross-
ow may again be de�ned by (3.31). In the ZST


ase (whi
h here is equivalent to the assumption that the e�e
ts of tra
tion far outweigh those

of surfa
e tension), they are simply 
onve
ted with the 
ow along the �bre. In the more realisti


NZST 
ase, their evolution is via a mu
h more diÆ
ult system of nonlinear partial di�erential

equations, analogous to (3.34).

Finally, in x4.3.1, we gave a physi
ally-relevant example of the theory, as applied to the sin-

tering of a bundle of vis
ous �bres under tra
tion.
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Chapter 5

Flow in unbounded domains

5.1 Introdu
tion

This 
hapter is 
on
erned with Hele-Shaw 
ows and Stokes 
ows on unbounded

1


uid domains

with a free boundary. The theory and te
hniques of previous 
hapters (whi
h assumed a bounded


uid domain) will, on the whole, still 
arry through for su
h 
ases, but the 
onformal map from

the unit dis
 must now have an isolated singularity within j�j � 1, 
orresponding to the single

point that maps to in�nity.

This 
hapter 
rystallises why Stokes 
ow and Hele-Shaw 
ow are di�erent. The key idea

(whi
h has already been mentioned in x3.6.2) involves the S
hwarz fun
tion of the free boundary,

g(z; t). Driving singularities of the 
ow are asso
iated with singularities of g for both problems,

and so we may regard the 
ow as being \driven by the S
hwarz fun
tion". For Hele-Shaw 
ow,

as we saw in x2.3, the singularities of g must remain �xed within the physi
al plane, and so may

be made to 
orrespond to (�xed) driving singularities. For Stokes 
ow, they remain �xed in the

�-plane, at least when we make the te
hni
al assumption �(0) = 0, and so in general we have no

hope of keeping the asso
iated driving singularity �xed in the physi
al plane too.

Problems on unbounded domains are another example of this diÆ
ulty, if we try to solve in

the time-dependent 
ase for driving singularities at points other than in�nity. This is be
ause

\in�nity" is, by ne
essity, also a singular point of the 
ow, in both the fully-in�nite and semi-

in�nite domain 
ases of su
h problems. Thus, expli
it, unsteady solutions (with �(0) = 0) will,

in general, be driven by moving singularities. Even when �(0) 6= 0, isolated singularities of

the S
hwarz fun
tion move in a spe
i�ed manner within the �-plane (see (5.43)), whi
h is very

restri
tive, and in x5.4.2 we �nd that a 
ontinuous distribution of singularities is needed if we are

to satisfy all the 
onditions.

No su
h te
hni
al diÆ
ulties arise for time-dependent problems with driving singularities at

in�nity [96℄, sin
e this is the only singular point of the 
ow. Likewise, steady problems driven

from the origin 
an be solved, sin
e in�nity is not a singular point of su
h 
ows. We 
onsider

some steady problems in x5.5.

5.2 Literature Review

Before saying more, we �rst 
onsider the work whi
h has been done on the two problems when

the 
ow domain is unbounded, beginning with the Hele-Shaw 
ase. For the Hele-Shaw problem

very many results exist; as mentioned above, most results from the bounded domain 
ase follow

through straightforwardly, and there seem to be no surprises. For the 
ase of a �nite air bubble,


on
epts su
h as Ri
hardson's moments (x2.5) 
an be easily rede�ned in terms of integrals over

1

We shall use the term \fully-in�nite" to denote an unbounded 
ow domain 
ontaining a �nite air bubble (or

more than one �nite bubble if the domain is multiply 
onne
ted, but we shall not study su
h 
ases). \Semi-in�nite"

will refer to domains where the area of air present is also unbounded.
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forms here

Transient 5/2-power 
usp

univalent region again

Phase-path within

UNIVALENT

Figure 5.1: S
hemati
 diagram showing how a \
ontinuable 5/2-power 
usp" solution

looks in phase traje
tory spa
e within the univalen
y domain.

large 
ir
les 
ontaining the bubble (see for example [24℄); the evolution equation for M

0

(t) then

redu
es to 
onservation of the bubble area.

The 
lassi
al Sa�man-Taylor �ngering solutions [87℄ (and their time-dependent analogues [88℄)

are one obvious example of solutions on semi-in�nite 
uid domains, driven by a uniform pressure

gradient at in�nity. Solutions exhibiting �ngering in a radial geometry have been found by How-

ison [45℄; like Sa�man & Taylor's �ngers, these exist for all time, but are driven by a sink at

in�nity. Further \bubble" solutions have been found by Tanveer [93℄ and Howison [47℄ (this latter

paper 
onsiders the 
lassi�
ation of bubble solutions a

ording to the limiting form of the 
uid

domain). Entov et al. [24℄ 
onsider bubbles in unbounded domains driven by multipole singu-

larities at in�nity. These last solutions are worth remarking on, if only for the fa
t that they

demonstrate steady solutions to the NZST Hele-Shaw problem.

Howison [46℄ presents bubble solutions in whi
h 
usps form in the free boundary within �nite

time, but where the solution may be 
ontinued beyond this time. This extraordinary behaviour

is only possible when solutions blow up via the formation of a (4n+ 1)=2-power 
usp in the free

boundary (see the 
omments of x2.6). In x5.3 we present a new example whi
h exhibits this

behaviour. For a general example of this kind, we may draw the solution traje
tories for the

parameters of the mapping fun
tion within the univalen
y domain V . The parti
ular traje
tory

whi
h passes through the point on �V 
orresponding to the 5/2-power 
usp does so tangentially

to the boundary �V , before re-entering V , so that geometri
ally, the free boundary be
omes

nonanalyti
 at a point for an instant, before smoothing again, and the solution 
ontinues to exist

(see �gure 5.1; also �gure 5.7 for the lo
al form of the free boundary as this o

urs). All known

solutions of this kind subsequently blow up via 3/2-power 
usp formation however, whi
h is known

to be always \terminal" (this may be proved from known results for the related obsta
le problem

of variational 
al
ulus; [90℄, [64℄).

Another Hele-Shaw solution whi
h is of interest, and of whi
h we shall 
onsider the Stokes


ow analogue, 
on
erns a rational mapping fun
tion,

w(�) =

��(� � �)

� � 


; (5.1)

this is 
onsidered by Hohlov et al. [33℄ for the 
ase of real parameters �, �, 
. For 
 2 (0; 1)

the map gives unbounded 
uid domains; the 
ase 
 = 1 (� 6= 1) gives a map to a semi-in�nite
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uid domain. The authors solve for the problem with a single point sink at the origin driving

the 
ow (the Stokes 
ow analogue we 
onsider is driven by a dipole singularity at the origin).

This situation di�ers from those mentioned above in that here, the driving singularity is at the

origin, whereas the previous 
ases were driven by pres
ribed singularities at in�nity. The mapping

fun
tion (5.1) is interesting be
ause the points (�; 
) on the boundary of the univalen
y domain

in (�; 
)-spa
e 
orrespond to 
uid domains having slits in them (along ar
s of 
ir
les).

Finally (for the Hele-Shaw problem) we mention the work of Ri
hardson [79℄, where a limiting

pro
edure is employed to solve for a problem on a semi-in�nite 
uid domain. The problem of a

point sink, pla
ed o�-
entre in an initially 
ir
ular domain, is 
onsidered (the geometry of �gure

5.2 but with a di�erent driving singularity); the NZST version of this problem has re
ently been

solved numeri
ally in [55℄. For an initial 
ir
le of radius r, 
entred at z = � < r (with the sink

at z = 0), the method outlined in x2.5 is used to �rst dedu
e the 
orre
t form of the mapping

fun
tion, and then to solve the problem. The semi-in�nite domain limit is obtained by allowing

both r and � to tend to in�nity, whilst keeping the quantity r � � = k �xed. This pro
ess yields

the solution for a point sink pla
ed at the origin in the unbounded initial domain fx > �kg (so

here again we have a driving singularity at a �nite point within the 
ow domain). In x5.3 we

employ the same methods to solve the problem for a vortex dipole singularity at the origin, in the

same geometry.

We now 
onsider what results exist for the Stokes 
ow 
ase. Most of the work whi
h has been

done on the unbounded domain problem involves steady solutions for �nite bubbles in (fully-

) in�nite 
uid domains, and was mentioned brie
y in x1.4.2. One of the �rst papers of note

was Ri
hardson [78℄ (1968), who solved the problem of a two-dimensional invis
id bubble in the


ases of uniform shear, and pure straining, external 
ow. In a subsequent paper [80℄ he solved

the same problem for a paraboli
 external velo
ity pro�le. In 1972, Bu
kmaster [7℄ published

results for slender bubbles in three-dimensional axisymmetri
 slow vis
ous 
ow (at small surfa
e

tension), �nding bubble shapes whi
h appeared to have 
usped ends; Antanovskii (though in two

dimensions) has also 
onsidered the formation of steady-state 
usped bubbles [3℄ and pointed

drops [4℄. Later work by Youngren & A
rivos [101℄ (1976) gave agreement with Bu
kmaster's

results for small values of surfa
e tension, and with other experimental work for larger surfa
e

tension values. Slender three-dimensional bubbles have been studied more re
ently by Howell

[42, 43℄, in extensional 
ow, and with a time-dependent formulation (the above mentioned work

all being for steady 
ows).

Tanveer & Vas
on
elos [96℄ have re
ently published results on the time evolution of two-

dimensional bubbles, where the motion is driven by a given external 
ow �eld at in�nity (whi
h

may in
lude a sour
e/sink at in�nity, so that the bubble area 
an 
hange). Parti
ular 
ases


onsidered are when the external 
ow is simple shear, and pure straining (as in Ri
hardson [78℄,

but time-dependent), and they �nd a family of exa
t solutions for a polynomial-type 
onformal

map. Three-dimensional time-dependent axisymmetri
 bubbles have also been studied by Nie

& Tanveer [70℄; in this paper and in [96℄ the possibility of \pin
hing" is 
onsidered, where, for

a shrinking bubble, opposite sides of the bubble tou
h before the bubble has vanished, and the

solution breaks down.

The work of [96℄ demonstrates that the ideas pioneered by Hopper [37, 38℄ and Ri
hardson [82℄

for bounded 
uid domains, 
arry through to the unbounded domain (with �nite bubble) 
ase with

little modi�
ation needed. However, very little work has been published relating to problems on

unbounded domains where the driving singularity is at some �nite point within the 
ow domain,

and, to our knowledge, all expli
it solutions whi
h have been found for su
h 
ases are for the mu
h

simpler, steady version. In fa
t, the only notable 
ontribution to this problem of whi
h we are

aware is the work of Jeong & Mo�att [52℄ (hen
eforth J & M), who solve the steady problem for

a vortex dipole pla
ed beneath a free surfa
e in a semi-in�nite 
uid domain. This is intended to

model experiments performed in a large tank of 
uid, with two 
ounter-rotating 
ylinders pla
ed

beneath the free surfa
e. Antanovskii [2℄ generalises their work in two ways: �rstly, he allows a

variable interfa
ial tension, to model the e�e
t of surfa
tant, and se
ondly, he assumes ea
h of the


ounter-rotating 
ylinders to be represented by a separate vortex singularity in the 
ow (although

an exa
t analyti
al solution is only found in the limit in whi
h these two vorti
es merge to form
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Figure 5.2: The geometry for the problem of a dipole pla
ed o�-
entre in a 
ir
le.

a single vortex dipole, as 
onsidered by J & M).

Our idea was to present a time-dependent version of the work of J & M (whi
h would hopefully

tend to their solution as t! 1), sin
e no solutions to problems of this kind exist in the 
urrent

literature. As we shall see though, this is far from trivial, involving 
ompli
ations of the kind

hinted at in x5.1. Before 
onsidering su
h a generalisation, we will brie
y review the analysis of

J & M, but before we do this we solve the 
orresponding ZST Hele-Shaw problem, whi
h turns

out to be mu
h more straightforward than the Stokes 
ow problem.

5.3 The Hele-Shaw dipole problem

In this se
tion we show that the ZST Hele-Shaw version of the J & M dipole problem 
an be

solved without diÆ
ulty. It is worth doing this for two reasons; �rstly, it represents an interesting

new solution for Hele-Shaw, being one whi
h exhibits the \transient 5/2-power 
usp" behaviour

referred to earlier, and furthermore, it has the driving singularity at a �nite point within the 
uid

domain (as in the Stokes 
ow literature, most in�nite-domain Hele-Shaw solutions have driving

singularities at in�nity). Se
ondly, it illustrates the use of the pro
edure outlined in x2.5, for

dedu
ing the form of the mapping fun
tion that is needed for a parti
ular geometry.

The analysis is a simple adaptation of that given in Ri
hardson [79℄, where the same geometry is

assumed (i.e. an initially 
ir
ular domain, with an o�-
entre singularity; see �gure 5.2) but instead

a point sink drives the 
ow. The dipole singularity in our example for
es a more 
ompli
ated

mapping fun
tion than in that paper; hen
e the solution we obtain has a di�erent stru
ture|all

solutions in [79℄ blow up in �nite time via formation of a single 3/2-power 
usp.

Re
all the result (2.10) linking the time evolution of the S
hwarz fun
tion, g(z; t), to the


omplex potential, W(z), of the 
ow. For the 
ase of a vortex dipole singularity of strength M at

the origin, in the sense of �gures 5.2 and 5.3, the only singularity of W(z) is at z = 0, this being

W(z) = �

M

z

+O(1) as z ! 0:
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It follows from (2.10) that, near the origin, the S
hwarz fun
tion varies a

ording to

�g

�t

= 2

dW

dz

=

2M

z

2

+O(1) as z ! 0; (5.2)

so that, de
omposing the S
hwarz fun
tion a

ording to (2.25), the singular part must satisfy

g

e

(z; t) = g

e

(z; 0) +

2Mt

z

2

:

The S
hwarz fun
tion for a 
ir
ular initial domain, with 
entre at z = � and radius r > �, is

given in [79℄ (and in any 
ase is trivial to �nd) as

g(z; 0) = �+

r

2

z � �

; (5.3)

hen
e for t > 0 the singular part of the S
hwarz fun
tion is given expli
itly by

g

e

(z; t) =

r

2

z � �

+

2Mt

z

2

: (5.4)

Let the point d(t) within fj�j � 1g map to the point � in the physi
al domain, w(d) = � (we

know that the origin maps to the origin, and that the mapping fun
tion is analyti
 on the unit

dis
). The relation (2.27) then tells us that the 
omplex 
onjugate mapping fun
tion �w(1=�) has

to have a double pole at � = 0, a simple pole at � = d, and no other singularities. Sin
e w(0) = 0,

�w(1=�) must also vanish at in�nity, and hen
e must be of the form

�w(1=�) =

a

�

2

+

B

�

+

C

� � d

; (5.5)

so that assuming a; B; C; d 2 R, whi
h amounts to assuming symmetry about the x-axis, we

have

w(�) = a�

2

+B� +

C�

1� d�

: (5.6)

To determine the parameters a; B; C and d in (5.6), we need to mat
h singularities within the unit

dis
 in equation (2.12). This requires a straightforward lo
al analysis at ea
h of the singularities,

and yields the three algebrai
 equations,

a(B + C)

2

= 2Mt; (5.7)

B(B + C)

3

a+ Cd

= �4Mt; (5.8)

Cw

0

(d) = C

�

2ad+B +

C

(1� d

2

)

2

�

= r

2

: (5.9)

The fourth equation needed 
omes from the requirement w(d) = � (whi
h embodies the fa
t that

the singularities of the S
hwarz fun
tion remain �xed in the physi
al plane for Hele-Shaw 
ow),

ad

2

+Bd+

Cd

1� d

2

= �: (5.10)

These equations are seen to satisfy automati
ally the 
orre
t initial 
onditions for the geometry


(0), namely

a(0) = 0 = B(0); C(0) = r

�

1�

�

2

r

2

�

; d(0) =

�

r

:

Note that the system is simpler if we repla
e (5.8) by ((5.8) + 2� (5.7)), i.e.

2a(a+ Cd) +B(B + C) = 0: (5.11)
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Figure 5.3: The geometry for the dipole-in-a-half-spa
e problem.

Solving for a; B; C and d gives the evolution of the 
uid domain until su
h time as the solution

breaks down, with loss of univalen
y of the mapping fun
tion. We do not solve (5.7){(5.10)

expli
itly, however, be
ause we are primarily interested in the in�nite domain limit (�gure 5.3).

In addition, the system (5.7){(5.10) is spe
i�
 to an initially-
ir
ular geometry (or an initially-


at geometry in the unbounded domain limit), and it is 
lear that with the mapping fun
tion

(5.6), we may 
onsider the evolution of more general initial domains than this. Sin
e we are now

proposing a de�nite form, (5.6), for w(�; t), the governing equations for the more general 
ase are

best obtained using the method outlined below equation (2.12) in x2.3 (and illustrated in x2.4).

We know that (5.2) represents the only singular behaviour of �g=�t in 
(t). We also know

that g(z) � �w(1=�) (equation (2.12)), whi
h by (5.5) has singularities at points � = 0 and � = d

within the unit dis
. Hen
e, expanding the mapping fun
tion to �nd � as a fun
tion of z in the

neighbourhood of these points, we may �nd the lo
al form of g(z) at both points z = 0, z = w(d),

and use (5.2) to get the o.d.e.'s governing the 
oeÆ
ients. Near z = 0 = � we have

� =

z

w

0

(0)

�

w

00

(0)z

2

2w

0

(0)

3

+O(z

3

);

so that a lo
al analysis here yields

g(z) =

aw

0

(0)

2

z

2

+

aw

00

(0) +Bw

0

(0)

z

+O(1):

Hen
e, mat
hing singularities in (5.2),

d

dt

(aw

0

(0)

2

) = 2M; (5.12)

aw

00

(0) +Bw

0

(0) = 
onst. = k

1

: (5.13)

Near � = d,

� � d =

z � w(d)

w

0

(d)

+O((z � w(d))

2

);

so by (2.12) and (5.5),

g(z) =

Cw

0

(d)

z � w(d)

+O(1);
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and (5.2) gives the two equations

w(d) = 
onst. = �; (5.14)

Cw

0

(d) = 
onst. = r

2

: (5.15)

Equations (5.7), (5.11), (5.10) and (5.9) are easily seen to be a spe
ial 
ase of equations (5.12){

(5.15).

2

The 
onstants in (5.14) and (5.15) are arbitrary; we write them as � and r

2

to 
onform

with the spe
ial 
ase 
onsidered �rst. We are justi�ed in assuming that the 
onstant in (5.15)

is positive, sin
e we are assuming that the positive real axis within the unit dis
 maps onto the

positive real axis in the 
uid domain.

Taking the in�nite domain limit of the problem involves letting r and � tend to in�nity whilst

keeping r � � = k �xed. Equations (5.12) and (5.13) have trivial limits,

a(B + C)

2

= 2Mt+ 
onst.; (5.16)

2a(a+ C) +B(B + C) = k

1

; (5.17)

whilst a 
areful analysis of equations (5.14) and (5.15) shows that they redu
e to the single


ondition

C � 2(a+B) = 2k: (5.18)

Geometri
ally this last equation is what we expe
t; it says that asymptoti
ally, the free boundary

is jyj ! �1, x � �k. It is easily veri�ed that the solution represented by equations (5.16){(5.18)

gives a velo
ity �eld whi
h tends to zero at in�nity, whi
h we 
learly require for a realisti
 solution.

To see by what possible means this more general solution may blow up, we must 
onsider the

subset of (a;B;C)-parameter spa
e on whi
h the map with d = 1 is univalent. For this purpose

it is simplest to rewrite the map as

w(�) = a

�

�

2

+ b� +


�

1� �

�

; (5.19)

so that in fa
t we only need 
onsider univalen
y of the map in (b; 
)-parameter spa
e. The only

drawba
k of writing the map this way is that the limit a ! 0 is degenerate; maps whi
h pass

through or start from su
h 
on�gurations must have 
! �1 (b 
an either be
ome unbounded or

remain O(1))|the \initially 
at" 
on�guration is one su
h 
ase, as are any solutions whi
h pass

through 
at 
on�gurations.

We may determine the univalen
y domain V in (b; 
)-parameter spa
e by looking for boundary


urves on whi
h w

0

(e

i�

) = 0 for real � (the 
ondition that the free boundary has a 
usp), and

also 
urves on whi
h w(e

i�

) = w(e

�i�

) for real, nonzero � (the 
ondition that the free boundary is

self-interse
ting, using the symmetry of the domain). We omit the analysis, whi
h is not diÆ
ult,

but rather tedious. The result is that V is split into two parts, in 
 > 0 and 
 < 0 (see �gure 5.4;

the line 
 = 0 is not relevant to the present dis
ussion, sin
e it represents bounded 
uid domains,

and our solution traje
tories 
annot rea
h it). That part of V in 
 > 0 is bounded by the lines

4b+ 
 = 8 and 
 = 0;

whilst the part in 
 < 0 is bounded by

b+ 
+ 4 = 0; 
 = 0;

and the parabola


+

�

b

2

+ 1

�

2

= 0;

2

Note that the system (5.12){(5.15) 
ould have been obtained working wholly in the �-plane, using the ZST

version of (3.38).
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Figure 5.4: The univalen
y domain in (b; 
)-spa
e for the mapping fun
tion (5.19).
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Figure 5.5: Typi
al free boundaries generated by points (b; 
) on the boundary of the univalen
y domain (�gure

5.4). The dipole is situated at the origin in ea
h 
ase, and is su
h that the x-axis is a streamline in the positive

sense. (1) has a = 1, b = 1, 
 = 4, and has a single 
usp in the free boundary; (2) has a = �1, b = 1, 
 = �5, and

has two 
usps in the free boundary, and (3a) has a = �1, b = 4, 
 = �9, and shows the free boundary beginning

to overlap itself. (3b) is an enlargement of the trapped air bubble in (3a).
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whi
h meets the line b+ 
+ 4 = 0 at the point (2

p

3;�(4 + 2

p

3)).

With our \normalisation 
ondition" that the positive real axis in the �-plane should map to

the positive real axis in the z-plane, we require a(0) > 0 for solutions in 
 > 0, and a(0) < 0

for solutions in 
 < 0. Geometri
ally, in the upper part of V , the line 4b+ 
 = 8 
orresponds to

loss of univalen
y via formation of a single 3/2-power 
usp at the point z = w(�1) on �
 (�gure

5.5 (1)). The line 
 = 0 is the �nite domain limit in whi
h the 
uid domain is a 
ardioid (
f the

lima�
on example of x2.4). In the lower part of V , the line b+ 
+ 4 = 0 gives free boundaries �


having two 3/2-power 
usps, symmetri
ally pla
ed about the x-axis (�gure 5.5 (2)). Along the

paraboli
 portion of �V the free boundary is nonanalyti
 due to self-interse
tion (�gure 5.5 (3)),

ex
ept for the isolated point (6;�16), where �
 has a single 5/2-power 
usp|at this point the

parabola is a
tually tangent to the line 4b + 
 = 8 (whi
h formed part of �V in the upper half

plane, 
 > 0). Figures 5.4 and 5.5 should 
larify the above explanation.

The analogues of equations (5.16){(5.18) for the modi�ed mapping fun
tion (5.19) are:

a

3

(b+ 
)

2

= 2Mt+ 
onst.; (5.20)

2(1 + 
) + b(b+ 
) =

k

1

a

2

; (5.21)


� 2(1 + b) =

2k

a

; (5.22)

eliminating a between the last two yields the solution traje
tories in (b; 
)-spa
e as

2 + b

2

+ 
(2 + b)

(1 + b� 
=2)

2

= �;

for various 
onstants �, determined by the initial 
onditions (�gure 5.6). This equation 
learly

represents some kind of 
oni
 se
tion, depending on the value of � 
hosen. Changing to axes

aligned with the prin
ipal axes, it 
an be rearranged into the form

�

b�




2

+ 1 + 3�

�

2

� 4�

�

b+




4

+ 1

�

2

= 9�(1 + �);

where � = 1=(3�+ 1). From this it is 
lear that for 0 < � < 1 the phase paths are bran
hes of

hyperbolae, with asymptotes




2

(1�

p

�) = b(1� 2

p

�) + 1 + 3�� 2

p

� ;

(so the gradient of these asymptotes is 2(1 � 2

p

�)=(1 �

p

�)). The two sets of bran
hes are

separated by the � = 0 (straight line) path,

b�




2

+ 1 = 0:

A positive value of � does not uniquely spe
ify a solution path then, sin
e there are two possible

bran
hes. This is not a problem, however, be
ause the value of � is determined by the initial


onditions, and obviously the free boundary has to evolve in a 
ontinuous manner, so we must

stay on the parti
ular path on whi
h we start.

Values of � between �1 and �1 give ellipti
al phase paths, � = �1 being the value at whi
h

the family of ellipses 
ollapses to the single point (0;�4), whi
h a
tually lies on the boundary

�V . There are no real phase traje
tories for � 2 (�1; 0). The limit � ! �1 
orresponds to the

original parameter � approa
hing the value �

1

3

from above or below; the limiting phase path is a

parabola with equation

Y

2

=

3

2

�

X �

3

2

�

; (5.23)

where X = 1 + b� 
=2 and Y = 1 + b+ 
=4 are the 
o-ordinates along the prin
ipal axes of the

family of 
oni
s.
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Figure 5.6: The phase diagram (within the univalen
y domain) for the Hele-Shaw dipole problem.
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Figure 5.7: Enlargement of the transient 5/2-power 
usp formation. Pi
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on�guration (a), to a smooth boundary (b), before ultimately

blowing up with two 3/2-power 
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The phase diagram within the univalen
y domain is shown in �gure 5.6. The arrows on the

phase paths are for positive values of the dipole strength M (so the dipole has the sense in �gure

5.3); if the dipole is reversed, so are these arrows. Points to note about the phase diagram are:

� The existen
e of the ellipti
al solution traje
tory for � = �5, whi
h is tangential to the

paraboli
 part of �V at the point (6;�16), and re-enters V immediately (�gure 5.7). As

dis
ussed in x5.2, this 
orresponds to the appearan
e, and subsequent immediate disappear-

an
e, of a 5/2-power 
usp in �
. Note that this traje
tory rea
hes the boundary b+
+4 = 0

of �V shortly afterwards, so that the solution does ultimately blow up with the formation

of two 3/2-power 
usps in �
.

� The existen
e of the \degenerate" phase path b = 0; 
 = �4, (� = �1), whi
h lies on �V .

This 
annot represent a solution, however, sin
e equations (5.20){(5.22) 
annot be solved

for a(t) if b and 
 are 
onstant.

� The paraboli
 phase path (� ! �1, or � = �1=3), separating the ellipti
al paths in the

lower part of V , from the bran
hes of the hyperboli
 paths in that part of V .

In the lower part of V , the paths whi
h \go o� to in�nity" whilst remaining within V are

those hyperboli
 paths for 0 < � < 1 whi
h lie to the right of the \separatrix" 1 + b = 
=2 (the

� = 0 path), and those for 0 < � < 1=4 to the left of the separatrix.

For the paths lying to the right of the separatrix, � = 1 (� = 0) gives the hyperbola whi
h has

an in�nite-gradient asymptote. The 
orresponding asymptotes of the hyperbolae for 0 < � < 1

have gradients lying in the range 2 to 1 (2 being the gradient of the separatrix), whilst those for

� > 1 will have asymptotes with negative gradient. These � > 1 hyperbolae will thus interse
t the

paraboli
 part of �V before b and 
 be
ome in�nite, and solution breakdown via self-overlapping

of the free boundary o

urs. The hyperbolae for 0 < � < 1, whi
h lie between the � = 0 separatrix

and the � = 1 path, have 
orresponding bran
hes in the upper part of V . What happens with

these solutions is that we rea
h 
 = �1 within �nite time, then reappear on the 
orresponding

bran
h at 
 = +1 in the upper part of V . We have to be 
areful, sin
e there are two possible

bran
hes for a parti
ular value of �, but a little thought tells us that the \
orresponding bran
h"

is the bran
h having the same value of �, but now lying to the left of the separatrix in the upper

half of V , sin
e the free boundary shape must 
hange in a 
ontinuous manner.

This transition from 
 = �1 to 
 = +1 is simultaneous with a passing through the value

zero. Only if b remains O(1) as this happens will we have the free boundary passing through the


ompletely 
at 
on�guration, whi
h is the spe
ial 
ase we 
onsidered �rst. This will be exa
tly

the hyperboli
 path whose asymptote has in�nite gradient, i.e. the � = 1 (or � = 0) path, along

whi
h b! �2 as �! �1.

For the paths lying to the left of the separatrix in the lower half of V , � = 1=4 is the value for

whi
h one of the asymptotes of the hyperbola has zero gradient. Phase paths for 0 < � <

1

4

will

thus extend to in�nity without leaving the domain V ; as above, this will o

ur within �nite time,

and the solution is 
ontinued by reappearing at in�nity on the 
orresponding path in the upper

part of V , whi
h will here lie to the right of the � = 0 separatrix. It 
an be seen, by 
onsidering

the arrows on the phase paths in the upper half of V , that all solutions exhibiting this kind of

behaviour will ultimately blow up with formation of a 3/2-power 
usp in the free boundary at the

point w(�1).

The paraboli
 phase path is ex
eptional in that it has no 
omponent in the upper part of

V . The solution represented by this traje
tory blows up within �nite time when it interse
ts the

paraboli
 part of �V , at the point (b; 
) = (21:2328;�134:941), with self-interse
tion of the free

boundary.

We have been able to analyse the possible kinds of behaviour, without solving expli
itly for

(a; b; 
). A 
omplete des
ription would involve solving (5.20){(5.22), but little would be gained

by doing this, sin
e the above working 
aptures all the essentials, and 
ertainly all the interesting

aspe
ts of the problem.

As an aside, we 
omment that the analysis may be extended to the 
ase of a general multipole

singularity at the origin (as 
onsidered by Entov et al. [24℄). For a multipole of order n, the
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omplex potential has the behaviour

W(z) = �

M

z

n

+O(1) as z ! 0;

so that the singular part of the S
hwarz fun
tion is given by

g

e

(z; t) =

r

2

z � �

+

2nMt

z

n+1

;

instead of (5.4). Thus in this 
ase, by (2.27), the 
omplex 
onjugate mapping fun
tion must have

a pole of order (n+1) at � = 0 and a simple pole at � = d as its only singularities within the unit

dis
, and must vanish at in�nity. The mapping fun
tion for this 
ase will therefore be given by

w(�) =

n+1

X

r=1

a

r

�

r

+

C�

1� d�

; (5.24)

(with d = 1 in the unbounded domain limit). The more 
ompli
ated form of this fun
tion will

allow for more varied behaviour of solutions, but for larger values than n = 1 it is mu
h more

diÆ
ult to determine the univalen
y region for the map in parameter spa
e.

5.4 The Stokes 
ow dipole problem

5.4.1 Review of Jeong & Mo�att's steady solution

Before 
onsidering time-dependent possibilities, we �rst review the steady Stokes 
ow dipole

problem as solved by J & M [52℄, sin
e this was our original motivation for studying problems on

unbounded domains with �nite driving singularities. This problem models experiments performed

(at low Reynolds number) in a large tank of vis
ous 
uid, with two 
ounter-rotating 
ylinders

pla
ed beneath the free surfa
e. Above a 
ertain 
riti
al rate of rotation of the 
ylinders, a steady

state was qui
kly attained in whi
h the free surfa
e of the 
uid above the 
ylinders had an apparent


usp. It is this steady-state 
on�guration whi
h J & M's solution des
ribes.

The presentation we give here is slightly di�erent to theirs, sin
e we use the te
hniques and


onventions of this thesis; however in all essentials it is the same. We use the form of the governing

equations given in x3.2.1; in the simpler time-independent 
ase here, equation (3.26) integrates to

X (�) + �w(1=�)�(�) = 0; (5.25)

whi
h is just the 
ondition that the free boundary be a streamline, analyti
ally 
ontinued to hold

globally. �(�) is given (from (3.15)) by

�(�) =

T

4�

[f

+

(0)� 2f

+

(�)℄�w

0

(�; t) +

w

0

(�)

w

0

(0)

A(1� �

2

); (5.26)

where we have assumed �(�) to be bounded at the origin (with limit A), whi
h will be the 
ase if

we have a pure vortex dipole at the origin. We have also assumed that A is real, whi
h is equivalent

to requiring the geometry to be symmetri
 about the x-axis (if we also have a 
onformal map with

real parameters). Thus our geometry is J & M's, rotated through 90

0

, and the free boundary at

in�nity will be x = 
onstant, with the 
uid o

upying the region to the right of this boundary

(see the Hele-Shaw de�nition sket
h, �gure 5.3). The dipole is taken to be situated at the origin,

and the 
onformal map is subje
t to the usual 
onditions w(0; t) = 0, w

0

(0; t) > 0.

Some point on the unit 
ir
le must map to in�nity; with the above restri
tions, this 
an only

be the point � = 1. The geometri
al 
onstraint that the free boundary be asymptoti
ally 
at

for
es the behaviour

w(�) =

�

1� �

+O(1) as � ! 1;
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for some real positive �, and there are no other singularities of w(�) within the unit dis
. Con-

sideration of the dipole behaviour at � = 0 requires (using (5.25))

�w(1=�) = �

M

Aw

0

(0)�

+O(1) as � ! 0; (5.27)

so that the mapping fun
tion must be of the form

3

w(�) = �� +

��

1� �

: (5.29)

For this map, the free boundary at in�nity is given by

x = ��

�

2

; jyj ! 1;

and sin
e we must be able to spe
ify the depth of the dipole beneath this asymptoti
 free surfa
e,

we may insist

� =

�

2

� 1

without loss of generality (taking this dipole depth to be 1). There are now only two unknown

quantities, the parameter �, and A � �(0). The behaviour at the dipole gives A in terms of �,

sin
e by (5.27) and (5.29) we must have

�A = �

M

w

0

(0)

� �

M

3�+ 2

:

We �nally have to satisfy the 
ondition that the 
ow be stagnant at in�nity, where the e�e
t of

the dipole 
annot be felt. The most general behaviour of �(z) and �(z) allowing this is

�(z) = �

p

1

4�

z + �
+O(1=z); (5.30)

�(z) = 
z +O(1); (5.31)

both holding as jzj ! 1; this may be seen from (3.2) and (3.3) (p

1

denotes the pressure �eld at

in�nity). For this parti
ular 
ase we take p

1

= 0; this is ne
essary if we are to get the 
orre
t

balan
e in (5.25) at in�nity, be
ause the map (5.29) satis�es

�w(1=�) � �w(�) (5.32)

at leading order, as � ! 1. With our symmetri
 geometry, the 
onstant 
 will be real. Thus, if

we 
an ensure that �(�) remains bounded as � ! 1, denoting this limit by 
, equation (5.25) will

automati
ally ensure that the se
ond of the `stagnant 
ow' 
onditions is satis�ed.

Writing � = 1� �, (5.26) gives the asymptoti
 behaviour of �(�) near � = 1 as

�(�) =

T�

4��

2

(f

+

(0)� 2f

+

(1))�

1

�

�

T�

4�

(f

+

(0)� 2f

+

(1)� 2f

0

+

(1))�

2A�

w

0

(0)

�

+O(1):

3

We note in passing that the analysis is easily generalised to the 
ase of a general multipole singularity at the

origin, for whi
h the fun
tion X (�) has the behaviour

X (�) =

M

�

n

w

0

(0)

n

+O

�

1

�

n�1

�

; as � ! 0: (5.28)

This would ne
essitate a pole of order n at � = 0 in �w(1=�), giving the general form of the map as

w(�) =

n

X

r=1

�

r

�

r

+

��

1� �

:
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(All quantities appearing in this expression are either given, or else are known fun
tions of �). It

is easy to see from the de�nition (3.8) that

f

+

(0)� 2f

+

(1) =

i

2�

Z

2�

0

sin � d�

jw

0

(e

i�

)j(1� 
os �)

;

whi
h is identi
ally zero, by a simple symmetry argument. Thus the singularity of order 1=�

2

in

�(�) vanishes automati
ally, and we need only impose the 
ondition

T

4�

f

0

+

(1) +

A

w

0

(0)

= 0;

to remove the order 1=� singularity. Use of (3.8) redu
es this to

�(0) =

Tw

0

(0)

16��

Z

2�

0

1

jw

0

(e

i�

)j

d�

(1� 
os �)

;

whi
h is the single 
ondition needed to 
omplete the solution. For detailed dis
ussion of the

results, and 
omparison of the free boundary shape with experiment, see [52℄.

5.4.2 The time-dependent problem

Having seen how the steady problem works, we 
onsider how we might generalise the analysis to

�nd a time-dependent solution. Re
alling the 
omments of x5.1, we 
annot expe
t to �nd su
h a

solution unless we allow the singularity to move relative to the 
uid mass, and we �nd that this

is indeed the 
ase, at least when we assume �(0) = 0.

We begin by observing that, if su
h a solution exists, it must be realisable as the limit of

a dipole-in-
ir
le problem, su
h as we solved for Hele-Shaw 
ow in x5.3. Motivated by this, we

attempt the Stokes 
ow problem, using the method outlined in x3.7 to �nd the 
onformal map.

As 
ommented in x3.6.2, if a 
onformal map gives a solution to the ZST time-dependent problem,

the same map will also work for the NZST problem, hen
e we 
onsider the easier ZST 
ase. For

a pure dipole singularity at the origin, we require �(�) to be bounded there, but do not yet know

whether we may assume it to be zero. (Given that �(0) turned out to be nonzero for the steady

problem of x5.4.1, we 
an hardly expe
t to �nd a time-dependent solution for whi
h it is zero,

but it is instru
tive to see what happens when we 
onsider both 
ases.) We 
onsider the simpler

situation in whi
h �(0) � 0 �rst.

In this 
ase, and with a dipole singularity at the origin, the fun
tion H

e

(�; t) is given by (3.63),

so we need to determine H

e

(�; 0). The S
hwarz fun
tion of the initial domain is exa
tly as for

the Hele-Shaw problem, and is given by (5.3); from this the fun
tions g

e

(z; 0) and h

e

(z; 0) are

immediate as

g

e

(z; 0) =

r

2

z � �

; h

e

(z; 0) = r

2

log(z � �):

If d is the (unique) point within the unit dis
 su
h that w(d; 0) = �, then we must have

H

e

(�; 0) = r

2

log(� � d); (5.33)

so that for the 
ase of a dipole singularity driving the 
ow we have

H

e

(�; t) = r

2

log(� � d)�

M�(t)

�

;

by (3.63), with �(t) as de�ned there. Sin
e H

0

(�) = w

0

(�) �w(1=�), the singular part of this


ombination within the unit dis
 is given by

[w

0

(�) �w(1=�)℄

sing

=

r

2

� � d

+

M�(t)

�

2

:
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These singularities must 
ome from the term �w(1=�), the mapping fun
tion being analyti
 on the

unit dis
. Hen
e, if a solution to the problem as stated exists, the 
orre
t mapping fun
tion must

be su
h that �w(1=�) has a double pole at the origin, and a simple pole at some (�xed) point � = d,

as its only singularities within the unit dis
. It 
an have no singularities outside the unit dis


sin
e this would entail w(�) being nonanalyti
 on j�j < 1. It follows that w(�) must be of the

form

w(�) = a�

2

+ b� +


�

1� d�

; (5.34)

for some time-dependent parameters a; b and 
, whi
h is exa
tly the map whi
h was used for the

Hele-Shaw solution of x5.3.

4

This will always be the 
ase with the assumption �(0) = 0; if a

Stokes 
ow solution of this kind exists, it must be su
h that the mapping fun
tion is the same as

for the 
orresponding Hele-Shaw solution.

To �nd the equations governing the evolution of the parameters in (5.34), we must return to

(3.29) and make a quantitative 
omparison of singularities at � = 0 and � = d. The appropriate

behaviour of X

0

(�) on the right-hand side of (3.29) is X

0

(�) = �M=(�

2

w

0

(0)) +O(1) near � = 0,

whilst X

0

(�) must be regular at � = d. Mat
hing at � = 0 gives the equations

d

dt

(a(b+ 
)) =

2M

b+ 


; (5.35)

2a(a+ 
d) + b(b+ 
) = 
onst: = 0; (5.36)

while eliminating the singularity at � = d yields

d = 
onst: =

�

r

; (5.37)


w

0

(d) = 


�

2ad+ b+




(1� d

2

)

2

�

= 
onst. = r

2

: (5.38)

Note that equations (5.36) and (5.38) are exa
tly the same as (5.11) and (5.9) for the Hele-Shaw

problem; (5.35) is analogous to (5.7), and (5.37) is analogous to (5.10). The 
onstan
y of d

here emerged naturally as a 
onsequen
e of the solution (3.63), but in any 
ase 
ould have been

assumed a priori by the 
omment of x3.6.2 that the singularities of the S
hwarz fun
tion must

remain �xed in the �-plane. The values of the 
onstants on the right-hand sides of these equations

were obtained from the initial 
onditions on the map ne
essary to give the 
ir
le of radius r 
entred

at z = �, namely


(0) = r(1�

�

2

r

2

); b(0) = 0 = a(0); d(0) =

�

r

;

the 
ondition on d(0) gives the value of d for all time. We have the three equations (5.35), (5.36)

and (5.38) to solve for the fun
tions a(t), b(t) and 
(t), whi
h is a well-determined system. At

�rst sight then, it seems that everything is leading to a solution of the physi
al problem; however

when we 
onsider the large domain limit (as we did for the analogous Hele-Shaw problem), we

en
ounter problems, �nding that the entire 
uid mass translates uniformly relative to the (�xed)

dipole (or vi
e-versa, if we subtra
t o� this translational velo
ity from the solution).

To see this expli
itly, we take the same limit as in x5.3, letting r !1, �!1, while keeping

(r � �) �xed at k (this being the problem of a dipole pla
ed at z = 0 in the half-spa
e of 
uid

fx > �kg). In this limit d approa
hes the value 1, and 
(0) approa
hes 2k. Equation (5.35) still

stands, and (5.36) has the obvious limit obtained by setting d = 1. A leading-order balan
e is

a
hieved in (5.38) only if 
(t) assumes the 
onstant value, 2k. As the limit is approa
hed, it is

prudent to look at what is happening far from the dipole, sin
e physi
ally the free surfa
e ought

4

As 
ommented there (and again in footnote (3)), we 
ould equally well 
onsider a multipole singularity at the

origin. For a multipole of order n the fun
tion X (�) has the behaviour of (5.28); this would also lead us to the

same map as for Hele-Shaw, namely (5.24).
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to be undisturbed (
at) as x ! �1, and the velo
ity �eld ought to be zero at in�nity. For the

ZST problem with �(0) = 0, the velo
ity �eld is given by (C.1) with T = 0, that is,

2(u� iv) = �w

t

(1=�) + w

t

(�) +

w

0

t

(�)

w

0

(�)

�

�w(1=�)� w(�)

�

: (5.39)

The map for the in�nite domain limit is

w(�; t) = a�

2

+ b� +


�

1� �

;

with initial 
onditions as before ex
ept that now 
(0) = 2k. Sin
e � = 1 maps to in�nity, we write

� = 1� � for small � 2 C and examine the velo
ity �eld (5.39). The various expressions are found

to be

�w(1=�) = �




�

+ (a+ b) + �(2a+ b) +O(�

2

);

w(�) =




�

+ (a+ b� 
)� �(2a+ b) +O(�

2

);

�w

t

(1=�) = �

_


�

+ (_a+

_

b) + �(2 _a+

_

b) +O(�

2

);

w

t

(�) =

_


�

+ (_a+

_

b� _
)� �(2 _a+

_

b) +O(�

2

);

w

0

t

(�)

w

0

(�)

=

_





+

�

2




2

h


(2 _a+

_

b)� _
(2a+ b)

i

+

2�

3




2

(a _
� _a
) +O(�

4

);


ombining these gives the velo
ity at large distan
es from the dipole as

u� iv = �

_


�

+ (_a+

_

b) +O(�):

The leading-order term here vanishes, sin
e we already know 
 is a 
onstant (equal to 2k) from

the balan
e of terms in (5.38). We also require

a(t) + b(t) = 
onst. = 0;


ombined, these two 
onditions give 
� 2(a+ b) = 2k, 
f (5.18), whi
h is exa
tly the requirement

that the asymptoti
 free boundary at in�nity be �xed relative to the dipole. These 
onditions

are 
learly in
ompatible with equations (5.35) and (5.36) (with d = 1 in the latter). Insisting

that (5.35) and (5.36) hold, as they must 
ertainly do to �t the 
onditions at the dipole, the best

we 
an then do is to take 
(t) to be 
onstant, giving bounded, but nonzero, velo
ity at in�nity.

Physi
ally, this 
orresponds to the entire 
uid mass translating with speed a(t) + b(t) relative to

the �xed dipole, whi
h is a highly arti�
ial geometry. The unrealisti
 nature of this large domain

limit implies that the �nite domain solution represented by the system (5.34){(5.38) must also be

arti�
ial, otherwise it would give a sensible limit.

5

The una

eptability of this parti
ular solution is a 
onsequen
e of the assumption �(0) = 0

whi
h was made, sin
e if a solution exists to the problem of a pure dipole in this geometry, �(0) is

ne
essarily regular at the origin, but need not vanish there (see the 
omments following (3.14) in

x3.1). We therefore 
onsider what form the mapping fun
tion must take in this 
ase. The relevant

governing equations for the S
hwarz fun
tion are now (3.57) and (3.54); by the remarks following

(3.57) the solution for H

e

(�; �) may be written down from (3.58) as

H

e

(�; �) =

C

0

�

log � �

1

�

Z

�

0

(C

0

+M�=A(�

0

)) d�

0

tanh(�

0

� � + tanh

�1

�)

�

1

�

f(tanh

�1

� � �)

�

1

�

Z

�

0

C

1

(�

0

) d�

0

;

5

As an aside, we note that if we 
onsider the simpler problem of a point sink singularity in this geometry, the

same unphysi
al result is obtained.
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where C

0

and C

1

are, respe
tively, the zeroth and �rst \moments", and f is a fun
tion to be

determined. Note that we are now working with the s
aled time variable � , de�ned in (3.51), and

that sin
e we have no point sink at the origin, the \moment" C

0

is a 
onstant equal to the area of

the 
uid domain (�r

2

here). We have initial 
onditions (5.33) as before, from whi
h the fun
tion

f is seen to be

f(�) = �r

2

log(tanh �)� �r

2

log(tanh � � d):

After simplifying and rearranging, the solution for H

e

be
omes

H

e

(�; �) = r

2

log � � r

2

log(� � tanh �) + r

2

log(� � tanh(� + tanh

�1

d))

�r

2

Z

tanh �

0

(1� �x) dx

(� � x)(1� x

2

)

�M

Z

tanh �

0

(1� �x) dx

A(� � tanh

�1

x)(� � x)(1� x

2

)

;

(plus some fun
tion of � , irrelevant to the dis
ussion). Hen
e,

H

0

e

(�; �) =

r

2

�

�

r

2

� � tanh �

+

r

2

� � tanh(� + tanh

�1

d)

+r

2

Z

tanh �

0

dx

(� � x)

2

+M

Z

tanh �

0

dx

A(� � tanh

�1

x)(� � x)

2

: (5.40)

As dis
ussed in x3.7, this must give us the singularities of �w(1=�) within the unit dis
. The

above expression for H

0

e

(�; �) reveals these to be simple poles at � = 0, � = tanh � , and � =

tanh(� + tanh

�1

d), as well as a line singularity along the line segment (0; tanh �) on the positive

real axis. Hen
e, the form of the mapping fun
tion needed to give a solution for this parti
ular

problem must be su
h that

�w(1=�) =

a

�

+

b

� � tanh �

+




� � tanh(� + tanh

�1

d)

+

Z

tanh �

0

R(x; �)

(� � x)

2

dx

+

Z

tanh �

0

Q(x; �)

� � x

dx;

so that

w(�) = a� +

b�

1� � tanh �

+


�

1� � tanh(� + tanh

�1

d)

+

Z

tanh �

0

�

2

R(x; �)

(1� x�)

2

dx

+

Z

tanh �

0

�Q(x; �)

1� x�

dx; (5.41)

for some unknown fun
tions a(�), b(�), 
(�), R(x; �), Q(x; �). Note that this analysis is all in terms

of the s
aled time variable, hen
e if we wish to solve for su
h a mapping fun
tion, we must use

the governing equations in the form (3.60), (3.61). This form of w(�) is 
learly very 
ompli
ated,

and the algebra involved in substituting into (3.60) will be very messy; however, the arguments

leading to (5.41) were dedu
tive, and in prin
iple the problem 
an be solved. The parameter A(�)

provides the extra degree of freedom, whi
h is ne
essary to enable the \momentum 
ondition" to

be imposed. For the unbounded domain limit of the problem, this will be automati
 if we insist

that the 
onditions both at the dipole and at in�nity hold. For a bounded domain, the momentum

P of the 
ow is given by (3.17) with T = 0; with �(�) given by (3.61) this be
omes

P =

A(�)

iw

0

(0; �)

Z

j�j=1

w

0

(�) �w(1=�)(w

�

(�) + w

0

(�)(1� �

2

)) d�;

whi
h must vanish.
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As an aside, note that we may also �nd the \moment generating fun
tion" F

1

from (3.68) and

the remark following it, as

F

1

(�; �) =

Z

�

0

�

C

0

+

M�

A(�

0

)

�

tanh(�

0

� � + tanh

�1

�) d�

0

+ f

1

(tanh

�1

� � �)

+

Z

�

0

C

1

(�

0

) d�

0

: (5.42)

The arbitrary fun
tion f

1

is determined by the data (5.33), using the relations (3.54) and (3.67),

and is

f

1

(�) = �C

0

log(1� d tanh �):

Equating the 
onstant term on the right-hand side of (5.42) to zero then yields a 
onsisten
y


ondition analogous to (3.70), namely

C

1

(�) =

Z

�

0

�

C

0

+

M�

A(�

0

)

�

se
h

2

(�

0

� �) d�

0

+

C

0

d se
h

2

�

1 + d tanh �

) C

1

(�) =

Z

�

0

M�

A(�

0

)

se
h

2

(�

0

� �) d�

0

+ C

0

tanh(� + tanh

�1

d);

this gives a relation between C

1

(�) and A(�) (remember C

0

� �r

2

, a 
onstant). The other

\moments" also follow from (5.42), should we want them.

We have assumed a spe
i�
 geometry and driving me
hanism throughout this se
tion, but it

is 
lear that the same dedu
tive method of �nding the form of w(�; �) will apply quite generally,

provided we 
an solve (3.52) for H

e

(�; �). Given the 
omplexity of (5.41) it is unlikely that will

be able to determine solutions of this kind analyti
ally; however we have shown how, in prin
iple,

they may be 
onstru
ted.

Re
alling our 
omments of x5.1, the root of the diÆ
ulty lies in �nding a mapping fun
tion su
h

that the distribution of singularities of the S
hwarz fun
tion within the unit dis
 in �-spa
e allows

all 
onditions in the physi
al domain to be ful�lled. We have already seen (from our dis
ussion

of the 
ase �(0) = A = 0) that this is 
ertainly not possible for the 
ase where these singularities

remain �xed in �-spa
e. The above shows that, even in the 
ase A 6= 0 when the singularities are

allowed to move, a S
hwarz fun
tion whi
h has only isolated singularities within the unit dis
 is

not good enough; a 
ontinuous line distribution of singularities is needed, and moreover, this line

itself must vary in time.

We remark that if we were to attempt a general problem (with A 6= 0) using a S
hwarz fun
tion

with a distribution of isolated singularities at points �

r

= �

r

(�) 6= 0, say, within the unit dis
, then

it is easily seen from the governing equation (3.60) that these singularities must vary a

ording

to

d�

r

d�

= 1� �

2

r

(5.43)

(in 
ontrast to the 
ase A = 0, where the �

r

remain �xed). With the s
aled time variable � , they

are thus moving in a spe
i�ed manner within the unit dis
 (ex
ept for the singularity at � = 0


orresponding to the driving singularity, whi
h remains �xed). Behaviour of this kind is every

bit as restri
tive as �xed singularities, hen
e we 
annot expe
t to do any better for problems

with multiple, �xed driving singularities in this 
ase. It seems that the 
ontinuous distribution of

singularities is essential if su
h problems are to be treated by 
onformal mapping methods.

5.5 Steady Stokes 
ow re
onsidered

Sin
e the time-dependent problem with driving singularity at a �nite point proves so intra
table,

we re
onsider steady problems of this kind (little literature exists even for this simpler problem).
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Although we were able to 
onsider the ZST equations for the time-evolving problem with singu-

larities, surfa
e tension is essential in the steady problem. One 
an 
onsider the small surfa
e

tension limit of steady, NZST solutions (
f 
hapter 6, where we do this for the unsteady, �nite

domain problem), but this requires 
areful asymptoti
s, and is de�nitely not the same as setting

T = 0 in the steady equations (whi
h gives either trivial solutions, or no solution).

The most 
onvenient form of the equations to use is (5.25) and (5.26). The solution te
hnique

is best illustrated by example, and shows how the ideas introdu
ed by J & M 
an be generalised.

For the sake of de�niteness, we again 
onsider a dipole singularity situated at the origin in an

unbounded 
uid domain (though we 
ould easily 
onsider more general singularities), but in


ontrast to their solution, we assume the 
uid to 
ontain a �nite air bubble.

Assuming �(0) = A 6= 0 then, (5.25) implies that �w(1=�) must have a simple pole at the

origin, to balan
e with the dipole singularity. There will also be some point � = 
 within the unit

dis
 whi
h maps to in�nity; as usual, we 
onsider a map with real 
oeÆ
ients, so that without

loss of generality 
 2 (0; 1). Thus we 
onsider a map of the form

w(�) =

��(� � �)

� � 


; (5.44)

and this should give a solution. Note that the map (5.29) 
onsidered by J & M is the spe
ial 
ase


 = 1, so we are in e�e
t generalising their solution. Note also that this is exa
tly the map (5.1)

referred to in x5.2, for whi
h a Hele-Shaw solution has been found with a point sink singularity

driving the 
ow [33℄.

The usual 
onditions apply at the dipole, namely

X (�) =

M

�w

0

(0)

+O(1); �(�) = A+O(�); as � ! 0;

so mat
hing the order 1=� singularity at � = 0 in (5.25) gives


M

��

+ �A = 0: (5.45)

We also have to deal with the 
onditions at � = 
 (in�nity, in the physi
al plane). The most

general 
onditions allowing stagnant 
ow at in�nity are (5.30) and (5.31), and for the mapping

fun
tion (5.44) we 
an no longer take p

1

= 0. After a lo
al analysis of (5.26) at the point � = 
,


ondition (5.30) yields the three equations

T

4�

(f

+

(0)� 2f

+

(
)) +

A(1� 


2

)

��

= 0; (5.46)

2


2

A

��

�

T

4�

(f

+

(0)� 2f

+

(
)� 2
f

0

+

(
)) = �

p

1

4�

; (5.47)

A

�


(1� �
) +

T�


4�

�

f

+

(0)� 2f

+

(
) + (
 � �)

�

2f

0

+

(
) + 
f

00

+

(
)

�	

= 
�

p

1

4�

�(2
 � �): (5.48)

Condition (5.31), in 
onjun
tion with equation (5.25), yields another 
ondition,


 =

p

1

4�

�w(1=
): (5.49)

We have �ve equations, then, for the six unknowns �, �, 
, A, p

1

and 
. The system is not

underdetermined however, sin
e we have an arbitrary lengths
ale, represented by the parameter

�. We may simplify the system (5.45){(5.49) by introdu
ing the s
alings

^

A =

�

T

A; P

1

=

�p

1

T

; Ca =

M�

T�

2

; (5.50)
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here, Ca is a Capillary number for the 
ow (measuring the relative e�e
ts of vis
osity and surfa
e

tension), and the quantity P

1

is a dimensionless line pressure. If we also rede�ne the fun
tions

f

+

(�) by writing

F

+

(�) = �f

+

(�); (5.51)

then they are independent of the s
aling parameter �. With these s
alings, and eliminating 


between (5.48) and (5.49), we obtain the system:

�

^

A




+ Ca = 0; (5.52)

F

+

(0)� 2F

+

(
) +

4

^

A

�

(1� 


2

) = 0; (5.53)

4

^

A

�

(1 + 


2

) + 2
F

0

+

(
) = �P

1

; (5.54)

P

1




4

� 


2

� �
 + 1


(1� 


2

)(
 � �)

= �

4

^

A

�

+ 


2

F

00

+

(
): (5.55)

We now have four equations for the four unknowns �, 
,

^

A and P

1

. The Capillary number will

be spe
i�ed as part of the problem. It is a simple matter to eliminate P

1

and

^

A, giving just two

equations to be solved for the mapping parameters � and 
,

�

2

(F

+

(0)� 2F

+

(
)) = 4Ca
(1� 


2

); (5.56)




4

� 


2

� �
 + 1


(1� 


2

)(
 � �)

(4(1 + 


2

)Ca� 2�

2

F

0

+

(
)) = 4Ca+ �

2


F

00

+

(
): (5.57)

These equations are still very diÆ
ult though, sin
e the fun
tions F

+

( � ) depend nonlinearly on �

and 
, being de�ned through the expressions (3.8). A better notation emphasising this dependen
e

would perhaps be F

+

( � ;�; 
), but this is rather unwieldy.

Clearly, in the limit 
 ! 1 we require P

1

= 0 for a balan
e of terms in (5.55). In this limit,

equation (5.53) redu
es to an identity, and what remains is equivalent to the problem solved by

J & M for the dipole in a half spa
e.

The set of solution pairs (�; 
) to (5.56) and (5.57) des
ribe a set of equilibrium bubble shapes

whi
h are solutions to the dipole-at-the-origin problem. Sin
e we expe
t that there are very many

su
h solution pairs, a sensible s
heme for �nding solutions to these equations (whi
h will need to

be done numeri
ally) is to spe
ify the value of 
 we wish to 
onsider, and, eliminating Ca between

equations (5.56) and (5.57), �nd the 
orresponding value(s) of � whi
h satis�es the equations (the

relevant Capillary number will then follow from either of the above equations). Note that the

mapping fun
tion (5.44) 
an also des
ribe bounded 
uid domains if we allow 
 > 1; the governing

equations in this 
ase will be di�erent however, sin
e the singularities of equation (5.25) within

the unit dis
 then o

ur at � = 0, � = 1=
 and have to be mat
hed appropriately.

Any solution pairs (�; 
) whi
h are found must be 
he
ked for univalen
y, sin
e only univalent

mapping fun
tions give a

eptable solutions. For unbounded 
uid regions, the univalen
y domain

in (�; 
) parameter spa
e is the union of the two regions

1

�

< 
 < 1 (� > 0; 
 2 (0; 1));

and

� < �

�

2 +

1




�

(� < 0; 
 2 (0; 1));

re
all that we assumed 
 2 (0; 1) at the outset. In � > 0; < 0 we require � > 0; < 0 (respe
tively)

to satisfy the normalisation 
ondition w

0

(0) > 0. Typi
al free boundary shapes des
ribed by this

78



map are shown in �gure 5.8; note that the extremal 
onformal maps 
orresponding to points (�; 
)

on the boundary of the univalen
y domain in � > 0 des
ribe 
uid regions in whi
h the bubble

has 
ollapsed to a slit, whi
h is a 
ir
ular ar
 (the limiting 
ase of �gure 5.8 (b))|su
h domains

will be obtained as solutions as we allow the Capillary number to be
ome unbounded (the ZST

limit).

As another example, we may 
onsider the solution of J & M as being the limit of yet another

family of maps. In their solution the parameter p

1

was identi
ally zero, be
ause the map satis�ed

(5.32) near the point � = 1 (the preimage of in�nity). We may 
onsider more general maps

having p

1

identi
ally zero, provided we 
hoose an appropriate form for them. We know that the


onditions (5.30), (5.31) are the most general giving stagnant 
ow at in�nity; we also know that

(5.25) must hold globally. Hen
e if �(�) is to remain O(1) as � ! 
, with X (�) behaving as

spe
i�ed by (5.31), the fun
tion �w(1=�) must have a pole at � = 
; that is to say, if w(�) has a

pole at � = 
 within the unit dis
, it must also have a 
orresponding pole at the inverse point,

(� = 1=
, in the 
ase 
 2 R), outside the unit dis
. We again 
onsider a dipole singularity at the

origin, so the fun
tion �w(1=�) must have another simple pole at � = 0. Hen
e a possible mapping

fun
tion giving a (steady) solution has the form

w(�) = �

�

� + ��

�

1

� � 


�




1� 
�

��

: (5.58)

We 
ould 
onsider more 
ompli
ated options, but restri
t ourselves to this simplest possibility

satisfying all the requirements, sin
e the solution of J & M again emerges as a spe
ial limiting


ase. Note that unlike the last example, this map 
annot des
ribe bounded 
uid domains.

The solution pro
edure is essentially the same as for the previous example, but the algebra is

a little easier. Mat
hing the singularity at the dipole in (5.25) gives (with the s
alings of (5.50))

^

A

�

1� �

�


 +

1




��

+ Ca = 0:

For the 
ondition at in�nity, we need only ensure that �(�) has a �nite limit as � ! 
, sin
e

for this parti
ular 
hoi
e of mapping fun
tion the 
ondition on X (�) at in�nity will then follow

automati
ally from (5.25). With the fun
tions f

+

( � ) rede�ned as in (5.51) this is easily seen to

require

^

A(1� 


2

)

1� � (
 + 1=
)

+




4

(F

+

(0)� 2F

+

(
)) = 0;

and

^

A(1 + 


2

)

1� � (
 + 1=
)

+




2

2

F

0

+

(
) = 0:

Eliminating

^

A between these three equations gives two equations for � and 
, whi
h also 
ontain

the Capillary number,

Ca(1� 


2

)

(1� � (
 + 1=
))

2

=




4

(F

+

(0)� 2F

+

(
)); (5.59)

Ca(1 + 


2

)

(1� � (
 + 1=
))

2

=




2

2

F

0

+

(
): (5.60)

Again, one may seek solution pairs (�; 
) to these equations by postulating a parti
ular value for


 2 (0; 1), eliminating Ca between equations (5.59) and (5.60), and �nding the 
orresponding

value(s) of � whi
h gives a solution (the 
orresponding Capillary number then follows from either

equation). Thus, the equation to be solved for �, with 
 spe
i�ed, is

1� 


2

1 + 


2

=

F

+

(0)� 2F

+

(
)

2
F

0

+

(
)

;
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Figure 5.8: Typi
al free boundary shapes des
ribed by the mapping (5.44). Case (a)

has � = �0:4; � = �5; 
 = 0:5, and 
orresponds to a dipole su
h that the x-axis is a

streamline from negative to positive. Case (b) has � = 1; � = 1:4; 
 = 0:8, and has the

x-axis as a streamline from positive to negative.
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Figure 5.9: Typi
al free boundary shape des
ribed by the mapping (5.58). The parameter values used here are

� = �1; � = 3:5; 
 = 0:65. The dipole at the origin is su
h that the x-axis is a streamline from negative to positive.
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the �-dependen
e in this equation is entirely impli
it in the fun
tions F

+

( � ). Maps for solution

pairs (�; 
) des
ribe a family of equilibrium bubble shapes in a 
ow with a dipole singularity at

the origin. Only solution pairs (�; 
) giving univalent maps are relevant; a typi
al 
on�guration

is shown in �gure 5.9. For the map (5.58), the univalen
y domain in (�; 
)-spa
e is bounded by

the lines

� =

(1 + 
)

2

2


; 
 = 1;

so the allowed parameter regime is

� >

(1 + 
)

2

2


; for 
 2 (0; 1):

There is no subset of the region � < 0, 
 2 (0; 1) whi
h 
orresponds to a univalent map (we 
an

�nd univalent maps with � < 0, 
 2 (�1; 0), but these are equivalent to those already 
onsidered).

For points on the univalen
y boundary, the bubble shape des
ribed has a single 
usp in the free

boundary on the x-axis (at the point 
losest to the dipole). The situation shown in �gure 5.9


orresponds to a dipole su
h that the x-axis is a streamline in the positive sense; for a dipole of

the opposite strength we have the \mirror image" situation (with � < 0, 
 2 (�1; 0)); there is no

analogue of �gure 5.8 (b).

5.6 Summary

This work of this 
hapter falls into two parts; the (ZST) Hele-Shaw results, and the Stokes 
ow

results. We began by reviewing the relevant literature for ea
h, whi
h is substantial, for both the

steady and time-dependent versions of the problems. Nevertheless, for the Stokes 
ow problem,

there is a gap in the literature: no solutions (obtainable by the 
omplex variable methods used in

this thesis) exist for time-dependent problems on unbounded 
ow domains, having a free boundary,

and driven by a singularity at some �nite point within the 
ow. Our task, whi
h proved to be

far from trivial, was to �nd su
h a solution by generalising the well-known (dipole driven) steady

solution of [52℄ to the time-dependent 
ase.

The Hele-Shaw version of this problem was solved in x5.3 and found to be a reasonably straight-

forward adaptation of a problem solved in [79℄, but with more interesting solution behaviour, sin
e

the presen
e of the dipole singularity (rather than a point sink) ne
essitated a more 
ompli
ated

mapping fun
tion. In parti
ular, the existen
e of a \transient 5/2-power 
usp" solution was found

(see also [46℄, [50℄), where the free boundary formed a 
usp near the dipole, then immediately

smoothed, with a little air entering through the 
usp. The free boundary soon afterwards be
ame

nonanalyti
 again, with the formation of two 3/2-power 
usps in the free boundary (�gure 5.7).

For the slow vis
ous 
ow analogue, we saw that no physi
ally-relevant solution to the problem

exists in the simplest 
ase with �(0) = 0; sin
e the Goursat fun
tion �(�) must be bounded at a

dipole singularity we were for
ed to 
on
lude that �(0) be �nite and nonzero. In this situation we

were able to solve for the singular part of the primitive of the S
hwarz fun
tion, and hen
e dedu
e

the distribution of singularities of �w(1=�) (the S
hwarz fun
tion itself) within the unit dis
. The

main result was that a solution is only possible if the S
hwarz fun
tion has a time-dependent line

singularity within the unit dis
. Due to the 
omplexity of the 
onformal map needed, the solution

was not 
ompleted.

We 
on
luded the 
hapter by 
onsidering two (dipole driven) steady problems on unbounded


uid domains, both of whi
h may be 
onsidered as generalising the solution of [52℄.
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Chapter 6

Stokes 
ow with small surfa
e

tension

We now abandon the simpli�
ation we have hitherto assumed in most of our solutions, and move on

to 
onsider the time-dependent problem with positive surfa
e tension, or the NZST problem. We

have mentioned already that remarkable analyti
al progress has been made with this problem,

notably by Hopper [37, 38, 39℄, Ri
hardson [82℄ and Howison & Ri
hardson [49℄ (and see also

Tanveer & Vas
on
elos [96℄ in this 
ontext); Hopper uses somewhat more 
onvoluted methods

than ours to obtain his solutions. Two-dimensional problems that have been fully solved by the

methods of x3.3 or by Hopper's method in
lude:

� the 
oales
en
e under surfa
e tension of two (equal or unequal) 
ir
ular 
ylinders of 
uid

[37, 82℄;

� the 
oales
en
e under surfa
e tension of a 
ylinder and a half-spa
e of 
uid [39℄;

� a lima�
on-shaped 
uid domain evolving under the a
tion of surfa
e tension only [82℄;

� the evolution of domains des
ribed by polynomial mapping fun
tions of the form w(�) =

a(� � b�

n

=n) for any integer n > 2, evolving under the a
tion of both surfa
e tension and a

point sink at the origin [49℄;

� the evolution of bubbles in shear 
ow with surfa
e tension in
luded [96℄;

� the evolution of expanding/
ontra
ting bubbles in quies
ent 
ow with surfa
e tension in-


luded [96℄.

The work that will most interest us here is that of Howison & Ri
hardson [49℄, whi
h we shall

hen
eforth refer to as HR'95, sin
e they in
lude the e�e
ts of both surfa
e tension and a driving

me
hanism. In addition, they introdu
e a new 
on
ept, whi
h we shall 
all a weak solution to the

problem, and whi
h we will be exploiting to solve a new problem.

6.1 Review of \weak" solutions

We begin by giving a short review of some of the work of HR'95, using their example to illustrate

the \weak solution" 
on
ept. They 
onsider 
uid domains 
(t) having a single point sink of

strength Q at the origin, whi
h are des
ribed by the family of mapping fun
tions

z = w(�; t) = a(� �

b

n

�

n

); j�j � 1; (6.1)

for a, b real and positive fun
tions of time, and integers n � 2. The maps (6.1) are univalent on

the unit dis
 only if b < 1, with (n� 1) inward-pointing 3/2-power 
usps forming simultaneously

on �
 if b = 1.
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AIR

FLUID

Inner region

Figure 6.1: The di�erent regions in the small surfa
e tension \lima�
on" problem, using

mat
hed asymptoti
s.

We 
an 
ir
umvent some of the analysis of HR'95 if we use the results of x3.6, sin
e we there

gave the \moment" evolution equations (3.34), and we have a polynomial map, for whi
h the

\moments" were evaluated expli
itly in equation (3.36). The form of the NZST equations (3.34)

makes it 
lear why a polynomial of the form above is so mu
h easier than a general polynomial; it

means that we only need �nd f

+

(0), without worrying about any of the higher derivatives f

(r)

+

(0).

The only tri
ky bit then is 
al
ulating f

+

(0) using (3.8); on
e this is done the evolution equations

dS

dt

=

d

dt

�

�a

2

�

1 +

b

2

n

��

= �Q; (6.2)

d

dt

(a

2

b) = �(n� 1)

T

��

abK(b); (6.3)

are immediate. Here, S(t) denotes the 
ross-se
tional area of 
(t) and K(�) denotes the 
omplete

ellipti
 integral of the �rst kind (see [8℄, [30℄, or appendix B, for example).

The authors 
onsidered an (a; b) phase plane within the univalen
y domain 0 � b � 1, a � 0,

a solution traje
tory (a(t); b(t)) rea
hing the boundary b = 1 being asso
iated with formation of

3/2-power 
usps. Solution breakdown is inevitable when T = 0, with b(t

�

) = 1, a(t

�

) > 0 for
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some positive \blow up" time t

�

(as expe
ted, by the time-reversal argument of x1.4.2). However,

when T > 0 they found that one always has 
omplete extra
tion of the 
uid from the domain,

with extra
tion time t

E

= S(0)=Q su
h that a(t

E

) = 0, b(t

E

) < 1. This naturally led them to


onsider the limiting 
ase T ! 0 where, 
ombining the previous two observations, 
usps form

in �
 at time t

�

< t

E

, and persist until time t

E

in a kind of \weak solution" s
enario, where

a nonanalyti
 free boundary is permissible. This 
orresponds to a degenerate 
ase of equation

(6.3), where K(b) on the right-hand side is singular as b " 1 (in fa
t the ellipti
 integral has the

asymptoti
 behaviour K(1� �) � �(1=2) log(�=8) as �! 0), but T ! 0 to 
ountera
t this e�e
t.

The net result is that b(t) is `pinned' at 1 for t > t

�

, whilst from (6.2), a(t) evolves a

ording to

d

dt

�

a

2

�

1 +

1

n

��

= �

Q

�

; (6.4)

until t = t

E

, ZST theory holding for 0 < t < t

�

, of 
ourse. These weak

1

solutions are all of

similarity type for t

�

< t < t

E

, sin
e only the s
aling parameter a is 
hanging; the shape of the

free boundary remains the same throughout. So for instan
e, the solution for n = 2 (whi
h is

just the \lima�
on" example of x3.4) will evolve as a shrinking 
ardioid for times t > t

�

in the

limit T ! 0. The authors investigate the velo
ity �eld of the 
uid in the neighbourhood of the

\
usp", and �nd it to be �nite, being exa
tly the velo
ity of the free boundary itself (so there is

no entrainment of air into the 
usp). This 
an be easily 
he
ked using the expression (C.1) in the

T ! 0 limit.

We note that if T is small and positive, the logarithmi
 nature of the singularity in K(b) as

b " 1 in (6.3) means that b(t) must be exponentially 
lose to 1 before surfa
e tension e�e
ts be
ome

important, a fa
t borne out in experiments, where `almost-
usps', having radii of 
urvature whi
h

are exponentially small in the Capillary number, 
an be observed; see for example [52℄.

2

In this small surfa
e tension 
ase, 0 < T � 1, mat
hed asymptoti
s may also be used to solve

the problem, with three distin
t r�egimes (�gure 6.1 illustrates this for the 
ase n = 2). The outer

solution will be the T ! 0 shrinking 
usped shape of HR'95. In the inner region, the free boundary

will be lo
ally paraboli
, a 
on�guration whi
h was solved for in the NZST 
ase by Hopper [40℄

(the \Stokes 
ow Ivantsov" solution). The invarian
e of Stokes 
ow under rigid-body motions

means that this solution 
an be a travelling wave of arbitrary speed. The apex 
urvature of the

parti
ular parabola observed is a fun
tion of the far-�eld 
ow imposed (whi
h here is due to the

point sink). There will also be an intermediate region in whi
h the inner and outer solutions are

mat
hed. In this region, the geometry is su
h that the free boundary may be linearised onto a slit,

and the Stokes equations solved on an unbounded domain with appropriate mat
hing 
onditions.

Similar remarks apply to our solution of x6.2. We shall not 
onsider mat
hed asymptoti
s in

this thesis|see [67℄ for full details of the method applied to a similar Stokes 
ow problem (the


oales
en
e of two identi
al 
ir
ular 
ylinders).

6.2 The 
ubi
 polynomial map

We now 
onsider the ideas of HR'95 des
ribed above, applied to a general 
ubi
 polynomial

mapping in the limit T ! 0. The ZST 
ase of the analogous Hele-Shaw problem was solved by

Huntingford in [50℄. As explained, we expe
t the evolution of 
(t) to follow ZST theory until

the \blow up" time t

�

, at whi
h point we relax the restri
tion on �
 to permit solutions with

persistent 
usps in the free boundary. For ease of manipulation we 
hange notation slightly from

that above, writing

w(�; t) = a(t)

�

� +

b(t)

2

�

2

+


(t)

3

�

3

�

: (6.5)

1

These solutions are not \weak" in the true sense of the de�nition; we use the terminology be
ause the solutions

are not 
lassi
al. To avoid 
umbersome notation we now drop the inverted 
ommas when referring to them.

2

In this paper (whi
h was dis
ussed in detail in x5.4), the radius of 
urvature at the near-
usp is found to be

proportional to exp(�32�Ca).
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The s
aling fa
tor a may 
learly be taken to be real and positive for all time. By suitably rotating

the 
o-ordinates in the initial domain 
(0), the general 
ase with both b(0) and 
(0) 
omplex

may be redu
ed to an initial map with just one 
omplex 
oeÆ
ient. For simpli
ity we shall

assume b(0); 
(0) 2 R, whi
h will then ensure b(t) and 
(t) are real for t > 0; this is equivalent

to the assumption that 
(t) is symmetri
 about the x-axis. We return to the limitations of our

assumption in x6.2.1. For this 
ase, (3.34) and (3.36) yield

d

dt

�

a

2

�

1 +

b

2

2

+




2

3

��

= �

Q

�

; (6.6)

d

dt

�

a

2

b

�

1 +

2

3




��

= �

T

2�

f

+

(0)a

2

b

�

1 +

2

3




�

�

T

�

f

0

+

(0)

2

3

a

2


 ; (6.7)

d

dt

[a

2


℄ = �

T

�

f

+

(0)a

2


 : (6.8)

With T = 0 these equations are valid until the time t

�

at whi
h the map 
eases to be univalent.

As in [50℄ we must 
onsider the domain V in (b; 
)-spa
e for whi
h (6.5) is univalent

3

on j�j � 1,

and �nd the phase traje
tories of the system (6.7), (6.8) within V . The determination of this

univalen
y domain (in the more general 
ase of 
omplex 
oeÆ
ients) is the subje
t of [15℄. For

real 
oeÆ
ients, V is symmetri
 about the 
-axis (so we lose nothing by restri
ting attention to

the right-half plane), and is bounded in b > 0 by the lines


 = 1; b = 1 + 
; and

b

2

4

+ 4

�




3

�

1

2

�

2

= 1: (6.9)

The line b = 1 + 
 
orresponds to formation of a single 3/2-power 
usp on �
, ex
ept for the

isolated points (0;�1) (where we have two 3/2-power 
usps, symmetri
ally pla
ed about both

axes), and (8/5, 3/5) (where we have a single 5/2-power 
usp). The line 
 = 1 
orresponds to two

3/2-power 
usps on �
 (symmetri
ally pla
ed about both axes when b = 0), and the ellipti
al

segment of �V (whi
h extends from b = 8=5 to b = 4

p

2=3) 
orresponds to loss of univalen
y by

the free boundary beginning to overlap itself. The domain V , together with the phase paths for

the T ! 0 solution, is shown in �gure 6.4. Figure 6.2 shows free boundary \blow-up" shapes for

various parameter values on �V .

Equations (6.7) and (6.8) give the ZST phase paths within V as the 
urves

b




�

1 +

2


3

�

= 
onst = k; (6.10)

for various k 2 R. In 
ontrast to the Hele-Shaw result of [50℄, we �nd no phase paths whi
h

meet �V tangentially and then re-enter V ; all ZST solutions blow up with the phase path hitting

�V obliquely. A tangent phase path is asso
iated with the instantaneous formation of a 
usp,

whi
h immediately smooths (when the phase path re-enters V ), and the free boundary be
omes

analyti
 again (the only known examples of su
h behaviour for the Stokes 
ow [85℄ and Hele-Shaw

problems involve transient 5/2-power 
usps).

The ZST evolution is then fully determined, and we now 
onsider the e�e
t of small positive

surfa
e tension, as we approa
h �V along a phase path. Using the de�nition (3.8), we are able to

�nd exa
t expressions for f

+

(0) and f

0

+

(0) in terms of ellipti
 integrals. These exa
t expressions are

ne
essary if we wish to 
onsider the problem with O(1) surfa
e tension, but not very illuminating

for the present dis
ussion of the limit T ! 0; hen
e we relegate the details to appendix B. The

main point to note is that they are singular only on the straight-line portions of �V (i.e. those

portions 
orresponding to blow-up via 
usp formation rather than by overlapping) and so only in

the neighbourhood of these lines will surfa
e tension e�e
ts be signi�
ant, justifying our earlier

assumption that ZST theory is adequate for t < t

�

. To �nd the phase paths near �V , we 
ombine

3

Note, though, that we are a
tually 
onsidering the proje
tion of a \univalen
y 
ylinder" in (a; b; 
) spa
e, onto

a = 1, with (6.6) providing the extra information about the variation of a with time.
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Figure 6.2: Free boundary shapes des
ribed by the map (6.5) for various points (b; 
) on the boundary �V

of the univalen
y domain. The values used are: (b

1

; 


1

) = (0; 1), (b

2

; 


2

) = (1; 1), (b

3

; 


3

) = (4

p

2=3; 1),

(b

4

; 


4

) = (1:8; 0:8461), (b

5

; 


5

) = (8=5; 3=5), (b

6

; 


6

) = (1; 0), and (b

7

; 


7

) = (1=5;�4=5). Pi
tures (3b) and

(4b) are magni�
ations of the nonunivalent region, showing how the free boundary begins to overlap itself; the

former 
ase is 
usped and self-overlapping, while the latter is smooth. The value a = 1 was used to generate ea
h

pi
ture, hen
e the shapes do not have equal areas.
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(6.7) and (6.8), writing a

2


 = A, and a

2

b(1 + 2
=3) = B, to give

4

dB

dA

=

B

2A

+

2

3

f

0

+

(0)

f

+

(0)

; (6.11)

and hen
e it is only the ratio of f

0

+

(0) to f

+

(0) whi
h is important.

We need to 
onsider two separate 
ases, a

ording as to whether the ZST solution breaks down

by rea
hing 
 = 1, or by rea
hing b = 1 + 
 (refer forward to �gure 6.4). Consider �rst the 
lass

of solutions for whi
h 
 " 1 within �V , along a ZST phase path. On
e 
 has rea
hed a value 
lose

to 1, it is `trapped' near 
 = 1 until either the solution blows up (with 
 = 1 and attendant 
usp

formation, or with 
 ' 1, b ' 4

p

2=3 on the ellipti
al portion of �V , and self-overlapping of the

free boundary), or all 
uid is extra
ted, sin
e if 
 de
reased mu
h below 1, ZST theory would

again take over, for
ing it ba
k up towards 
 = 1 on a ZST phase path. It follows that only a and

b will be varying appre
iably with time, and so A � a

2

, B � 5a

2

b=3. The results of appendix B

show that near 
 = 1,

f

0

+

(0)

f

+

(0)

� �

b

2

� �

3B

10A

;

hen
e (6.11) be
omes

dB

dA

�

3B

10A

;

giving B = (
onst.)�A

3=10

, or, in terms of the mapping fun
tion parameters,

b � (
onst.)� a

�7=5

; 
 � 1: (6.12)

Knowing that ZST theory will hold until 
 � 1, we may take t

�

(the ZST \blow up" time) to

be zero without loss of generality and pro
eed from there, so that, in the limit T ! 0, 
(t) � 1

throughout the motion. Thus, from (6.6) and (6.12), the equations to be solved are

a

2

�

4

3

+

b

2

2

�

=

S(0)�Qt

�

= a

2

�

�

4

3

+

b

2

�

2

�

�

Qt

�

; (6.13)

and b = b

�

�

a

�

a

�

7=5

; (6.14)

where we use S(t) to denote the area of 
(t), and a

�

; b

�

denote the starting values of a and b

(


�

= 1, remember). The right-hand side of (6.13) is simply a linearly de
reasing fun
tion of time,

rea
hing zero at \extra
tion time" t

E

= S(0)=Q. Substituting from (6.14) in (6.13) gives

G(b)�G(b

�

) = �

6Qt

�a

2

�

b

10=7

�

; where G(b) := b

�10=7

(8 + 3b

2

): (6.15)

Now, G(b) is positive and monotone de
reasing in b on the range of interest (namely 0 � b �

4

p

2=3), so (6.15) tells us that b must be monotone in
reasing in t, from the starting value b

�

.

Hen
e the phase path must follow the line 
 = 1 in this dire
tion, ending either at time t

E

, or

when it rea
hes b = 4

p

2=3. Complete extra
tion 
annot o

ur in this r�egime, sin
e (6.13) and

(6.14) give the area of the 
uid domain as

S(t) = �

 

4

3

a

2

+

b

2

�

a

14=5

�

2a

4=5

!

;

whi
h is always positive. Hen
e we dedu
e that the phase path rea
hes b = 4

p

2=3 before all the


uid has been extra
ted, and the solution breaks down with �
 beginning to overlap itself (�gure

6.2 (3a) and (3b)).

4

Note that B and A are proportional to the 2nd and 3rd Stokes 
ow \moments" of the map (6.5), from the

de�nition (3.36).
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We now 
onsider the 
ase of solutions approa
hing the straight-line portion b = 1 + 
 of �V

along a ZST phase path, observing, by the same argument as above, that a phase path will be

`trapped' near this line on
e it is suÆ
iently 
lose to it (�gure 6.4). We may thus eliminate either

b or 
 in the ZST limit, and we 
hoose to work with b (so 
 = b� 1). In this 
ase, A � a

2

(b� 1)

and B � a

2

b(2b+ 1)=3. The asymptoti
 evaluation of the ratio f

0

+

(0)=f

+

(0) as the line b = 1 + 


is approa
hed is performed in appendix B. This limit is found to be nonuniform on the range

b 2 (0; 8=5), being equal to �1 everywhere ex
ept at the single point b = 0. Thus for b > 0 (6.11)

be
omes

dB

dA

�

B

2A

�

2

3

;

whi
h has solution

B = �

4A

3

+ �

p

jAj;

for some 
onstant �. We again take t

�

= 0 without loss of generality, and our initial 
onditions

must satisfy b

�

= 1 + 


�

(where now 0 � b

�

� 8=5). In terms of a and b then, we have

a

jb� 1j

1=2

(2b

2

+ 5b� 4) =

a

�

jb

�

� 1j

1=2

(2b

2

�

+ 5b

�

� 4) � 3�;

holding together with the mass 
onservation equation (6.6) whi
h, after some rearrangement, and

putting 
 = b� 1 (sin
e we remain on this part of the univalen
y boundary), be
omes

�

a

a

�

�

2

h(b)� h(b

�

) = �

6Qt

�a

2

�

;

for h(b) de�ned by

h(b) := 5b

2

� 4b+ 8 � 6

�

1 +

b

2

2

+

(b� 1)

2

3

�

:

Combining the previous two equations, eliminating the ratio a=a

�

between them, we �nally arrive

at an analogue of (6.15),

jb� 1j

h(b)

g(b)

2

� jb

�

� 1j

h(b

�

)

g(b

�

)

2

= �

6Qt

�a

2

�

jb

�

� 1j

g(b

�

)

2

; (6.16)

where g(b) := 2b

2

+ 5b� 4. Ignoring the ex
eptional 
ases b

�

= 1, � = 0 for the moment (on our

range of interest, � = 0 o

urs if and only if b

�

= b




= (�5+

p

57)=4), we see that the right-hand

side of (6.16) is a monotone de
reasing fun
tion of time, and so the left-hand side must be also,

i.e. F (b) := jb� 1jh(b)=g(b)

2

de
reases with time. The area of the 
uid domain is given by

S(t) =

�a

2

�

h(b

�

)

6

F (b)

F (b

�

)

;

so 
omplete extra
tion o

urs if and only if F (b) falls to zero; this 
orresponds to extra
tion time

t

E

= �a

2

�

h(b

�

)=(6Q). A plot of F (b) on (0; 8=5) is given in �gure 6.3 (b = 8=5 is the point at whi
h

the form of �V 
hanges, the small ellipti
al portion of �V for 8=5 < b < 4

p

2=3 
orresponding to

blow up of solutions by overlapping of the free boundary). Important features to note are that:

� F (b) vanishes only at b = 1;

� F (b) has a singularity at b = b




, 
orresponding to a 
riti
al point in the phase diagram;

� F (b) is monotone in
reasing (to in�nity) on (0; b




), monotone de
reasing (to zero) on (b




; 1),

and monotone in
reasing on (1, 8/5);
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Figure 6.3: The fun
tion F (b) governing evolution on the part b = 1 + 
 of �V . (Note the di�eren
e in s
ales

between the two plots.)

� F

0

(b) = 0 at b = 8=5, and only there, 
orresponding to the formation of the 5/2-power 
usp.

Hen
e for b

�

2 (b




; 1) and b

�

2 (1; 8=5), the phase path will approa
h the point b = 1, 
 = 0, with


omplete extra
tion o

urring when we rea
h this point, sin
e we must have F (b) de
reasing with

t. By 
ontrast, if b

�

2 (0; b




) we must have the phase path approa
hing b = 0, 
 = �1. Sin
e

F (0) > 0, this point is rea
hed before all the 
uid has been extra
ted, but due to the symmetry

of the phase diagram about the 
-axis, we are for
ed to stay at this point. For the moment we

ignore the 
ompli
ations hinted at by the nonuniformity of the limit f

0

+

(0)=f

+

(0) at this point.

Re
all now the 
omment in footnote (3), that we have a
tually been 
onsidering the proje
tion

of a univalen
y 
ylinder by suppressing the parameter a. We are thus in one of the spe
ial 
ases


onsidered in HR'95; the subsequent evolution will be of the `similarity' type dis
ussed there,

with b � 0, 
 � �1, and the parameter a 
hanging in a

ordan
e with the 
orresponding mass


onservation equation. The full phase diagram in the (b; 
)-plane is given in �gure 6.4, with phase

paths that are in some way `spe
ial' represented by dashed lines. The bold arrows indi
ate the

sense in whi
h the phase paths `turn around' as they hit �V .

It is now apparent that the `ex
eptional 
ases' b

�

= 1, b

�

= b




mentioned earlier are stable

and unstable (respe
tively) 
riti
al points in the phase diagram, and thus also represent possible

`similarity' solutions of the kind studied in HR'95, the dotted phase path 
 = 0 being exa
tly one of

those solutions. Note that for this spe
ial solution, rea
hing b = 1 no longer need be synonymous

with total extra
tion, sin
e the right-hand side of (6.16) is now identi
ally zero; indeed, by the

analysis of HR'95 we do remain a �nite time at (1; 0) before extra
tion is 
omplete. The points

(0;�1) and (0; 1) are also 
riti
al points, stable (but see x6.2.1) and unstable respe
tively, and

again, are members of the family of similarity solutions of HR'95. We may summarise our results

as follows:

� Phase paths whi
h hit �V at (1; 0) or (0;�1) terminate there and represent stable similarity

solutions, sin
e adja
ent phase paths are also entering these points.

� Paths whi
h hit �V at (0; 1) and (b




; 1�b




) terminate there and represent similarity solutions

whi
h are unstable, sin
e neighbouring paths are diverging.

� Paths for whi
h 


�

= 1, b

�

2 (0; 4

p

2=3) turn to the right and follow �V along 
 = 1,

rea
hing (4

p

2=3; 1) before extra
tion is 
omplete, at whi
h point the free boundary begins

to overlap itself. The present analysis then no longer applies, and the solution 
annot be


ontinued.
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by overlapping

only on this 
urved

portion of �V

Two 3/2-power 
usps in �D along line 
 = 1
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Complete extra
tion

Criti
al point b




Two 3/2-power 
usps (symetri
ally pla
ed) at b = 0, 
 = �1.

forms here

o

urs here

One 3/2-power 
usp in �D along line b = 1 + 
 (b 6= 0; 1; 8=5).

Figure 6.4: The univalen
y diagram (restri
ted to the right-half (b; 
)-plane) for the 
ubi
 polynomial mapping

fun
tion. The shaded region 
orresponds to a nonunivalent map.
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� Paths hitting the 
urved portion of �V likewise represent self-overlapping 
uid domains,

and 
annot be 
ontinued.

� Paths for whi
h 


�

= b

�

� 1, 1 < b

�

< 8=5 turn around and enter the point (1; 0); rea
hing

this point is simultaneous with 
omplete extra
tion.

� Ditto for b




< b

�

< 1.

� Paths for whi
h 


�

= b

�

� 1, 0 < b

�

< b




turn around and enter (0;�1), rea
hing this point

before extra
tion is 
omplete; subsequent evolution is of `similarity' type and is dis
ussed in

HR'95.

In addition, an analysis of the velo
ity �eld in the neighbourhood of the 
usp has been 
arried

out, using the expression (C.1) with T ! 0. The same result as in HR'95 was found (although

we do not give the analysis): the velo
ity at the 
usp is exa
tly the (�nite) velo
ity of the free

boundary at that point, so there is no entrainment of air into the 
usp.

The 5/2-power 
usp is an interesting borderline 
ase, being the point of transition between

ZST solutions whi
h break down via formation of a 3/2-power 
usp, and those whi
h break down

via overlapping of the free boundary. This path must still turn around and enter (1; 0); however,

the fa
t that F

0

(8=5) = 0 (�gure 6.3) implies that this path `only just makes it'. Geometri
ally, the

5/2-power 
usp immediately be
omes a 3/2-power 
usp, whi
h then persists. The point (1; 0) on

�V 
orresponds to a 
ardioid, but sin
e rea
hing this point is simultaneous with total extra
tion,

this 
on�guration is not a
tually attained.

The existen
e of the point b




is also interesting. As we move along �V from (1; 0) towards

(0;�1), �
(t) evolves 
ontinuously from a 
ardioid (with a 
usp on the left-hand side), to a fully

symmetri
 shape having 
usps on both sides. As is does so, a `dimple' develops on the right-hand

side (see (6) and (7) in �gure 6.2), whi
h be
omes more pronoun
ed, eventually turning into the

se
ond 
usp at (0;�1). It is perhaps not surprising then that there is some 
riti
al point beyond

whi
h the `dimple' is too large to disappear, and the ultimate shape has to have two 
usps. If the

dimple is small enough (i.e. b

�

> b




), then the ultimate shape will have just one 
usp. For the

solutions with 


�

= 1, however, the possible geometries are su
h that the two-
usp state is always

unstable, and ultimate overlapping of the free boundary has to o

ur.

6.2.1 Complex 
oeÆ
ients

Re
all that, near the start of x6.2, we stated that the assumption of real 
oeÆ
ients in the mapping

fun
tion (6.5) was equivalent to assuming symmetry of 
(t) about the x-axis. The results obtained

seem to have a remarkably ri
h stru
ture nonetheless; however they are somewhat de
eptive, as


onsideration of the 
ase with 
omplex 
oeÆ
ients reveals.

A little thought about the 
on
lusions of x6.2 throws up an apparent 
ontradi
tion: the point

(0;�1) in (b; 
)-spa
e is stated to be a stable equilibrium point, whilst the point (0; 1) is an unstable

equilibrium point. But the two 
on�gurations are a
tually identi
al, one being a rotation through

angle �=2 of the other. In fa
t, the 
on
lusions regarding the point (0;�1) were a little suspe
t

anyway, sin
e we knew the limit f

0

+

(0)=f

+

(0) to be nonuniform at this point, but the analysis

away from this point did indi
ate that it should be a stable equilibrium.

In the pre
eding analysis, we have been 
onsidering a single, two-dimensional 
ross-se
tion

of what is a
tually a four-dimensional univalen
y domain V

4

in 
omplex (b; 
)-spa
e. In fa
t,

bearing in mind the 
omments of footnote (3), the full univalen
y domain for the map (6.5) will

be a 
ylinder in �ve-dimensional spa
e, but the dependen
e on the s
aling parameter a is of no


onsequen
e. Determination of this domain is the subje
t of Cowling & Royster's (hen
eforth C

& R) paper [15℄. There, the authors note that the 
ross-se
tion =fbg = 0 of V

4

is symmetri


about the planes <fbg = 0 and =f
g = 0, and so it may be assumed without loss of generality

that =fbg = 0 and <fbg � 0 (sin
e this will still generate all possible free boundary shapes, up

to rotations and re
e
tions). Writing 
 = 
 + i� and taking b 2 R

+

, their paper then determines

this three-dimensional 
ross-se
tion V

�

of V

4

for whi
h the map (6.5) is univalent on the unit dis
;

however this domain is not simple, and is given in an impli
it form whi
h is diÆ
ult to use.
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Before exploring the stru
ture of this domain further, we 
onsider the 
hanges wrought in the

evolution equations for the 
oeÆ
ients by allowing them to be 
omplex. We assume still that

a 2 R

+

, but now write b = � + i� and 
 = 
 + i�, for real �; �; 
; �. The equations governing

the ZST problem are found from (3.32) and (3.36), and are

d

dt

�

a

2

�

1 +

jbj

2

2

+

j
j

2

3

��

= �

Q

�

; (6.17)

a

2

�

b+

2
b

3

�

= 
onstant; (6.18)

a

2


 = 
onstant. (6.19)

To obtain the phase paths in the four-dimensional (�; �; 
; �)-spa
e we must equate real and

imaginary parts in these equations. The �rst is wholly real already, and in any 
ase (as we have

observed for the real 
oeÆ
ients 
ase) is unne
essary for determination of the phase paths. The

four real equations resulting from (6.19) and (6.18) are

a

2


 = k

1

; (6.20)

a

2

� = k

2

; (6.21)

a

2

�

� +

2

3

(�
 + ��)

�

= k

3

; (6.22)

a

2

�

�+

2

3

(��� �
)

�

= k

4

; (6.23)

whi
h, for various values of these four arbitrary 
onstants k

1

to k

4

, will give paths in (�; �; 
; �)-

spa
e (after elimination of a). We now re
all the statement of C & R that it is suÆ
ient to 
onsider

the situation � = 0, � > 0. Suppose we seek su
h solutions to the above equations (6.20){(6.23).

The �rst two are un
hanged, whilst the se
ond two be
ome

a

2

�

�

1 +

2


3

�

= k

3

; (6.24)

a

2

�� = k

4

: (6.25)

Equations (6.20) and (6.21) give




�

= 
onstant;

whilst (6.24) and (6.25) give

1

�

+

2


3�

= 
onstant;

whi
h together imply that either both � and 
 must be 
onstant, or else � = 0. Supposing the

�rst 
ase, with � 6= 0, then to satisfy the equations we need both a and � to be 
onstant also, in

whi
h 
ase the mass 
onservation equation 
annot hold (ex
ept in the trivial 
ase Q = 0). Hen
e

we must have � = 0, showing that the only family of solutions for whi
h b 2 R throughout the

evolution are those already found for whi
h 
 2 R also.

The result of C & R essentially says that restri
ting attention to V

�

yields all possible free

boundary shapes, the remainder of V

4


onsisting of rotations and re
e
tions of shapes whi
h are


ontained within V

�

. For a map with 
onstant 
oeÆ
ients it is then suÆ
ient to 
onsider V

�

, sin
e

any free boundary 
on�guration 
an be generated by some point within V

�

provided the axes

are suitably 
hosen. With time-dependent 
oeÆ
ients, we may 
hoose axes su
h that the initial


on�guration 
(0) is generated by a point of V

�

; however the above shows that only if � = 0 will

the 
on�guration for t > 0 also be generated by a point of V

�

. Solution traje
tories for � 6= 0 will

migrate to regions of V

4

outside V

�

.
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C & R's observation is therefore of limited use, sin
e the only family of solution traje
tories

lying wholly within the three-dimensional 
ross-se
tion V

�

� V

4

is the family of real solutions

already studied|all other solution traje
tories will simply interse
t V

�

at a single point. The full

four-dimensional spa
e V

4

will be horribly diÆ
ult (if not impossible) to determine and study. We


onsider instead whether we might �nd a three-dimensional solution family for the 
ase in whi
h


 is real, but b is 
omplex. Setting � = 0 in equations (6.20){(6.23) gives

a

2


 = k

1

; k

2

= 0;

a

2

�

�

1 +

2


3

�

= k

3

; a

2

�

�

1�

2


3

�

= k

4

;

sin
e (6.21) has redu
ed to an identity, we are able to eliminate a from these equations to �nd

phase traje
tories in (�; �; 
)-spa
e: these will be determined by the two equations

�




�

1 +

2


3

�

= 
onstant;

�




�

1�

2


3

�

= 
onstant:

To get an idea of this three-dimensional 
ross-se
tion of V

4

, 
all it V

z

, we 
onsider simple two-

dimensional 
ross-se
tions. The 
ross-se
tion � = 0 is the 
ase already studied (the domain V

given by (6.9)). The 
ross-se
tion � = 0 
orresponds to maps of the form

w(�)

a

= � +

i�

2

�

2

+




3

�

3

:

Making the substitutions � = �i

^

�, 
 = �
̂ and w(�) = �iŵ(

^

�) we �nd that

ŵ(

^

�)

a

=

^

� +

^

�

2

^

�

2

+


̂

3

^

�

3

;

so the interse
tion of V

z

with this 
ross-se
tion is exa
tly the domain V , but inverted with respe
t

to 
; 
all it V

y

. Likewise, we will have a ZST solution family lying entirely within V

y

, with phase

paths exa
tly as for the real 
oeÆ
ients 
ase, but inverted with respe
t to 
. The T ! 0 limit is

also inferred from the earlier analysis.

The other two-dimensional 
ross-se
tion of V

z

we 
an look at is 
 = 0. This is parti
ularly

easy, the map now being

w(�)

a

= � +

(� + i�)

2

�

2

;

so that w

0

(�) = 0 only if � = �1=(� + i�), and the map is univalent on the dis


�

2

+ �

2

� 1:

A solution family again lies in this 
ross-se
tion (whi
h we 
all V

o

), with solution traje
tories

whi
h are straight lines

�

�

= 
onstant;

as 
an be seen from (6.22) and (6.23) with 
 = 0 = �. All points on the univalen
y boundary are

equivalent, in the sense that the free boundary shapes represented by the maps are just rotations

of the same 
ardioid. The T ! 0 limit of this solution family will be of the \similarity solution"

type, with initial lima�
ons be
oming 
ardioids (before all the 
uid has been extra
ted) whi
h then

persist in a self-similar fashion until extra
tion is 
omplete.

The s
hemati
 diagram 6.5 indi
ates how the three-dimensional domain V

z

�ts together. Given

the equivalen
e of the 
ross-se
tions V and V

y

, we now see plainly the equivalen
e of the points
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Figure 6.5: The three-dimensional univalen
y domain V

z

� V

4

, and its two-dimensional 
ross-se
tions V , V

y

and

V

o

. The arrows on V

y

indi
ate how the point fb = 0; 
 = �1g destabilises (
f. �gure 6.4).
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fb = 0; 
 = 1g and fb = 0; 
 = �1g, and the arrows in �gure 6.5 show how this 
on�guration

destabilises.

This is obviously not the full story, sin
e we have 
onsidered only a limited subset V

z

of

V

4

, whi
h happens to 
ontain a family of solutions of whi
h the real 
oeÆ
ients 
ase is a sub-

family. In fa
t this sub-family appears twi
e within V

z

, as we have seen (in V and in V

y

) so there

is 
onsiderable repetition even within this limited subset. V

z

does not 
ontain all possible free

boundary 
on�gurations. On the other hand, the 
ross-se
tion V

�

(� = 0) of V

4

is a minimal set of

possible free boundary shapes if axes are 
hosen appropriately, but 
omplex-parameter solutions

do not lie wholly within this spa
e. Evolution in time 
annot be determined by studying V

�

then,

unless the analysis is somehow modi�ed to allow the 
oordinates within the 
uid domain to rotate

suitably in time|we do not 
onsider this possibility.

In 
on
lusion, it seems that a 
omprehensive study requires the determination of the full

domain V

4

, sin
e we 
an say little more by 
onsidering three-dimensional 
ross-se
tions. We have

at least resolved the apparent paradox of the real 
oeÆ
ients 
ase, whi
h appeared to show that

identi
al 
on�gurations were at on
e stable and unstable.

6.3 Summary

In this 
hapter our prin
ipal 
on
ern has been with the (time-dependent) NZST Stokes 
ow

problem, in the limiting 
ase that the small positive surfa
e tension tends to zero. We began by

listing the more notable 
ontributions to the NZST problem, most of whi
h assume an O(1) surfa
e

tension parameter. Only HR'95 have previously 
onsidered the T ! 0 limit in su
h problems (the

\weak solution" 
on
ept), and their work is des
ribed in x6.1. Clearly, it only makes sense to

do this when 
onsidering problems for whi
h the ZST version undergoes �nite time blow-up (the

unstable su
tion problem, re
all the 
omments in x1.4.2). For su
h problems the T ! 0 limit

is not the same as the ZST problem: in the latter, the 
usp formation in the free boundary is

terminal, with solution breakdown o

urring, but for the former this is not so.

Following HR'95 we found a new weak solution for the su
tion problem, with a 
ubi
 polyno-

mial mapping fun
tion with real 
oeÆ
ients, whi
h we dis
ussed at some length. Some of these

solutions were found to permit the extra
tion of all the 
uid from the 
uid domain, while some

underwent a topologi
al 
hange (self-overlapping), beyond whi
h the solution 
ould not be 
on-

tinued. In 
ontrast to the ZST Hele-Shaw result of [50℄ (using the same mapping fun
tion), there

is no 
ontinuable 5/2-power 
usp solution in the ZST 
ase.

5

The quadrati
 and 
ubi
 \similarity solution" families of HR'95 were seen to be a subset of

our new family. Our solutions were seen to be unsatisfa
tory, however, in that two identi
al


on�gurations are apparently both stable and unstable, a paradox whi
h is a 
onsequen
e of the

\real 
oeÆ
ients" simpli�
ation. Hen
e, in x6.2.1, we investigated the \
omplex 
oeÆ
ients" 
ase.

While a 
omplete solution was found to be too 
ompli
ated analyti
ally, we were able to resolve

the apparent 
ontradi
tion, and arrive at an understanding of how our solution family �ts into

the mu
h larger family of 
omplex 
ubi
 solutions. In parti
ular, it would appear that the generi


\limiting 
on�guration" (as extra
tion time is neared) for those solutions whi
h do not undergo

a 
hange of topology, is the 
ardioid solution of HR'95, this being the only stable point of the

univalen
y boundary.

It was also found (although we did not give the analysis) that the velo
ity �eld at the 
usp is

�nite, and equal to the velo
ity of the free boundary at that point, so that there is no entrainment

of air into the 
usp (see HR'95 for the analysis in the simpler 
ase 
onsidered there). Viewed as

a regularisation of the Stokes 
ow su
tion problem, this may be 
ontrasted with the analogous

slit regularisation for the Hele-Shaw problem, whi
h was mentioned in x1.4.1, and is dis
ussed in

detail in 
hapter 7.

5

Su
h 
ontinuable solutions 
an be found for the NZST Stokes 
ow problem, however; see [85℄.
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Chapter 7

Cra
k and Anti-
ra
k solutions to

the Hele-Shaw model

We re
all the 
omments of x1.4.1 where we mentioned the theory of \
ra
ks" and their ZST limit,

\slits", in the Hele-Shaw problem. In this 
hapter we shall give a brief overview of the theory of


ra
ks and slits, and introdu
e the new 
on
ept of what we 
all anti
ra
ks, whi
h although very

di�erent in behaviour to 
ra
ks, are in some sense 
omplementary. We shall be 
onsidering the

small, positive surfa
e tension problem throughout, so it might be expe
ted that the ZST model

applies; however, we will see that the the nonzero surfa
e tension is a 
ru
ial part of the theory.

7.1 Overview of 
ra
ks and slits

The 
ra
k/slit theories were developed by several authors in a series of papers [36, 62, 33℄ between

1988 and 1994. The models are an attempt to regularise the ill-posed ZST Hele-Shaw su
tion

problem, whi
h is known to exhibit �nite-time blow-up via 
usp formation in all but very spe
ial


ases. The ZST model has to be invalid as su
h 
usped 
on�gurations are approa
hed, be
ause

the 
urvature � of the free boundary be
omes very large at the forming 
usp. When � = O(1=T ),

where T is the (small) surfa
e tension parameter, the boundary 
ondition p = 0 on �
 is no

longer a valid approximation to the a
tual boundary 
ondition p = �T on �
. Thus, surfa
e

tension e�e
ts be
ome important as we near 
usp formation (the ZST blow-up time), but only

in the neighbourhood of the 
usp. This statement forms the basi
 premise of the models: they

are, in e�e
t, a lo
al regularisation, a
ting only at isolated points of the boundary, whi
h on

physi
al grounds we expe
t to be those points at whi
h blow-up of the ZST problem o

urs. For

de�niteness, we assume a point sink-driven 
ow.

In the 
ase of the 
ra
k model [62℄, the proposal is that the subsequent morphology (for times


lose to the ZST blow up time) is that of a thin �nger of air (a 
ra
k) whi
h penetrates the 
uid

domain and propagates rapidly towards the sink. By \rapidly", we mean that the motion of

the rest of the free boundary is negligible 
ompared to the motion of the 
ra
k, as long as this


ontinues. Asymptoti
 methods are employed to study the evolution, and the 
ra
k geometry for

later times is determined as an analyti
 
ontinuation of some assumed initial geometry. Slits are


ra
ks of zero thi
kness, but the slit model 
an be derived independently of the 
ra
k model, as

we shall see.

Before presenting the theories, we mention some of the experimental and numeri
al eviden
e

supporting them. Kopf-Sill & Homsy [59℄, and Couder et al. [14℄ have observed narrow �ngers

(of thi
kness approximately 1/10 the 
hannel width) propagating in Sa�man-Taylor experiments.

These 
an be observed only under very 
arefully monitored 
onditions; in [59℄ for instan
e, the

plates of the Hele-Shaw 
ell had to be s
rupulously 
lean. The �ngers destabilise via dendriti


instabilities along the sides of the �nger, whi
h are on a mu
h shorter lengths
ale than the �nger

length itself, and are negle
ted in the 
ra
k theory to be des
ribed.
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Figure 7.1: The geometry of (a) a �nite 
ra
k; (b) a semi-in�nite 
ra
k, along the

x-axis (driven by a sink at in�nity).

Kelly & Hin
h [55℄ and Nie & Tian [69℄ have 
omputed 
ra
k-type morphologies numeri
ally.

In [55℄, the problem of o�-
entre su
tion from an initially 
ir
ular dis
 is solved using a boundary

integral algorithm (the ZST version of this problem was solved analyti
ally by Ri
hardson in

[79℄). For small values of the surfa
e tension parameter, the free boundary is observed to follow

ZST theory approximately until the 
urvature is relatively high, then a thin �nger of air advan
es

towards the sink. In the 
omputations of [69℄, similar geometries are found; these authors a
tually

�nd that the solution breaks down via the \�nger" rea
hing the sink before all the 
uid has been

su
ked out.

Consider �rst the 
ra
k model. We begin with the assumption that a 
ra
k (either �nite,

o

upying �
(t) < x < 
(t), or semi-in�nite, o

upying �1 < x < 
(t); see �gure 7.1) has

already formed along the x-axis, and is des
ribed by

y = ��h(x; t); h(x; 0) � h

0

(x) known;

for some small parameter �, whi
h is also used to res
ale time, t = �� . Three regions are 
onsidered:

the �rst is the outer region, in whi
h the 
ra
k may be linearised onto the x-axis as a slit. In this

region, with the above s
alings, the evolution equation for the 
ra
k pro�le (in the 
ase of the

�nite 
ra
k �
(t) < x < 
(t)) is readily derived as

�h

��

=

1

p


(�)

2

� x

2

: (7.1)

It is straightforward to integrate this to �nd the 
ra
k pro�le for times � > 0 if x lies in the range

jxj < 
(0), but for jxj > 
(0) the analyti
 
ontinuation mentioned above is ne
essary, whi
h relies
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on the assumption that

h(
(�); �) = 0; � � 0:

(Here 
(�) is assumed monotone in
reasing, whi
h will be the 
ase if p

1

< 0, by the maximum

prin
iple for Lapla
e's equation.) With this assumption the inverse fun
tion !(x), su
h that


(!(x)) � x, may be de�ned, and expli
it expressions for h(x; �) in both regions may be written

down,

h(x; �) = h

0

(x) +

Z

�

0

d�

0

p


(�

0

)

2

� x

2

; jxj < 
(0); (7.2)

h(x; �) =

Z

�

!(x)

d�

0

p


(�

0

)

2

� x

2

; jxj > 
(0): (7.3)

The latter equation here is the analyti
 
ontinuation of the former. For the parti
ular example of

a �nite 
ra
k with an initially ellipti
al pro�le, the shape of the 
ra
k for later times turns out to

be a narrow ellipse [62℄.

There is also an inner region for the problem, in whi
h the 
ra
k is 
onsidered to have an O(1)

thi
kness (by res
aling y with �), and a tip region, in whi
h both (x� 
(t)) and y are s
aled with

�

2

, and surfa
e tension e�e
ts are important. In [36℄, 
onje
tures are made whi
h suggest that

the mat
hing at the tip is only possible if � = T

1=3

. (In this paper, a balan
e of terms in the tip

region is a
hieved by s
aling distan
es with T

2=3

, time with T

�1=3

, and pressure variations with

T

1=3

; with these s
alings the tip speed is O(T

�1=3

).)

The pro
edure of analyti
 
ontinuation of the initial geometry h

0

(x) is ill-posed, often leading

to the formation of singularities in the free boundary within �nite time, with subsequent blow-up

of the model. Examples of how this 
an o

ur are given in [62℄, and spe
ulation is made about

how the 
ra
k might evolve through 
ertain types of singularities via tip-splitting.

The slit model (Hohlov et al. [33℄) on the other hand is well-posed, relying on 
onformal

mapping ideas whi
h by now should be familiar to the reader. A slit is essentially a 
ra
k of zero

thi
kness, whi
h again is postulated to propagate rapidly into the 
uid region. In this limiting 
ase,

\rapidly" will mean on a times
ale su
h that the rest of the free boundary is a
tually stationary

whilst the slit is in motion. On physi
al grounds, as for the 
ra
k model, the expe
tation is that

slits will grow from the ZST blow-up points of the free boundary; however, the slit model su�ers

from being seriously under-determined, permitting slits to propagate from arbitrary points of the

free boundary along arbitrary paths, and to bran
h in any 
hosen way.

If a well-posed slit model exists, it ought to be realisable as the (ZST) limit of some 
ra
k

model, and we will see that this is indeed the 
ase. The theoreti
al framework for the model relies

on �rst rewriting the P-G equation (2.4) in the form

<

�

w

t

(�)

�w

0

(�)

�

=

�Q

2�jw

0

(�)j

2

on j�j = 1; (7.4)

(where the prime denotes �=��); as usual we take Q > 0 to represent a sink, sin
e we are only

interested in the su
tion problem. We have already mentioned that the model is under-determined;

however, physi
al 
onsiderations suggest that we are interested in slit evolution for times t > t

�

(t

�

being the blow-up time for the ZST model), and from the point(s) on �
(t

�

) at whi
h the


usp forms. Time is thus res
aled for t > t

�

with some small parameter �,

t� t

�

= ��; (7.5)

and the \slit mapping" is denoted by

W (�; �) = w(�; t

�

+ ��): (7.6)

For simpli
ity, suppose a 
usp has formed at w(�1; t

�

) on the real negative axis, with the sink

lying at z = 0 (as in �gure 2.3, for example). To lowest order in �, (7.4) be
omes

<

�

W

�

(�)

�W

0

(�)

�

= 0;
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holding on j�j = 1, ex
ept at � = �1, where the right-hand side is in fa
t unbounded (so we expe
t

something like a delta-fun
tion there). In the absen
e of other singularities on j�j = 1 Hohlov et

al. derive the appropriate form of (7.4) as

<

�

W

�

(�)

�W

0

(�)

�

= <

�

�a(�)

�

1� �

1 + �

��

;

for an arbitrary real, positive fun
tion a(�). Res
aling time again, and analyti
ally 
ontinuing

this equation, they obtain a version of L�owner's di�erential equation for the mapping fun
tion

W ,

W

�

(�)

�W

0

(�)

= �

�

1� �

1 + �

�

; (7.7)

holding globally. This is a linear, hyperboli
 p.d.e., with solution

W (�; �) = F (e

��

K(�));

for arbitrary fun
tions F ( � ). Here K( � ) is the Koebe map of univalent fun
tion theory (see [20℄),

de�ned by

K(�) =

�

(1� �)

2

;

whi
h maps the unit dis
 onto the whole 
omplex plane, minus the slit (�1;�1=4℄ along the real

axis. The fun
tion F ( � ) is determined from the initial data,

F (K(�)) =W (�; 0) � w(�; t

�

):

Hen
e the \slit mapping" W (�; �) maps the unit dis
 onto the region 
(t

�

), minus the image

(under F ) of the slit [�1=4;�e

��

=4℄, so that the smooth portion of the free boundary remains

�xed at �
(t

�

), whilst the point whi
h was at w(�1; t

�

) has travelled into 
(t

�

) as far as the point

F (�e

��

=4). This is illustrated s
hemati
ally in �gure 7.2. By 
hoosing a suitable distribution

of delta-fun
tions on the right-hand side of the P-G equation, more general versions of L�owner's

equation are obtained, and the above 
an be generalised to a model whi
h allows slits to propagate

from arbitrary points of the free boundary, and in a spe
i�ed manner (this is des
ribed in [33℄),

hen
e the indetermina
y of the model referred to earlier. However, the justi�
ation for writing

down (7.7) had a physi
al basis, in that the singularity on the right-hand side was pla
ed at

� = �1 be
ause this is where the zero of w

0

(�; t

�

) o

urred.

The link with the 
ra
k model of [36, 62℄ 
an now be demonstrated. With time s
aled as

in (7.5), we assume that the \slit" map W (�) of (7.6) represents only the �rst term in a simple

perturbation of the a
tual mapping fun
tion, in powers of � (the 
ra
k thi
kness), so that the free

boundary will be an O(�) distan
e away from the slit. Thus, (7.6) is repla
ed by

w(�; t) =W (�; �) + �W

1

(�; �) +O(�

2

):

We again substitute into (7.4); at lowest order we retrieve the slit problem, but at order � we get

<

�

�

�W

��

�W

1

��

+ �

�W

1

��

�W

��

�

= �

Q

2�

on j�j = 1: (7.8)

For the simple \paradigm" problem of a �nite 
ra
k jxj < 
(�) driven by a sink at in�nity, with

sides y = ��h(x; �), the slit mapping is exa
tly

W (�; �) =




2

(� + 1=�):

Substitution of this form for W into (7.8) with � = e

i�

and the normalisation Q = 2�, and noting

that at leading-order h(x; �) = =(W

1

(e

i�

)), and that x = 
(�) 
os �, leads eventually to

�h

��

=

1

p


(�)

2

� x

2

;
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Figure 7.2: S
hemati
 diagram showing how a general slit solution works.
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whi
h is exa
tly equation (7.1) of the 
ra
k model.

We 
an also study the 
ra
k model in terms of the S
hwarz fun
tion of the free boundary, and

its singularities. We know that the free boundary, assuming it is analyti
, may be written in the

form

�z = g(z; t);

where the S
hwarz fun
tion g is analyti
 in some neighbourhood of the free boundary. It was shown

in x2.3 (equation (2.10) and the 
omments below it) that although g(z; t) may have singularities

both inside and outside the 
uid domain, those within the 
uid remain 
onstant in both position

and time, whilst those outside the 
uid may move around, and vary in strength. In the example

of x2.4, blow-up of the ZST problem was asso
iated with an external square-root singularity of g

rea
hing the free boundary.

For the symmetri
 
ra
k y = ��h(x; �), either �nite or semi-in�nite, the S
hwarz fun
tion

representation takes the form

�z = z � 2i�h(z; �) +O(�

2

);

(the +; � referring to the lower, upper sides of the 
ra
k respe
tively) and hen
e the S
hwarz

fun
tion of the 
ra
k boundary has singularities wherever h does. Consider the singularity near

the 
ra
k tip for the �nite 
ra
k lying along �
(�) < x < 
(�). The leading-order behaviour of h

may be found from (7.3) as

h(x; �) �

1


(�)

�

2(
(�) � x)


(�)

�

1=2

;

an expression whi
h is easily veri�ed by 
he
king in (7.1), with x = 
 � Æ for some small Æ. A

similar result holds for the 
ase of the symmetri
 semi-in�nite 
ra
k (whi
h is a paraboli
, or

\Ivantsov" 
ra
k) [62℄. Hen
e in general, the assumption is that the fun
tion h will have a square-

root singularity at the 
ra
k tip, whi
h may be interpreted as a square-root singularity of the

S
hwarz fun
tion, just inside, and O(�) distant from, the tip (note that \inside the tip" here is

a
tually outside the 
uid domain, sin
e the 
ra
k is the narrow �nger of air).

Sin
e we have now seen how the two models are linked, we shall hen
eforth use the term

\
ra
k" to denote either a 
ra
k or a slit solution, on the understanding that the slit is the ZST

limit of the 
ra
k. We reserve the term \slit" for emphasis, when we are 
onsidering only the slit

model. It is helpful at this stage to summarise by listing the more important points of the theory,

for later 
omparison with the anti
ra
k results and 
onje
tures.

� Cra
ks are born at singularities of the ZST problem, and 
an propagate only in the 
ase

T > 0.

� Cra
k tip speeds and 
ra
k widths are determined by surfa
e tension e�e
ts near the tip.

� As T ! 0, the S
hwarz fun
tion g(z) has a square-root singularity at the 
ra
k tip.

We 
on
lude this se
tion by mentioning the work of King et al. [56℄ on Hele-Shaw 
ows where the

initial geometry has a 
orner of internal angle � in the boundary (that is, � is the angle measured

within the 
uid domain; see the de�nition sket
h of �gure 7.9), sin
e we shall 
ite their results

later as eviden
e for the anti
ra
k theory. They prove that, for the ZST su
tion problem, if the

angle � lies stri
tly between � and 2� (the 
ase 2� being some kind of inward-pointing 
usp in

the free boundary), there is no solution to the model for later times. In the 
ase that the 
orner

angle is 2� there is still no solution for t > 0, save in the spe
ial 
ase that the boundary has a

(4n+ 1)=2-power 
usp (for integer n); this result is dedu
ed from a similar result for the related

obsta
le problem of variational 
al
ulus [90, 64℄. This is the kind of \blow-up" geometry we have

in mind for regularisation by slit propagation; this result shows that the surfa
e tension e�e
ts at

the slit tip are an essential part of the model.
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7.2 Introdu
tion to Anti
ra
ks

Having reviewed the fundamental ideas behind 
ra
ks and slits, we turn now to what we view as

the 
omplementary phenomenon of anti
ra
ks. These too will only arise in the ill-posed \su
tion"

(and not in the \blowing") problem.

As the name suggests, in this 
ase, instead of having thin �ngers of air penetrating the 
uid

domain, we now have thin �ngers of 
uid whi
h are \left behind" as the free boundary progresses

(refer forward to �gure 7.5). The two situations are very di�erent, despite the super�
ial similar-

ities in the geometry. We know (by the maximum prin
iple for harmoni
 fun
tions) that, at least

for the ZST problem, the free boundary must always be moving down the pressure gradient (for

example, towards the sink, in a problem with a single point sink). Hen
e, although �ngers of air

are able to propagate into the 
uid in a general su
tion problem, �ngers of 
uid 
annot propagate

out but must, as we said, be \left behind". Thus the anti
ra
ks themselves are very stagnant (the

motion of the tip will be seen to be exponentially small for large time), although the rest of the

free boundary is able to propagate smoothly.

Su
h stru
tures are observable in Hele-Shaw experiments (Paterson [73℄ and Chen [11℄), and

large families of exa
t solutions to the ZST model exist (Howison [45℄, Mineev-Weinstein & Pon
e-

Dawson [66℄) whi
h demonstrate anti
ra
k formation. In the experiments of [73℄ and [11℄ a less

vis
ous 
uid is inje
ted at a 
onstant rate into an expanse of more vis
ous 
uid in a large Hele-

Shaw 
ell, and time-lapse photographs of the evolving interfa
e are presented. The photographs

of both papers are remarkably similar, showing 
learly that long thin �ngers (the anti
ra
ks)

of the more vis
ous 
uid are left behind as the free boundary advan
es. Typi
al results of the

experiments of [73℄ are reprodu
ed in �gure 7.3. It is diÆ
ult to see from these pi
tures, but there

is a tenden
y for the tips of the anti
ra
ks to be slightly bulbous for large times.

Paterson performs a linear stability analysis for the problem of an expanding 
ir
ular \bubble"

of the less vis
ous 
uid, whi
h provides a surfa
e tension dependent \sele
tion me
hanism" for

the �ngers, predi
ting �rstly at what bubble radius they will start to form, and se
ondly, whi
h

of the unstable �nger wavelengths is fastest-growing when this radius is rea
hed. We re
onsider

this analysis in x7.6.

The radial �ngering solutions of [45℄, whi
h are brie
y 
onsidered in x7.3.3, 
an be made to

mimi
 
losely the experimental results of [73℄ and [11℄ if the parameters in the 
onformal map are


hosen appropriately (�gure 7.3). Essentially, \
hoosing appropriately" means that the mapping

fun
tion is 
hosen to give a judi
ious distribution of singularities of the S
hwarz fun
tion within

the 
uid domain, whi
h by the results of x2.3, must remain �xed within the 
ow domain, and

whi
h the free boundary 
annot 
ross. In [45℄, a large 
lass of �ngering solutions in a 
hannel

geometry is also found, whi
h are generalisations of the time-dependent Sa�man-Taylor �nger [88℄.

When wide �nger solutions of this type are 
onsidered as a periodi
 array, the anti
ra
ks be
ome

apparent as the strips of 
uid separating these air �ngers, whi
h were adja
ent to the wall and

asymptoti
ally stagnant in the 
hannel geometry. The solutions of [66℄, although non-periodi
,

are very similar to these solutions.

Remarkably similar geometries to the radial �ngering solutions (and experiments) have re
ently

been 
omputed by Elliott & Gardiner [23℄, for the 
losely-related problem of the growth of a seed

of solid into a super
ooled liquid (�gure 7.4). The authors use the phase �eld equations (with

suitably 
hosen parameters) to approximate the isotropi
 Stefan problem with Gibbs-Thomson

under
ooling. The phase �eld equations are known to exhibit a wide range of possible behaviours

in di�erent parameter-group limits; in parti
ular, various types of Stefan problem 
an be repre-

sented in this way, as well as the Hele-Shaw problem itself (see [9℄ for more dis
ussion of these

matters).

In this 
hapter, we regard 
ra
ks and anti
ra
ks as two di�erent possible regularisations of

the ill-posed \su
tion" problem. A natural question to ask, then, is: What will determine whi
h

instability is observed in a parti
ular physi
al situation? This is a key question, to whi
h we return

in x7.9; although we are unable to give a 
ategori
al answer, we make a 
onje
ture (ba
ked up by

analyti
al, numeri
al and experimental eviden
e). Another question of interest 
on
erns the e�e
t

of surfa
e tension on anti
ra
ks. We saw in x7.1 that the 
ra
k/slit theory is 
ru
ially dependent
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Figure 7.3: Examples of the radial �ngering solutions of [45℄, together with a photograph of one of Paterson's

experiments [73℄.
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Figure 7.4: Phase-�eld 
omputations of the \free boundary" (a
tually a level set of

the phase parameter � o

urring in the phase �eld model) for the growth of a seed of

solid into a super
ooled liquid. This pi
ture was kindly supplied by Dr A. R. Gardiner

[23℄.
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on surfa
e tension, sin
e there is no solution to the ZST problem beyond the time at whi
h it

blows up with formation of a 3/2-power 
usp [56℄ (whi
h is the kind of situation we expe
t to

be regularised by 
ra
k formation). For the 
ase of anti
ra
ks, however, there exist large 
lasses

of solutions to the ZST problem whi
h exist for all time, with analyti
 free boundaries. These

boundary 
urves should not be very di�erent to those for the 
orresponding small positive surfa
e

tension problem, then|although surfa
e tension must be the sele
tion me
hanism determining

whi
h solution is observed. We also remark that the tenden
y of the anti
ra
k tips to be
ome

slightly bulbous for large times observed in [73℄ and [11℄ must be attributable to surfa
e tension

e�e
ts, sin
e the tip is the most highly 
urved part of the free boundary in a narrow anti
ra
k.

7.3 Exa
t ZST anti
ra
k solutions

Before making any more general 
omments, we present some exa
t ZST solutions to the Hele-

Shaw problem whi
h exhibit anti
ra
k formation. It is useful to do this, �rstly be
ause it makes


lear what the mathemati
al des
ription of an anti
ra
k is, and se
ondly, be
ause by the above


omments regarding the small surfa
e tension problem, we expe
t su
h solutions to be able to

provide a good des
ription of the a
tual behaviour observed. We will see, however, that the

ZST problem is underdetermined, having solutions whi
h allow a more or less arbitrary array of

anti
ra
ks to be generated by suitable 
hoi
e of the parameters in the 
onformal maps.

7.3.1 The \generi
" anti
ra
k

We �rst present what we 
onsider to be the \generi
" (and 
ertainly the simplest) Hele-Shaw

anti
ra
k solution, sin
e it 
aptures all the essentials of the behaviour. It is a solution on a semi-

in�nite 
uid domain, driven by a 
onstant negative pressure gradient at in�nity, and is most easily

obtained by use of a 
onformal map from the right-half plane onto the 
uid domain. The map we


onsider is very simple,

w(�; t) = � + Ut+ � log(a(t) + �) <(�) � 0; (7.9)

where U and � are positive 
onstant parameters, and a(t) is a fun
tion of time (assumed real,

without loss of generality). This map is easily seen to be a solution of the problem, for arbitrary

�, provided a satis�es the 
ondition

a+ Ut+ � log a = 
onst. = a

0

+ � log a

0

; (7.10)

where a

0

= a(0). This may be seen either by using the P-G equation (2.6), or by the results

of x2.3 (that those singularities of the S
hwarz fun
tion within the physi
al domain must remain

�xed), noting that for a map from the right-half plane onto the 
uid domain, the S
hwarz fun
tion

is given by

g(z(�)) � �w(��): (7.11)

Equation (7.10) is not expli
itly solvable for a(t), but the large-time behaviour, when the anti
ra
k

is well-developed, is easy to obtain. The only possible large-time balan
e is a! 0 as t!1, with

the 
onstant � ne
essarily positive. (If � < 0 a solution for a(t) must 
ease to exist within �nite

time.) Sin
e here we are only interested in the large-time behaviour, we assume initial 
onditions

su
h that the right-hand side of equation (7.10) vanishes; the asymptoti
 behaviour of a(t) is then

a(t) � exp(�Ut=�): (7.12)

The anti
ra
k tip is at

z

tip

= w(0)

= Ut+ � log a

= �a; (7.13)
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the last equality following from (7.10) with zero right-hand side. Hen
e with the asymptoti
 be-

haviour of (7.12), the anti
ra
k tip approa
hes exponentially 
lose to the origin, but never a
tually

rea
hes it. This asymptoti
 stagnation of the tip is asso
iated with a logarithmi
 singularity of

the S
hwarz fun
tion (given by (7.11)) at the point

z = w(a) = Ut+ a+ � log(2a)

= � log 2;

whi
h the free boundary 
annot 
ross while the solution exists. The free boundary itself is given

by the image of the imaginary �-axis, � = i�. Taking real and imaginary parts in x+ iy = w(i�)

gives

x = Ut+

�

2

log(a

2

+ �

2

) � Ut+

�

2

log(�

2

+ exp(�2Ut=�));

y = � + � tan

�1

(�=a) � � + � tan

�1

(� exp(Ut=�)):

There are three distin
t parts to the free boundary, 
orresponding to di�erent r�egimes for �. The

anti
ra
k tip is des
ribed by j�j � exp(�Ut=�) � 1, or equivalently, j�j � a, so that a

ording

to the above expressions,

x � 0; y � � tan

�1

(� exp(Ut=�))

� �� exp(Ut=�);

(although a better approximation for x is given by (7.13) and (7.12)). For a narrow anti
ra
k,

�� 1, and if we res
ale x = �X , y = �Y , then in the tip region,

2X � log(1 + �

2

=a

2

); Y � tan

�1

(�=a);

and the general equation of the anti
ra
k tip is

Y = 
os

�1

(e

�X

):

The anti
ra
k sides are given by exp(�Ut=�)� j�j � ��=2, where

x � Ut+ � log j�j; y � �

��

2

:

The advan
ing free boundary is given by j�j � ��=2, and for � in this range,

x � Ut+ � log jyj:

Intermediate values of � represent the smooth transition between these three regions; in parti
ular,

we refer to the transition between the anti
ra
k sides and the advan
ing free boundary as the

anti
ra
k root. A typi
al large-time free boundary is shown in �gure 7.5. All su
h free boundaries

are of self-similar form in any 
ase, there being only one free parameter in this solution (�=U , the

ratio of the anti
ra
k width to the uniform pressure gradient). Away from the tip, the rest of the

anti
ra
k 
annot \feel" its presen
e, and the solution is essentially a travelling wave,

z = w(�) = � + Ut+ � log �; (7.14)

with an in�nitely long anti
ra
k of width ��.

The pressure �eld within the anti
ra
k is given by (2.1) and (2.5) as

p = �<(�):

Near the tip,

z � Ut+ � log(a+ �);

so with a given approximately by (7.12), the pressure �eld in the tip region is approximately

p � exp(�Ut=�)(e

z=�

� 1):
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 anti
ra
k" solution. The free boundary is shown for times t = t
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, with

t
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> t
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> t

1

.
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7.3.2 Solutions with many anti
ra
ks

Having seen how the solution for a single anti
ra
k works, it is a straightforward matter to gener-

alise to an arbitrary array of parallel anti
ra
ks, by suitable 
hoi
e of the logarithmi
 singularities

in the mapping fun
tion w(�). The solutions of this se
tion were also given in [66℄ in the 
ontext of

general Lapla
ian pattern formation (whi
h of 
ourse in
ludes the ZST Hele-Shaw problem), and

are 
losely related to the \
hannel geometry" solutions of [45℄ and [88℄, although the derivation

as given here was independent of this work.

The obvious form of mapping fun
tion to try is

w(�) = � + Ut+

N

X

r=1

�

r

log(a

r

(t) + �); (7.15)

where all the �

r

are assumed to be real positive 
onstants, and the a

r

(t) fun
tions of time with

positive real parts. This will give a solution of the P-G equation (2.6) provided the singularities

of the S
hwarz fun
tion (7.11) remain �xed in the physi
al region, that is, provided the following


onditions hold:

a

n

(t) + Ut+

N

X

r=1

�

r

log(a

r

(t) + a

n

(t)) = k

n

; n = 1; : : : ; N; (7.16)

for N 
omplex 
onstants k

n

. The parameters �

n

represent the anti
ra
k widths (for large times,

when the anti
ra
ks are well-developed), and (�U) is the pressure gradient at in�nity. As with

the generi
 solution, U may be s
aled out of the problem by dividing ea
h of the �

n

by U . The

large-time behaviour of these solutions requires a little more 
are than the previous example,

sin
e we are now dealing with 
omplex quantities. Writing a

n

= p

n

+ iq

n

and k

n

= �

n

+ i�

n

the

equations (7.16) be
ome:

p

n

+

N

X

r=1

�

r

2

log[(p

n

+ p

r

)

2

+ (q

n

� q

r

)

2

℄ = �

n

� Ut; (7.17)

q

n

+

N

X

r=1

�

r

tan

�1

�

q

n

� q

r

p

n

+ p

r

�

= �

n

: (7.18)

A large-time balan
e in (7.17) is only possible if ea
h of the fun
tions p

n

(t) is de
aying expo-

nentially with time; the q

n

(t) will remain O(1). If we assume that q

n

6= q

m

for n 6= m then the

asymptoti
 behaviour of (7.17) will be

p

n

(t) �

1

2

exp

�

�

n

� Ut

�

n

�

;

whilst that of (7.18) will be

q

n

(1) = �

n

+

�

2

X

r 6=n

�

r

sgn(q

r

(1)� q

n

(1)):

If we assume the ordering is 
hosen su
h that q

1

(0) < q

2

(0) < : : : < q

N

(0) (whi
h will then persist

for later times), we have

q

n

(1) = �

n

+

�

2

X

r>n

�

r

�

�

2

X

r<n

�

r

; (7.19)

hen
e the q

n

approa
h known, 
onstant values as t!1.

This solution exists globally in time, with the parameter restri
tions we have imposed. It

des
ribes an array of N parallel anti
ra
ks, the n'th one having its tip at the point

z

n

= w(�iq

n

);
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Figure 7.6: A typi
al solution generated by (7.15), showing 4 well-developed anti
ra
ks. Here, ��

i

=

0:5; 1; 0:8; 0:4; for i = 1; 2; 3; 4; respe
tively; �

i

= �3; �2; 0:5; 1:5, and �

i

= 0:5 for ea
h i.

su
h that the 
orresponding logarithmi
 singularity of the S
hwarz fun
tion lies (�xed) within the

�nger tip, preventing the free boundary progressing beyond this point. Asymptoti
ally then, the

anti
ra
k tips are �xed at the points

x

n

(1) � �

n

� �

n

log 2 +

X

r 6=n

�

r

log jq

r

(1)� q

n

(1)j; (7.20)

with the q

k

(1) given by (7.19), and

y

n

(1) � �q

n

(1) +

�

2

X

r>n

�

r

�

�

2

X

r<n

�

r

= ��

n

: (7.21)

The width of the n'th anti
ra
k is �

n

�. This impli
itly assumes that the distan
e between

adja
ent anti
ra
k tips, j�

n+1

��

n

j, is greater than the sum of the two anti
ra
k half-thi
knesses,

�(�

n

+ �

n+1

)=2, so that the anti
ra
ks are all distin
t, although this is not ne
essary for the

validity of the solution. All that we require is that the �

n

be real and positive, and that the

110



Fat anticrack

Fat anticrack

Fat anticrack

Crack

Crack

Crack

AIR

FLUID

Figure 7.7: Sket
h showing the geometry when we have an array of \fat anti
ra
ks" with narrow spa
ing generated

by (7.15). The gaps between the \anti
ra
ks" may be viewed as 
ra
ks.

�

n

be real and distin
t. Note that sin
e we have expli
it expressions (7.20), (7.21) for the large-

time tip 
o-ordinates (x

n

(1); y

n

(1)), we may 
hoose these, together with the (�

n

), as the free

parameters in the solution. Hen
e with this family of solutions, we 
an generate a more or less

arbitrary array of anti
ra
ks, having spe
i�ed widths and tip 
o-ordinates. A typi
al solution is

shown in �gure 7.6. The family of solutions given in [66℄ was even more general, in that they

allowed the parameters � to be 
omplex (provided they have positive real parts); this 
an give

solutions with non-parallel anti
ra
ks.

Several 
omments may be made about this 
lass of solutions. Firstly, given the above in-

terpretation of the arbitrary 
onstants �

n

and �

n

in the solution, it is possible to 
hoose these

parameters so as to give an array of very fat \anti
ra
ks", whi
h are very 
lose together (we

use the inverted 
ommas here be
ause usually we envisage anti
ra
ks as being narrow stru
tures,

hen
e the name). The strips of air separating them may then be viewed as 
ra
ks, sin
e the

motion of the \stagnant" anti
ra
k bases is negligible relative to these, whi
h was the 
ase in the


ra
k theory. This is essentially a system of narrow Sa�man-Taylor �ngers, see �gure 7.7, and

illustrates the 
omplementarity of 
ra
ks and anti
ra
ks.
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Figure 7.8: Solution of the form (7.15) exhibiting what we interpret as 
ra
k and anti
ra
k formation. The values

�

1

= 0:1 (the anti
ra
k), and �

2

= �3 were used.

Se
ondly, if we allow any of the real 
onstants �

n

to be negative, then the free boundary

inevitably develops 
usps within �nite time (as we would expe
t from the interpretation of the

�

n

as the anti
ra
k widths), sin
e there is no possible large-time balan
e in equations (7.17).

Hen
e by suitable 
hoi
e of the parameters in the map, we may generate solutions whi
h �rst

form well-developed anti
ra
ks, then break down via 
usp formation (�gure 7.8). Su
h solutions


an be interpreted as exhibiting anti
ra
k and 
ra
k formation, sin
e as the 
usped 
on�guration

is neared, the 
ra
k theory outlined in x7.1 will take over from the ZST theory, operating on a

mu
h faster times
ale.

The solutions represented by (7.15) may, for suitably \small" initial data, be regarded as

a perturbation to a travelling wave planar front. One 
an study the e�e
t of positive surfa
e

tension on su
h a travelling wave solution, by superimposing a small sinusoidal perturbation on

the interfa
e and performing a straightforward linear stability analysis. The basi
 travelling wave

we perturb is (in dimensional variables, with b the gap width in the Hele-Shaw 
ell, and � the

vis
osity of the 
uid),

p =

12�

b

2

U(Ut� x) (x > Ut);
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where x = Ut is the free boundary. Perturbing the free boundary to

x = Ut+ �e

�t

sin

�

n�y

L

�

+O(�

2

);

we �nd the dispersion relation

� =

jnj�

L

�

U �

Tn

2

�

2

b

2

12�L

2

�

:

Here, T is the usual surfa
e tension parameter, whi
h when positive is seen to have the e�e
t of

stabilising shorter wavelengths. Assuming walls at y = �L=2, there is a 
riti
al (minimum) speed

for a perturbation to be maintained,

U

�

=

T�

2

b

2

12�L

2

;

whi
h will typi
ally be mu
h less than unity, and hen
e usually ex
eeded. The fastest-growing

wavenumber is the n = 1 mode, so a

ording to this analysis, if we have a 
hannel of width L

(not small), and 
hannel length mu
h greater than L, an initially 
at interfa
e might be expe
ted

to evolve to a single dominant �nger (although this would rapidly take us beyond the realm of

the linear theory)|the Sa�man-Taylor experiment.

7.3.3 Howison's radial \anti
ra
k" solutions

For 
ompleteness, and also be
ause of the remarkable similarity with the experimental pi
tures of

[73℄ and [11℄, and the numeri
al simulations of [23℄, we present the family of solutions found by

Howison [45℄. These solutions di�er from those above, being in a radial geometry, although the

essential anti
ra
k behaviour is the same.

We map from the unit dis
 onto the 
uid domain, whi
h is here the exterior of some �nite

bubble. The mapping fun
tion used is

w(�) =

a(t)

�

+ �

1

N

X

k=1

$

�k

log(


1

(t)$

k

� �)

+ �

2

N

X

k=1

$

�k�1=2

log(


2

(t)$

k+1=2

� �); (7.22)

for a, 


1

, 


2

real fun
tions of time, with a > 0, 


1

> 1, 


2

> 1; the �

i

are positive 
onstants to be


hosen (analogous to the �

i

in the solution (7.15), in that ��

i

turns out to be the anti
ra
k width),

and $ is an N 'th root of unity (so $

N

= 1). More 
ompli
ated maps, allowing asymmetri
 arrays

of �ngers to be generated, 
an be dealt with, but (7.22) is the 
ase 
onsidered in detail in [45℄.

The motion is assumed to be driven by a sink Q at in�nity. The fa
t that the singularities of

the S
hwarz fun
tion must remain �xed in the physi
al plane yields two invariants of the motion,

a


i

+ �

i

N

X

k=1

$

�k

log(


2

i

$

k

� 1) + �

j

N

X

k=1

$

�k�1=2

log(


i




j

$

k+1=2

� 1) = K

i

;

holding for i = 1, j = 2, and also for j = 1, i = 2, for some real 
onstants K

1

, K

2

. The third and

�nal equation governing the evolution is the 
ondition that the rate of 
hange of the bubble area

should be equal to Q,

a

2

�Na(�

1




1

+ �

2




2

) =

Qt

�

+K

0

;

for some real 
onstant K

0

. These equations 
ould also have been derived by dire
t substitution

of (7.22) into the P-G equation (2.4), although this is mu
h more tedious.
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If the initial values 


1

(0) and 


2

(0) are large, then the initial domain will be nearly 
ir
ular

(as may be seen from w(�; 0)). In any event, provided their initial values are greater than one,

both 


1

and 


2

will de
rease monotoni
ally to unity as t ! 1, and the bubble will leave behind

2N �ngers of 
uid, alternate �ngers having widths ��

1

and ��

2

. A typi
al solution is shown in

�gure 7.3; we refer to [45℄ for the remaining details of the solution.

7.4 The S
hwarz fun
tion of an anti
ra
k

The solutions obtained so far indi
ate that a general ZST anti
ra
k has a logarithmi
 singularity of

the S
hwarz fun
tion just inside the tip, whi
h is �xed, and whi
h the free boundary 
annot rea
h

in �nite time (
ontrast this with the square-root singularity just outside the tip, for a 
ra
k). We

have already seen how this works for the logarithmi
 singularity, but it is also easy to demonstrate

that the free boundary 
annot rea
h a more general internal singularity, su
h as g(z) � �(�� z)

m

for some 
onstants �, �, and m > 0.

1

We note, however, that although we 
onje
ture this

logarithmi
 singularity to be generi
 for the ZST anti
ra
k, it 
annot be a singularity in the

NZST problem (even if we allow it to move), as may be seen from (2.11). Internal singularities

of the S
hwarz fun
tion will not now remain �xed in spa
e (save those whi
h 
oin
ide with the

driving singularity) and must move in su
h a way as to 
an
el the singularity on the right-hand

side of (2.11). Motivated by a link between (2.11) and the well-known \Harry-Dym" equation, it

was 
onje
tured in [48℄ that the 
anoni
al moving singularity in the NZST problem is of the form

g(z) �

�(t)

(z � z

0

(t))

1=3

as z ! z

0

(t),

for some �(t), z

0

(t). It is easy to show that the 
oeÆ
ients in this leading-order singularity, whi
h

is of 
ourse mu
h larger than log(z � z

0

) as z ! z

0

, satisfy

_z

0

=

4T

p

3�

3

:

We know that in the ZST limit we need _z

0

= 0, and we also expe
t � = 0 for the generi
 anti
ra
k,

so dependen
e like � � T

k

for 0 < k < 2=3 would do, for instan
e. If our generi
 ZST anti
ra
k

is a sensible T ! 0 limit of some NZST anti
ra
k solution, and if the 
onje
ture of [48℄ about

the 
anoni
al NZST singularity is 
orre
t, then there must be a se
ondary logarithmi
 singularity,

whi
h 
an persist as T ! 0, and whi
h will dominate in this limit.

It is still the 
ase that the free boundary 
annot 
ross internal singularities of g(z) while the

solution exists. Given the photographi
 eviden
e of [73, 11℄, and the ex
ellent agreement with the

ZST solutions of [45℄, one therefore expe
ts very little variation in z

0

(t) for large time. Further

progress with the NZST problem is diÆ
ult, and we do not pursue it.

7.5 Results from formal asymptoti
s

Having set the s
ene by presenting some exa
t ZST anti
ra
k solutions, we now digress a little

to 
onsider some results due to King et al. [56℄, whi
h rely on formal asymptoti
s in the neigh-

bourhood of singular points of the 
ow. We mentioned this work in x7.1, 
iting the result that in

the ill-posed ZST su
tion problem, there exists no solution to the problem for t > 0 if the initial

free boundary �
(0) 
ontains a 
orner of internal angle � 2 (�; 2�). In fa
t, mu
h more general

results than this are obtained, whi
h we summarise below.

Consider the ZST su
tion problem, where the initial domain 
(0) is nonanalyti
, having a


orner of internal angle � in �
(0) at x = 0 (�gure 7.9). Then:

1

Solutions to the ZST su
tion problem 
an be 
onstru
ted in whi
h the free boundary rea
hes a singularity

of the S
hwarz fun
tion within �nite time, but su
h solutions are the time-reversals of blowing problems with

nonanalyti
 initial data (see for instan
e [32℄), and therefore \pathologi
al" examples.
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Figure 7.9: The lo
al geometry with a 
orner of internal angle � in the 
uid.

� If 0 < � � �=2, a solution 
an exist for t > 0; if it does, the boundary �
(t) 
ontinues to

have a 
orner of angle � at x = 0.

� For �=2 < � < �, a solution 
an exist for t > 0; if it does, then for t > 0 the 
orner angle

swit
hes instantaneously to (� � �).

� For � = �, if �
(0) is analyti
 at x = 0 then the free boundary �
(t) may move su
h

that 0 62 
(t) for t > 0, but if �
(0) is nonanalyti
 at x = 0 then either � = �+, and

there is no solution for t > 0, or else � = ��, and as long as the solution exists there is an

outward-pointing 
usp at x = 0.

� For � < � � 2� (ex
luding the 
ase of (4n+ 1)=2-power 
usps) there is never a solution for

t > 0.

Further to these results, King [57℄ 
onsidered the \borderline" 
ase � = � (with the free boundary

nonanalyti
 at x = 0) in more detail. In the simplest 
ase 
onsidered, an initial free boundary

x = �jyj

k

k 2 (1; 2); as y ! 0

is assumed (for the usual ZST su
tion problem, with the 
uid o

upying the region to the right

of this 
urve). A ne
essary 
ondition for a solution to exist for t > 0 is found to be that � must

be positive, and if a solution does exist for t > 0, the subsequent free boundary must have an

outward-pointing 
usp �xed at the origin, des
ribed lo
ally by

jyj = f(x; t) � � sin(k�=2)x

k

; as x! 0+:

The � < 0 
ase 
orresponds to � = �+ in the possibilities itemised above; the free boundary has

a 
ontinuous tangent ve
tor but is nonanalyti
, and we expe
t this situation to be regularised by


ra
k formation if T > 0 (or slit propagation in the limit T ! 0), as dis
ussed in x7.1. When � > 0,

� = ��; again the free boundary is nonanalyti
 but with a 
ontinuous tangent ve
tor. In this 
ase,

however, a solution to the ZST problem 
an exist for t > 0 (the third of the list of possibilities).

In terms of our anti
ra
k theory, we interpret the stagnant outward-pointing 
usp as a limiting


ase of an anti
ra
k, somehow analogous to a slit, in that the free boundary is nonanalyti
. Unlike

slits, though, we only expe
t su
h solutions to o

ur when we have nonanalyti
 initial data, and

also, surfa
e tension is not ne
essary (even in a limiting sense) for su
h solutions to exist. In fa
t,

the dependen
e (or otherwise) on surfa
e tension is one of the main di�eren
es between the 
ra
k

and anti
ra
k theories; for 
ra
ks (and slits) surfa
e tension is vital if solutions to the models

are to exist at all, but for anti
ra
ks, s
ores of exa
t ZST solutions exist, whi
h 
an give good

agreement with observable free boundary shapes if we 
hoose the parameters 
orre
tly. However,
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surfa
e tension is the 
ru
ial me
hanism whi
h sele
ts the \right" solution; in parti
ular, su
h

non-
lassi
al solutions are only to be expe
ted in the limit T ! 0. In the next se
tion we 
onsider

how this works for simple \test 
ases".

7.6 Paterson's analysis

The ZST solutions presented in x7.3.3 su�er from the same la
k of determina
y as those of x7.3.2,

sin
e we have an in�nite family of possible solutions, and we are able to spe
ify the number of

anti
ra
ks whi
h form, the position of their tips, and their widths. It is hoped that the addition

of surfa
e tension to the model will resolve this indetermina
y. A linear perturbation analysis

was 
arried out by Paterson [73℄ for the problem of a sinusoidally-perturbed expanding 
ir
ular

bubble, whi
h revealed that there is indeed a surfa
e tension dependent sele
tion me
hanism at

work. We present a slightly modi�ed (and extended) version of this analysis.

Consider an almost 
ir
ular bubble in an unbounded expanse of 
uid, expanding under the

in
uen
e of a sink of strength Q > 0 at in�nity. We nondimensionalise the problem using the

following s
alings (where the subs
ript \dim" denotes the dimensional quantity):

length : r

dim

= ar; (7.23)

time : t

dim

=

�a

2

Q

t; (7.24)

pressure : P

dim

=

Q

M�

P; (7.25)

surfa
e tension : T

dim

=

aQ

M�

T: (7.26)

In the above, the lengths
ale a is taken to be the bubble radius at the time the perturbation is

assumed to be imposed, and the quantity M is the mobility, M := b

2

=(12�). Velo
ities must be

s
aled with Q=(�a) to make them dimensionless, and the 
urvature of the interfa
e s
ales with

1=a.

In the dimensionless variables, using the notation r = R(�; t) to denote the free boundary in

plane polar 
o-ordinates (and with the rest of the notation as usual), the problem is

r

2

P = 0 in r > R(�; t); (7.27)

P = �T� on r = R(�; t); (7.28)

�P

�n

= �V

n

on r = R(�; t): (7.29)

Note that the sign of � is reversed 
ompared with the model of x1.2.1 be
ause here we take it to

be the dimensionless 
urvature measured relative to the bubble, rather than the 
uid domain (so

the 
urvature of the undisturbed free boundary is 1). The boundary 
ondition at in�nity is

P � �

1

2

log r; as r !1:

The \base state" solution (P

0

; R

0

) about whi
h we perturb is easily seen to be

P

0

(r; t) = �

1

2

log

�

r

R

0

(t)

�

�

T

R

0

(t)

; (7.30)

R

0

(t) =

p

t; (7.31)

in the dimensionless 
o-ordinates. Suppose that at time t = 1 (whi
h is the dimensionless start

time), some small perturbation is imposed on the free boundary,

R(�; 1) = 1 + � sinn�; 0 < �� 1:
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We assume that the solution to the perturbed problem 
an be expressed as a simple perturbation

expansion in the small parameter �,

P = P

0

+ �P

1

+ � � � ;

R = R

0

+ �R

1

+ � � � ;

where ea
h P

i

(r; �; t) must be harmoni
 in r > R(�; t). For the boundary 
onditions, we need the

expression for the 
urvature � of a general polar 
urve r = R(�; t); this is given by

� =

1

R

2

4

 

�

R

0

R

�

0

� 1

!

2

+

�

R

0

R

�

2

3

5

1=2

;

where the prime is understood to denote d(�)=d�. In terms of the asymptoti
 expansions, then,

the boundary 
ondition (7.28) be
omes

P

0

+ �(P

1

+R

1

P

0r

) + �

2

(P

2

+R

1

P

1r

+

R

2

1

2

P

0rr

+R

2

P

0r

) + � � � (7.32)

= �

T

R

0

�

1�

�

R

0

(R

00

1

+R

1

) +

�

2

R

2

0

(2R

00

1

R

1

+

3

2

(R

0

1

)

2

+R

2

1

� R

0

(R

00

2

+R

2

)) + � � �

�

;

while (7.29) is

R

0t

+ P

0r

+ �[R

1t

+ P

1r

+R

1

P

0rr

℄ + �

2

[R

2t

+ P

2r

+R

1

P

1rr

+R

2

P

0rr

+

R

2

1

2

P

0rrr

℄ + � � �

= �

2

R

1�

P

1�

R

2

0

+ � � � ;

both holding on r = R

0

(t), having been linearised down onto this 
urve. We already have the

basi
 solution, so we 
an immediately write down the O(�) problem as

r

2

P

1

= 0 in r >

p

t,

R

1t

+ P

1r

+

R

1

2t

= 0 on r =

p

t,

P

1

�

R

1

2

p

t

=

T

t

(R

00

1

+R

1

) on r =

p

t,

R

1

(�; 1) = sinn�;

we are interested in the solution for times t > 1. The solutions to this system whi
h have bounded

pressure at in�nity are of the form

P

1

= A(t)

�

R

0

r

�

n

sinn�; (7.33)

R

1

= C(t) sinn�: (7.34)

Substitution into the boundary 
onditions reveals A and C to satisfy the 
oupled equations and

boundary 
onditions,

dC

dt

�

nA

p

t

+

C

2t

= 0; (7.35)

A�

C

2

p

t

+

TC

t

(n

2

� 1) = 0; (7.36)

C(1) = 1:

Eliminating A(t) gives the single equation for C(t),

dC

dt

= C

(n� 1)

2t

�

1�

2Tn(n+ 1)

p

t

�

; (7.37)
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with solution

C(t) = t

(n�1)=2

exp

�

��

�

1�

1

p

t

��

; (7.38)

where � := 2Tn(n

2

�1). A(t) may then be found from (7.35) or (7.36), but sin
e we are interested

in the free boundary rather than the pressure �eld, we only need �nd A(t) if we wish to solve for

orders �

2

and higher. We now 
onsider what information 
an be extra
ted from equation (7.37)

about wavenumber \sele
tion".

The 
riti
al 
ondition for a perturbation to be maintained is dC=dt = 0, whi
h gives a quadrati


equation for the 
riti
al wavenumber n




, from whi
h we �nd the 
riti
al wavelength �




. The

solutions are

n




=

�

R

0

2T

+

1

4

�

1=2

�

1

2

; (7.39)

�




= 2�R

0

,(

�

R

0

2T

+

1

4

�

1=2

�

1

2

)

; (7.40)

where we substituted ba
k in for R

0

instead of

p

t, to emphasise the simple interpretation in terms

of the (approximate) bubble radius. In the dimensional variables we have

�




= 2�a

,(

�

Qa

2�MT

+

1

4

�

1=2

�

1

2

)

:

When the 
ir
umferen
e 2�a of the bubble is less than this 
riti
al wavelength, the free boundary

is stable to small perturbations, and the interfa
e remains approximately 
ir
ular. On
e the


ir
umferen
e has ex
eeded �




, the \growth fa
tor" dC=dt is positive, and perturbations are able

to grow.

Further to this, Paterson 
onsidered whi
h, in an unstable situation, would be the fastest-

growing wavelength, sin
e this is the one we would expe
t to be observed in pra
ti
e. The


ondition for maximum growth is

�

�n

�

dC

dt

�

= 0;

and applying this to equation (7.37) gives the maximal-growth wavenumber n

m

and wavelength

�

m

as

n

m

=

1

p

3

�

R

0

2T

+ 1

�

1=2

; (7.41)

�

m

= 2

p

3�R

0

,

�

R

0

2T

+ 1

�

1=2

: (7.42)

Obviously the instabilities observed in the experiments of [73℄ (and [11℄) qui
kly develop to am-

plitudes beyond the s
ope of this linear stability; however, Paterson does �nd that the number of

�ngers whi
h develop (before se
ondary bifur
ations) is n

m

, and that when the �ngers �rst form,

they have the wavelength predi
ted by this theory. Note the dependen
e of these maximal growth

parameters on the radius (and hen
e on time). Although the free boundary will not remain ap-

proximately 
ir
ular for long on
e the instability has set in, these expressions indi
ate that we do

expe
t further bifur
ations to o

ur. For example, if we interpret R

0

as the mean bubble radius,

we might expe
t se
ondary �ngering to o

ur when R

0

has grown su
h that the original n

m

has

in
reased to n

m

+ 1.

This analysis was 
arried out with a view to explaining the observations of [73℄, but 
onsider

�rst a general hypotheti
al experimental situation in whi
h n �ngers develop (before any se
ondary
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bifur
ations). This value of n must, by the pre
eding analysis, satisfy the 
ondition (7.41) when

the instability �rst be
omes apparent; at this stage, the dimensionless bubble radius R

0

is unity,

so the value of the dimensionless surfa
e tension parameter giving rise to this instability must

satisfy

T =

1

2(3n

2

+ 1)

: (7.43)

We then know the 
orresponding value of � (as de�ned in this se
tion), and hen
e if a suitable

value for � is 
hosen, we 
an tra
k the evolution of the interfa
e as predi
ted by this stability

analysis, until the asymptoti
 expansion is no longer valid. From the boundary 
ondition (7.32),

we see that the perturbation expansion is only valid if the parameter � is mu
h smaller than the

dimensionless surfa
e tension, T . If T � 1, as turns out to be the 
ase in the experiments of [73℄,

then on
e the disturban
e to the interfa
e is of the same order of magnitude as T , a new analysis

is needed.

For Paterson's experiment, the value of a (the bubble radius) at whi
h the instability visibly

sets in, 
an be observed from the time-lapse photographs. With this value of a the dimensionless

surfa
e tension T 
an be found from (7.26), and 
he
ked against the value (7.43) predi
ted by the

theory. We then have all the information we need in order to 
onsider the di�erent stages of this

early anti
ra
k evolution.

7.6.1 The 
ase �� T

We refer ba
k to �gure 7.3. In our notation, the parameter values of [73℄ are

Q = 9:3 
m

2

s

�1

; M = 3:6� 10

�4


m

4

dyne

�1

s

�1

; a � 3 
m:

The dimensional surfa
e tension parameter T

dim

has a value of 63 dyne 
m

�1

, and the number of

�ngers n whi
h develops is 8. The value of the dimensionless surfa
e tension T (and hen
e of the

parameter �) as predi
ted by (7.43) with n = 8 is

T = 1=386 = 2:59067� 10

�3

; (7.44)

� = 2:611; (7.45)

whi
h by (7.26) 
orresponds to a value a = 2:957 for the radius at whi
h the instability sets

in. Thus the observed values for a and n, with the other measured parameter values, do satisfy

approximately the expe
ted maximal growth 
onditions.

The solutions to the O(1) and O(�) problems are as given in (7.30), (7.31), and (7.33){(7.38).

We 
an in fa
t solve the problem to O(�

2

) in this phase of the evolution, to see what e�e
t (if any)

the higher harmoni
s are having on the solution. The equations may be written down immediately

from the earlier systemati
 linearisations of the boundary 
onditions. We omit the details, whi
h

are rather gruesome sin
e we �rst have to fully solve the order � problem and substitute from this

(and from the O(1) problem) into the boundary 
onditions. The solutions are of the form

P

2

(r; �; t) = A(t)

�

R

0

r

�

2n


os 2n� +B(t)

R

2

(�; t) = D(t) 
os 2n� +E(t);

and substitution of this form into the boundary 
onditions gives 
oupled equations for A and D,

and for B and E. The only quantity of interest is D(t), sin
e we are not interested in the pressure

�eld, and E(t) is only some additive fun
tion whi
h will not a�e
t the free boundary shape. Hen
e

we eliminate A(t) from the �rst of our pairs of equations. If we write

^

D(t) = exp

�

2�

�

1�

1

p

t

��

D(t);
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Figure 7.10: Graph showing the relative sizes of the 
oeÆ
ients of the terms sinn�

(in the �R

1

term of R) and 
os 2n� (in the �

2

R

2

term of R) as fun
tions of time, in the

�� T r�egime. The sinn� 
oÆ
ient is the upper 
urve.

and de�ne the parameter � := 12Tn

3

, we �nd the following ordinary di�erential equation for

^

D(t),

d

dt

(

^

D

t

n�1=2

e

��=

p

t

)

=

e

��=

p

t

4

�

2n� 1

t

2

�

2nT (8n

2

� 3)

t

5=2

�

:

The solution satisfying

^

D(1) = 0 (
orresponding to a perfe
tly sinusoidal initial perturbation) is

found, by dire
t integration, to be

^

D =

t

n�1=2

2

�

(2n� 1)

�

2

�

1 +

�

p

t

� (1 + �) exp

�

��

�

1�

1

p

t

���

�

(8n

2

� 3)

3n

2

�

2

�

1 +

�

p

t

+

�

2

2t

� (1 + � +

�

2

2

) exp

�

��

�

1�

1

p

t

����

:

This expression does have a uniform limit as T ! 0, despite the presen
e of the 1=�

2

, 1=�

3

terms

on the right-hand side. If we expand the exponentials for small � we �nd

^

D =

(2n� 1)

4

�

1�

1

t

�

t

n�1=2

+O(�);

as � ! 0 (whi
h, as we shall see, agrees with the perturbation analysis for the ZST problem,

providing a 
he
k on the analysis). With T given by (7.44), � = 15:917.

For the parameter values given here, it is easy to show (by 
omparison of the 
oeÆ
ients;

�gure 7.10) that the term �

2

D(t) 
os 2n� (from �

2

R

2

) in the expression for the free boundary is

always negligible for times of interest, while the term �R

1

grows steadily a

ording to (7.38), until

its magnitude be
omes 
omparable to T . This analysis is then no longer valid, and we pass to the

r�egime � � T . Sin
e the perturbation retains its initial shape, only be
oming more pronoun
ed,

this r�egime is not terribly interesting, but as we have seen, it is 
ru
ial in determining the number

of �ngers whi
h develop, and when they develop, in a given situation.

7.6.2 The 
ase 1� � � T

By the above observation that the term �

2

R

2

remains negligible throughout the r�egime � � T ,

it is reasonable to assume an initial perturbation � sinn� here. Writing T = �� for some O(1)
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quantity �, the solution is found to be

R = R

0

+ �R

1

+ �

2

R

2

+O(�

3

); (7.46)

where

R

0

=

p

t; R

1

= t

(n�1)=2

sinn�; (7.47)

and

R

2

=

(2n� 1)

4

�

1�

1

t

�

t

n�1=2


os 2n� � 2n�(n

2

� 1)

�

1�

1

p

t

�

t

(n�1)=2

sinn�

+

1

4

p

t

(1� t

n�1

): (7.48)

Setting � = 0 in here gives the ZST 
ase. Note that the (dimensional) bubble radius a will

have in
reased during the �rst stage of the instability (during whi
h the perturbations grow

relatively slowly, by (7.38)), hen
e by the time this se
ond stage is rea
hed, the value of the

dimensionless surfa
e tension T will be smaller, by (7.26). Perturbations now grow quite rapidly,

and will qui
kly rea
h an amplitude larger than T . We thus 
onsider the �nal stage of the

small perturbation theory, when the perturbations are large 
ompared with the surfa
e tension

parameter (now somewhat smaller than (7.44), as 
ommented above).

7.6.3 The 
ase T � �� 1

The free boundary will now evolve a

ording to the solution (7.46), (7.47), (7.48), but with

� = 0, as long as this expansion remains valid. An evolution sequen
e based on the experimental

parameters of [73℄, is shown in �gure 7.11 (for dimensionless times t = 1; 1:15; 1:3). The value of

� used was 0.05, whi
h is mu
h greater than the value of T in (7.44), but still mu
h less than 1.

The initial stages of the anti
ra
k formation 
an be 
learly observed, as the e�e
t of the 
os 2n�

term from (7.48) grows. The 
ru
ial fa
tor here leading to anti
ra
k, rather than 
ra
k formation,

is that the sign of the 
oeÆ
ient of 
os 2n� is the same as that of sinn� (�gure 7.12); had it been

of opposite sign, we would have seen 
ra
ks beginning to form.

7.6.4 Con
lusions for Paterson's anti
ra
ks

In the pre
eding se
tions we have reviewed the experiments of [73℄, and extended the analysis

of that paper. We saw that, for small values of the dimensionless surfa
e tension T , the initial

perturbation analysis is only valid when the perturbations are of very small amplitude, and that

when the amplitude be
omes 
omparable to T , a di�erent analysis is needed. Nevertheless, it is

during this initial stage that the wavenumber \sele
tion" o

urs. Higher-order terms (than the

�rst) in the perturbation expansion are irrelevant during this initial stage. With the �� T theory,

solving the problem to order �

2

, the early stages of anti
ra
k formation 
an be observed (�gure

7.11). This analysis itself then breaks down, and nonlinear theory is needed.

It is 
lear then that anti
ra
k \sele
tion" is determined at a very early stage of the instability,

when the perturbations are small 
ompared with the dimensionless surfa
e tension, whi
h is

itself small. For later times, surfa
e tension e�e
ts are negligible, and ZST theory gives a good

approximation to the free boundary shape. Given the degree of similarity between the exa
t ZST

solutions of [45℄ and the photographs of [73℄, it seems reasonable to 
onje
ture that the nonlinear

r�egime referred to above is des
ribed by solutions of the kind in [45℄, at least until se
ondary

bifur
ations o

ur, with the birth of new anti
ra
ks (and even su
h bifur
ation 
an be des
ribed

by the exa
t ZST theory of [45℄, if we 
an predi
t when it will o

ur). Note that the sele
tion

of the �nger widths, whi
h appears as an arbitrary parameter in the solutions of [45℄, is not

determined by this argument. It seems reasonable to assume, though, that the anti
ra
k widths

will be approximately 1=(2n) times the bubble 
ir
umferen
e at the time the instability sets in,

that is, a�=n. With the value of a found in x7.6.1 and n = 8, this does give a value for the
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Figure 7.11: Evolution of the free boundary of Paterson's expanding bubble for dimen-

sionless times t = 1; 1:15; 1:3. This plot applies to the r�egime in whi
h the amplitude

of the perturbations is mu
h greater than T , so that the ZST perturbation theory is

appli
able.
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Figure 7.12: Graph showing the 
oÆ
ients of the terms sinn� (in the �R

1

term of R)

and 
os 2n� (in the �

2

R

2

term of R) as fun
tions of time, for the � � T r�egime. The

sinn� 
oeÆ
ient is the one with initial value 1.

�nger widths whi
h agrees well with the experimental photos of [73℄. In general, for very small

values of T we expe
t to get many �ngers, by (7.43). Provided the dimensional surfa
e tension

T

dim

is small too, then by (7.26) the radius a should still be O(1), so that we get a very small

anti
ra
k thi
kness � = a�=n, as we expe
t in the small surfa
e tension problem. Sin
e for small

T , n � 1=

p

T by (7.43), we expe
t that � �

p

T (
.f. the 
ra
k theory, where � � T

1=3

).

7.7 Fra
tal Hele-Shaw

As an interesting aside to the last se
tion, we present a \thought experiment" due to Howison [44℄

whi
h relies on the ideas introdu
ed by the stability analysis. Re
all that we found a minimum

wavelength (7.40) for a perturbation to the expanding bubble to be sustained, and also the

expe
ted number of �ngers n

m

whi
h then form (7.41). Suppose we have a situation where the

maximal growth rate 
orresponds to the value n

m

= 2. In this 
ase, two anti
ra
ks will start

to develop when the 
ir
umferen
e of the expanding bubble rea
hes the value R = 2�

m

; 
all the

bubble radius R

0

at this stage (whi
h we think of as the 0'th stage).

If we assume narrow anti
ra
ks, and a symmetri
 
on�guration, then when the 
ir
umferen
e

of the bubble has doubled again, we expe
t to be able to \�t in" another two anti
ra
ks; the

bubble radius will be 4R

+

0

at this stage (where the \+" denotes the fa
t that we only expe
t these

new anti
ra
ks to form when we ex
eed this radius). Sin
e anti
ra
k tips remain stagnant, the two

original anti
ra
ks are now of length 3R

0

. Likewise, when the bubble radius has grown to 16R

+

0

,

we 
an �t in four new anti
ra
ks.

Under ideal 
onditions (when
e \thought experiment") we may 
onsider this pro
ess repeating

inde�nitely, with the bubble radius quadrupling between su

essive bifur
ations. At the n'th stage

the bubble radius will be R

n

:= 2

2n

R

0

, with 2

n

anti
ra
ks already developed, and another 2

n

about to form. The longest of these will be those two whi
h formed at the n = 0 stage, now of

length

R

0

(2

2n

� 1);
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Figure 7.13: The evolving anti-slit stru
ture at the stage n = 2, with 2 anti-slits of

length L

0

, 2 of length L

1

, and 4 new anti-slits about to form.

and the shortest will be those 2

n�1

whi
h formed at the (n� 1)'th stage, now of length

R

0

(2

2n

� 2

2(n�1)

) =

3

4

2

2n

R

0

=

3

4

R

n

:

Analogous to slits (as the ZST limit of 
ra
ks) we may 
onsider anti-slits as possible ZST limits of

anti
ra
ks, these being vanishingly thin \spikes" of 
uid left behind as the free boundary evolves

(�gure 7.13). In this limit we 
an evaluate the fra
tal dimension of the evolving stru
ture quite

easily, by s
aling the expanding bubble (whi
h is now 
ir
ular, penetrated by 2

n

spikes of varying

lengths) down onto the unit dis
. Thus at the n'th stage we have a stru
ture with

2 spikes of length L

0

:= 1� 2

�2n

;

2

1

spikes of length L

1

:= 1� 2

�2(n�1)

;

2

2

spikes of length L

2

:= 1� 2

�2(n�2)

;

.

.

.

2

k

spikes of length L

k

:= 1� 2

�2(n�k)

;

.

.

.

2

n

spikes of length L

n

:= 1� 2

�2

� 3=4;

with 2

n

new anti-slits about to form. Note that when we s
ale the problem in this way, 2

�2n

is the

smallest lengths
ale we 
an 
onsider (although we take the large n limit), and when new anti-slits

form at ea
h stage, they immediately have length 3=4. The formula for the fra
tal dimension D

of su
h a stru
ture is given by Tur
otte [97℄ as

L = Ch

�(D�1)

;
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where L is the total length of the fra
tal 
urve, C is some 
onstant of proportionality, and h

is what Tur
otte refers to as the \measuring rod" length, whi
h is essentially a measure of the

resolution at whi
h we are 
onsidering the fra
tal. This formula holds in a limiting sense, as

h! 0. Here, h is just the lengths
ale 2

�2n

, and L is twi
e the sum of the lengths of all the spikes

of 
uid (sin
e ea
h spike has two sides) plus the 
ir
umferen
e of the 
ir
le,

L = 2

n

X

k=0

2

k

L

k

+ 2�

=

12

7

2

n

� 2 +

2

7

2

�2n

+ 2�

�

12

7

2

n

; for large n:

Hen
e in the large n limit we must have

12

7

2

n

= C(2

�2n

)

�(D�1)

;

from whi
h C = 12=7, and the fra
tal dimension D = 3=2.

7.8 Cra
ks revisited

We originally 
ited the experiments of [73℄ as eviden
e only for the anti
ra
k theory; however,

in the same paper, experiments are des
ribed 
on
erning su
tion from the 
entre of an initially


ir
ular dis
 of gly
erine surrounded by air, whi
h is, of 
ourse, also an ill-posed problem. Time-

lapse photography is again used to study the evolution of the interfa
e, whi
h in this 
ase is seen

to be mu
h more irregular than for the expanding bubble. Fingers of air are observed to form, but

the larger ones impede the growth of the smaller, until: \Eventually, one �nger dominates, and

a

elerates into the well". It is tempting to regard this instability as a 
ra
k; 
ertainly from the

photographs it is 
lear that during the latter stages of the motion the rest of the free boundary is

not moving mu
h relative to this dominant �nger, as in the 
ra
k theory. We remind the reader

again at this point of the numeri
al solutions of [55℄ for su
tion from an initially-
ir
ular dis
 of


uid. Although the su
tion point here was o�-
entre, a 
ra
k-like morphology was 
omputed for

small surfa
e tension, and we might expe
t a similar result here.

The analysis that was 
arried out for the expanding bubble in x7.6 may be repeated for the

problem of an approximately 
ir
ular blob of vis
ous 
uid, 
ontra
ting under the a
tion of a point

sink (of strength Q > 0) at the origin. With the same nondimensionalisations, the problem is

as in (7.27){(7.29), but with the sign of the right-hand side of (7.28) reversed. The asymptoti



ondition on P is now

P �

1

2

log r; as r ! 0:

The base state solution here is

P

0

(r; t) =

1

2

log

�

r

R

0

�

+

T

R

0

; (7.49)

R

0

(t) =

p

1� t: (7.50)

We again assume that a perturbation � sinn� is imposed on the free boundary, and seek an

asymptoti
 solution. With all notation as in x7.6, the solution for R

1

is found to be of the form

R

1

(�; t) = C(t) sinn�; (7.51)

where C(t) satis�es the equation and boundary 
ondition

dC

dt

=

(n+ 1)

2(1� t)

C

�

1�

2Tn(n� 1)

p

1� t

�

; C(0) = 1:
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This has solution

C(t) = (1� t)

�(n+1)=2

exp

�

�

�

1

p

1� t

� 1

��

0 � t < 1; (7.52)

(re
all that � := 2Tn(n

2

�1)). From the 
riti
al 
ondition for a perturbation to the free boundary

to be maintained, dC=dt = 0, we �nd the values for n




and �




,

n




=

�

R

0

2T

+

1

4

�

1=2

+

1

2

;

�




= 2�R

0

,(

�

R

0

2T

+

1

4

�

1=2

+

1

2

)

:

Again, there is a minimum radius, below whi
h the vis
ous blob is stable to perturbations, and

above whi
h perturbations will grow. (This 
riti
al radius a





an be found by solving �




= 2�R

0

,

with R

0

� 1, to get a 
riti
al value for the surfa
e tension parameter T , then solving for a




from

(7.26).) The maximal growth rate in an unstable situation 
orresponds to the wavenumber n

m

and wavelength �

m

given by

n

m

=

1

p

3

�

R

0

2T

+ 1

�

1=2

;

�

m

= 2

p

3�R

0

,

�

R

0

2T

+ 1

�

1=2

;

exa
tly as obtained for the expanding bubble problem. The observed free boundary shapes for

this problem are mu
h less regular than for the expanding bubble, as we expe
t from this analysis:

an initially perturbed (unstable) boundary will begin to form the requisite number of �ngers, n

m

,

but as the radius de
reases, the number of unstable wavelengths whi
h 
an be a

ommodated

de
reases also (
ontrast this with the bubble problem, where as the radius in
reases, more unsta-

ble wavelengths 
an be a

ommodated, and se
ondary bifur
ations o

ur). Those �ngers whi
h

are slightly larger will thus grow at the expense of the smaller ones, inevitably giving irregular

patterns.

Agreement between the theory and experiment is not so good as for the anti
ra
k 
ase, with

more �ngers initially observed than predi
ted by n

m

. We may still look at the theory of the small-

time evolution, however, to see what this suggests. Again there will be three di�erent r�egimes of

the instability within the s
ope of linear theory: the very early stage during whi
h � � T , and

the later stages, 1 � � � T , and 1 � � � T . Sin
e the results are similar to the anti
ra
k ones,

we do not go into detail.

7.8.1 The 
ase �� T

The solution to this problem has been 
arried out to order �

2

; the terms R

0

and R

1

are given in

(7.50), (7.51) and (7.52), and the term R

2

has the form

R

2

(�; t) = C(t) 
os 2n� +D(t):

The additive fun
tion D(t) is of no 
onsequen
e, and if we write

C(t) =

^

C(t) exp

�

�

2�

p

x

�

;

for x := 1� t, then we �nd

^

C =

x

�(n+1=2)

2

�

(2n+ 1)

�

2

�

�

p

x

� 1� (� � 1) exp

�

��

�

1

p

x

� 1

���

�

(8n

2

� 3)

3n

2

�

2

�

�

2

2x

�

�

p

x

+ 1�

�

�

2

2

� � + 1

�

exp

�

��

�

1

p

x

� 1

����

:
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As for the anti
ra
k problem, with the parameter values of [73℄, the size of �

2

C(t) is negligible


ompared with the size of �R

1

, for all times for whi
h the perturbations are small 
ompared with

T (in fa
t, C(t) itself is everywhere very small for times of interest, while the 
oeÆ
ient of sinn� in

R

1

grows monotoni
ally, 
ausing this expansion to be
ome invalid). Hen
e the perturbations are

still approximately sinusoidal in the � � T r�egime. When �nding the value of the dimensionless

surfa
e tension to use, the value a = 7 was used in (7.26), this being obtained visually from the

photograph in �gure 10 of [73℄; the mobility M has the same value as in x7.6, and the su
tion

rate Q was 1.04 
m

2

s

�1

.

7.8.2 The 
ases 1� � � T , 1� �� T

If we assume the surfa
e tension to be T = �� for some order-one quantity �, then with the initial

perturbation � sinn�, the solution to the perturbation problem, to order �

2

, is

R = R

0

+ �R

1

+ �

2

R

2

+O(�

3

);

where

R

0

=

p

1� t; R

1

= (1� t)

�(n+1)=2

sinn�; (7.53)

(7.54)

R

2

=

(2n+ 1)t

4(1� t)

n+3=2


os 2n� +

2n�(n

2

� 1)

(1� t)

(n+1)=2

�

1�

1

p

1� t

�

sinn�

+

1

2

p

1� t

�

1�

1

(1� t)

n+1

�

: (7.55)

As for the anti
ra
k problem, the ZST analysis is obtained from this merely by setting � = 0.

There will be some period during whi
h evolution follows the � 6= 0 solution, but when the

perturbations are larger than T , evolution will be a

ording to (7.53), (7.55), with � = 0.

A typi
al evolution sequen
e in this r�egime for n = 8 (based on observations from [73℄), is

shown in �gure 7.14; in this 
ase we see the initial stages of 
ra
k formation. The value 
hosen for

� was 0.05. When the amplitude of the perturbations be
omes 
omparable to unity this analysis

breaks down, and nonlinear theory is needed. In parti
ular, as mentioned earlier, although these

early stages of the instability may give a quite regular pattern, a slightly larger perturbation will

grow at the expense of smaller ones as the blob radius de
reases, and fewer unstable wavelengths

are able to \�t in".

7.9 The \
urvature 
onje
ture"

The work of xx7.6 and 7.8 provide the �rst real eviden
e for our 
onje
ture regarding 
ra
ks and

anti
ra
ks, and when they will form. We saw that the expanding bubble 
ase led to anti
ra
ks, and

that there is eviden
e that we expe
t 
ra
ks in the small surfa
e tension limit of the 
ontra
ting

vis
ous blob problem. These \prototype problems" loosely suggest that, in a given su
tion prob-

lem, if the overall shape of the 
uid domain is 
onvex, we expe
t the instability to be manifested

via 
ra
k formation, whereas if it is 
on
ave, we expe
t anti
ra
k formation to o

ur.

This statement is very woolly, and obviously does not 
over all eventualities (e.g. 
at free

boundaries). We now attempt to 
larify matters a little. Firstly, when we refer to the \over-

all shape" of the free boundary, we mean that the free boundary be 
onvex/
on
ave on some

lengths
ale whi
h is large 
ompared to the 
ra
k/anti
ra
k width, � say. (Obviously, on the O(�)

lengths
ale the free boundary must be 
on
ave where a 
ra
k is forming, and 
onvex where an

anti
ra
k is forming, simply by the nature of the tip geometries|see x7.5 for the results of the

lo
al analysis in the limiting 
ase �! 0.) This 
onvexity/
on
avity need not be global, however,

as we may imagine a situation like �gure 7.15 o

urring. In both 
ases we have in mind the

problem with small positive surfa
e tension, whi
h is ne
essary for both 
ra
k and anti
ra
k prob-

lems, sin
e although ZST solutions 
an give good agreement with observations for the anti
ra
k

problem, the parameter T is still needed to sele
t the right solution in a given situation.
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Figure 7.14: Evolution of the free boundary of the 
ontra
ting vis
ous blob in the

r�egime �� T , so that the ZST theory is appli
able. The early stages of 
ra
k formation

are apparent prior to breakdown of the linear theory.
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Figure 7.15: A free boundary with 
ra
k and anti
ra
k development.

If this 
onje
ture is true, then we would expe
t a solution like the travelling-wave Ivantsov

parabola (an exa
t ZST steady solution, with pressure at large distan
es growing like the square-

root of the distan
e from the parabola tip) to destabilise via anti
ra
k formation, sin
e the free

boundary is globally 
on
ave here. In fa
t there is an exa
t solution, whi
h is essentially a

perturbation of the Ivantsov parabola, and whi
h does give rise to anti
ra
ks.

2

The mapping

fun
tion from the right-half plane onto the 
uid domain is given by

z = w(�) = �

2

+ b

0

� + 


0

log(� + d) + e; (7.56)

where b

0

and 


0

are positive 
onstants (with 


0

> 0, otherwise the solution undergoes �nite time

blow-up via 
usp formation, just as we needed �

i

> 0 for the solutions of x7.3.2) and d and e are

fun
tions of time. This map gives a solution to the P-G equation (2.6) provided the 
onditions

b

0

e(t)� 2


0

d(t) = At+ k

1

;

e(t) + d(t)

2

+ b

0

d(t) + 


0

log d(t) = k

2

;

are satis�ed, for some positive 
onstant A (the negative pressure gradient at in�nity in the �-

plane). A large-time balan
e in these equations requires

e(t) �

At

b

0

; d(t) � exp

�

�

At

b

0




0

�

(the Ivantsov parabola itself has 


0

and d(t) identi
ally zero, and e(t) = At=b

0

). The anti
ra
k

tip is at

z

tip

= w(0) = 


0

log d(t) + e(t)

� k

2

� d(t)

2

+ b

0

d(t)

� k

2

as t!1;

2

We owe this observation to Dr K. Kornev of Mos
ow.
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Figure 7.16: The \Ivantsov" anti
ra
k solution.

and is thus asymptoti
ally stagnant, as we expe
t from an anti
ra
k solution. Thus, if the pa-

rameter 


0

is 
hosen to be small, the free boundary shape (for large times) is approximately a

travelling-wave parabola, with a stagnant, narrow strip of 
uid left behind along the real axis

(see �gure 7.16). If we had a ZST solution with a 
onvex paraboli
 free boundary, our 
onje
ture

suggests that this should lead to 
usp formation within �nite time, and hen
e 
ra
k formation (in

the limit of small positive surfa
e tension); however, there is no known exa
t solution of the P-G

equation for this geometry.

We should point out that there are de�nite 
ounter-examples to our 
onje
ture, although it

may be argued that we would not expe
t su
h solutions to be observed in pra
ti
e. Firstly, in

[46℄, Howison presents a spe
i�
 
ase of the radial �ngering solutions (7.22) of [45℄, whi
h is an

expanding bubble solution, yet whi
h 
an lead to �nite-time 
usp formation (whi
h we expe
t to

be regularised by 
ra
k formation in the T ! 0 limit). This is a 
onsequen
e of a judi
ious 
hoi
e

of mapping parameters and initial 
onditions, however. In parti
ular, the number of �ngers is


hosen as n = 4, whereas in reality the number of �ngers whi
h develops is determined by (7.26)

and (7.43). For small values of surfa
e tension su
h as we have in mind, this will lead to large

values of n, and evolution as in the experiments of [73, 11℄.

There are also exa
t ZST \
ontra
ting blob" type solutions, driven by a point sink at the

origin, whi
h 
an give rise to anti
ra
k-type stru
tures. These are given by the family of mapping

fun
tions from the unit dis
,

w(�) = b� + �

N

X

k=1

$

�k

log(1 + 
$

k

�); (7.57)

where � is some positive 
onstant, b(t) and 
(t) are positive fun
tions of time (where 
 2 (0; 1)),

N is a positive integer, and $ is an N 'th root of unity. This map is a solution of the P-G equation

(2.4) provided the following 
onditions are satis�ed,

d

dt

(b(b+N�
)) = �

Q

�

;
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Figure 7.17: Anti
ra
k-type stru
ture generated by the map (7.57) with N = 4,

� = 0:2, b(0) = 0:755, 
(0) = 0:887. We see the onset of 
uspidal blow-up, after whi
h

we expe
t 
ontinuation by 
ra
k or slit evolution towards the point sink.
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Figure 7.18: The 
ra
k (a) and anti
ra
k (b) geometries generated by maps (7.58) and (7.59) with � = 0:1.

b
+ �

N

X

k=1

$

�k

log(1 + 


2

$

k

) = �;

for some 
onstant �. This 
an generate evolving free boundaries of the kind in �gure 7.17; however,

these solutions always ultimately blow up via 
usp formation (at whi
h point we expe
t the 
ra
k

regularisation to 
ome into e�e
t), and in any 
ase the T > 0 analysis of x7.8 suggests that 
ra
k

formation is what we expe
t to observe in a real \
ontra
ting blob" experiment.

7.10 Extremal 
onformal maps

We now 
onsider brie
y 
ra
k and anti
ra
k geometries (and their slit and \anti-slit" limits) in

terms of extremal 
onformal maps, and univalent fun
tion theory. Consider mapping the right-half

�-plane 
onformally onto a 
uid domain whi
h we assume to 
ontain either a single (stationary,

for simpli
ity) 
ra
k, or anti
ra
k. A 
ra
k 
an be realised as the image of the right-half �-plane

under the map

z =

p

(� + �)

2

+ 1 (0 < �� 1); (7.58)

(�gure 7.18 (a)) where � is a measure of the 
ra
k thi
kness. This map has a uniform limit

� ! 0, whi
h gives a so-
alled extremal map from the right-half plane onto itself, but with the

slit 0 � x � 1 removed. The term \extremal" indi
ates that, although this map is not itself


onformal on the boundary of the domain, <(�) = 0, it is a limit point of some set of maps whi
h

are all 
onformal on <(�) � 0. Hen
e in terms of 
onformal maps, a slit may be viewed as a

straightforward limit of a 
ra
k.

Anti
ra
ks, on the other hand, do not have a sensible anti-slit limit like this. A typi
al anti
ra
k

geometry is generated by the 
onformal map

z = � + � log(� + exp(�1=�)) 0 < �� 1; (7.59)

where again, � is a measure of the anti
ra
k thi
kness (�gure 7.18 (b)). This is the kind of free

boundary shape we expe
t, from all the exa
t ZST anti
ra
k solutions we found. However, it is

easily seen that this map does not have a uniform limit as �! 0. We 
an only interpret it when

� > 0, in whi
h 
ase it gives a smooth, narrow anti
ra
k with tip at x = �1.

Geometri
ally, the two 
ases are fundamentally di�erent. An anti-slit stru
ture (of the kind

envisaged in x7.7) 
annot be realised as a limit point of some set of univalent fun
tions in the
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Figure 7.19: The \open sets" interpretation of the slit geometry.

way that a slit map 
an. To see why this should be so, 
onsider the topologi
al

3

de�nition of


ontinuity, in terms of open sets. A fun
tion between topologi
al spa
es, f : X ! Y , is 
ontinuous

if and only if the inverse images (under f) of any open sets in Y are also open in X . The topology

of the 
uid domain (whi
h we identify with Y ), and the right-half �-plane (whi
h we identify with

X), is just the usual R

2

topology.

Without assuming any parti
ular form for a mapping fun
tion f between X and Y (but

hypothesising that it be at least 
ontinuous) we may make the following observations. For the

slit geometry, given a point z

�

on the slit boundary, we 
an always �nd some semi
ir
ular open

set U

�

� Y 
ontaining this point, the inverse image of whi
h will also be open in X (�gure 7.19).

Sin
e the edges of the slit are the only potential problem points, the fun
tion f will be 
ontinuous

in this 
ase. For the anti-slit geometry, however, given a point z

�

on the anti-slit itself, the only

kind of open set U

�

� Y whi
h also 
ontains the point is an open interval of points along the slit.

(The anti-slit has the topology of R, rather than of R

2

.) Sin
e boundary points map to boundary

points, the inverse image of this interval under the map must also be a line segment along the

imaginary axis in X . Su
h a set is not open in the topology of X , sin
e we 
annot �t an `open

ball', around an interior point, within f

�1

(U

�

), and hen
e there 
an exist no 
ontinuous (and


ertainly no univalent) map between the right-half plane and an anti-slit domain|see �gure 7.20.

We may also interpret this result in terms of the Carath�eodory theorem of kernel 
onvergen
e

(see for instan
e [20℄, whose explanation we paraphrase below), a result of major importan
e in

geometri
 fun
tion theory. This theorem was also used in relation to the Hele-Shaw problem by

Hohlov & Howison [32℄, to derive estimates for geometri
 properties of the 
uid domain in the

inje
tion problem. Suppose we have some sequen
e of simply-
onne
ted domains fD

n

g in the


omplex plane, all 
ontaining some �xed point z

0

(and none of whi
h is the entire 
omplex plane).

Let z = f

n

(�) be the 
onformal mapping from the right-half �-plane onto D

n

, normalised by the


onditions f

n

(1) = z

0

, f

0

n

(1) > 0. There are two possible 
ases distinguished by Carath�eodory.

First, suppose that z

0

is an interior point of the interse
tion of the D

n

. Then the kernel of the

sequen
e fD

n

g is de�ned as the largest domain D whi
h 
ontains z

0

, and whi
h has the property

that ea
h 
ompa
t subset of D lies in all but a �nite number of the domains D

n

. The other

possibility is that z

0

is not an interior point of the interse
tion. In this 
ase the kernel is de�ned

as D = f0g. In either 
ase the sequen
e fD

n

g is said to 
onverge to its kernel if every subsequen
e

has the same kernel.

3

For more details on pre
ise topologi
al de�nitions see, for instan
e, [92℄.
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The basi
 theorem is as follows [20℄:

Theorem (Carath

�

eodory): Let fD

n

g be a sequen
e of simply-
onne
ted domains,

with z

0

2 D

n

, n = 1; 2; : : :, and suppose f

n

maps the right-half plane X 
onformally

onto D

n

, and satis�es f

n

(1) = z

0

, f

0

n

(1) > 0. Let D be the kernel of fD

n

g. Then

f

n

! f uniformly on ea
h 
ompa
t subset of X if and only if D

n

! D 6= C . In the


ase of 
onvergen
e there are two possibilities.

1. If D = f0g, then f = 0.

2. If D 6= f0g, then D is a simply-
onne
ted domain, f maps X 
onformally onto

D, and the inverse fun
tions f

�1

n


onverge uniformly to f

�1

on ea
h 
ompa
t

subset of D.

With a little modi�
ation, the maps (7.58), (7.59) may be made to satisfy the 
onditions of the

theorem. Taking � to be some fun
tion of n whi
h tends to zero as n!1 (e.g. � = 1=n will do)

a suitable 
ra
k mapping sequen
e is found to be

f

n

(�) =

�

(� + �)

2

+ 1

(1 + �)

2

+ 1

�

1=2

;

whi
h has f

n

(1) = 1 for all n, and whi
h for small � (large n) des
ribes an approximate half-spa
e

having a 
ra
k with tip at

f

n

(0) =

1

p

2

�

1�

�

2

+O(�

2

)

�

:

In the notation of the theorem then, z

0

= 1 (the �xed point), whi
h lies within the domain D

n

for

all n. The kernel of this sequen
e of domains is the right-half plane minus the slit along (0; 1=

p

2),

whi
h is exa
tly the limit of the image domains D

n

as n!1. The mapping fun
tions 
onverge

uniformly to

f(�) =

p

1 + �

2

p

2

;
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whi
h is the map from X onto the kernel of the domain sequen
e, D (de�ned above). Hen
e we

have a straightforward example of 
ase 2 of the theorem.

A suitable anti
ra
k mapping sequen
e is

f

n

(�) =

1

2

�

� � 1 + � log

�

� + exp(�1=�)

1 + exp(�1=�)

��

;

whi
h has the �xed (interior) point z

0

= 0 (sin
e f

n

(1) = 0 for all n). For small � (large n) these

maps des
ribe anti
ra
k-type stru
tures, having anti
ra
k tips at the points

f

n

(0) = �

1

2

�

�

2

log(1 + exp(1=�)) < �1:

The limiting domain D

1

(whi
h is exa
tly the interse
tion of all the D

n

) is the anti-slit stru
ture;

the right-half plane, with an outward-pointing slit along (�1; 0). The �xed point z

0

= 0 is not an

interior point of this interse
tion, so the kernel for this sequen
e is just D = f0g. Hen
e by the

theorem, there is no limiting fun
tion f whi
h will map X onto the anti-slit stru
ture. Re
alling

the analysis des
ribed in x7.5, this result is not surprising, sin
e the results of that se
tion strongly

suggest that the 
orre
t \anti-slit" limit will in fa
t be an outward-pointing 
usp, rather than an

outward-pointing slit.

7.11 Summary

Our aim in this 
hapter has been to present a new theory of anti
ra
k solutions for the Hele-

Shaw problem, whi
h 
omplements the existing 
ra
k theory of [36, 62, 33℄, reviewed in x7.1.

The 
omplementary nature of the two is illustrated by pi
tures like �gure 7.7. Both 
ra
ks

and anti
ra
ks may be viewed as regularisations of the ill-posed su
tion (or retreating vis
ous

boundary) problem, though of very di�erent kinds.

Several exa
t ZST anti
ra
k solutions were given in xx7.3.1, 7.3.2, 7.3.3, but what we termed

the \generi
 anti
ra
k" (7.9) 
aptures all the essentials of the behaviour. Anti
ra
k tips are

asymptoti
ally stagnant (the S
hwarz fun
tion having a logarithmi
 singularity within the tip),

while the rest of the anti
ra
k 
annot \feel" the tip, and behaves like the travelling-wave solution

(7.14).

The analysis of the expanding bubble problem in x7.6 revealed that sele
tion of the anti
ra
k

width o

urs as soon as the instability sets in. On
e the anti
ra
k has formed, it is basi
ally

stagnant, and does not in
uen
e the rest of the free boundary. We summarise this, for a general

situation, by the statement that surfa
e tension e�e
ts at the anti
ra
k root govern anti
ra
k

sele
tion. Contrast this with the 
ra
k theory, where it is the surfa
e tension e�e
ts in the tip

whi
h govern the behaviour.

We also saw the 
ontrast between 
ra
ks and anti
ra
ks in x7.10. The results there suggest

that, although extremal univalent maps provide a good framework for the 
ra
k/slit theory, they

are not suited to dealing with anti
ra
k stru
tures.

We 
ited experimental, numeri
al, and theoreti
al eviden
e in support of the 
ra
k and an-

ti
ra
k theories. In addition, for the anti
ra
k, there is supporting eviden
e from the formal

asymptoti
s of [56, 57℄ (x7.5). Based on the analyses of xx7.6 and 7.8, we made a 
onje
ture

to the e�e
t that, whether 
ra
k or anti
ra
k formation o

urs may depend on the 
urvature of

the retreating free boundary. We point out, though, that 
ra
ks must remain as the dominant

stabilising me
hanism, in that they are the only 
omponent of the irregular morphology that 
an

a�e
t the smooth part of the boundary. Anti
ra
ks do not a�e
t it; the free boundary 
an `sprout'

them, and 
arry on its way otherwise un
hanged.

The overall pi
ture we have in mind in this 
hapter is that the free boundary for a general

su
tion problem (with small positive surfa
e tension) will be the union of some array of smooth


omponents, 
ra
ks, and anti
ra
ks (�gure 7.21). Note, however, that for su
h a free bound-

ary 
on�guration to o

ur, the anti
ra
ks must develop �rst, sin
e there are three times
ales

in operation|anti
ra
ks are stagnant relative to the motion of the smooth 
omponents of the

boundary, whi
h are themselves stationary relative to the 
ra
k propagation.
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Chapter 8

Dis
ussion and further work

8.1 Comparison of Hele-Shaw and Stokes 
ow

One of our aims in this thesis has been to highlight the similarities and di�eren
es between Hele-

Shaw 
ow and Stokes 
ow. Although we have mentioned su
h points of 
omparison as they

o

urred, it is helpful to summarise and dis
uss them here.

� Both Hele-Shaw and Stokes 
ow are quasistati
 free boundary problems, by whi
h we mean

that the time dependen
e enters the problem only through the kinemati
 boundary 
ondi-

tion.

� Both are governed by ellipti
 p.d.e.'s; the pressure �eld for Hele-Shaw is harmoni
, and the

streamfun
tion for Stokes 
ow is biharmoni
. (Note that in Hele-Shaw, sin
e the pressure

is a velo
ity potential for the 
ow, its harmoni
 
onjugate is a streamfun
tion, whi
h is also

harmoni
.) Both problems are thus amenable to atta
k by similar 
omplex variable methods.

In general, one might expe
t a se
ond-order p.d.e. to be simpler than a fourth-order one,

but as we have seen in 
hapters 2 and 3, the NZST Stokes 
ow problem is very mu
h

more tra
table analyti
ally than the NZST Hele-Shaw problem. Re
all, in this 
ontext, the


omments of x3.6.2, where we stated that the mapping fun
tion whi
h gives a solution to

the ZST Stokes 
ow problem will also give a solution to the NZST problem, but the same

is not true for the Hele-Shaw problem.

Although it is more usual to 
onsider the surfa
e tension driven Stokes 
ow problem, with a velo
-

ity �eld whi
h is everywhere analyti
 (sin
e this arises in real-world situations su
h as sintering),

mu
h of the work in this thesis has been for the singularity driven ZST problem, whi
h is the

usual Hele-Shaw s
enario. We have thus been able to make dire
t 
omparison between the two.

� In x5.4.2 we have stated that with one te
hni
al assumption �(0) = 0 (for Stokes 
ow), the

same 
onformal map will yield solutions for both the Hele-Shaw and Stokes 
ow problems

(ZST, and singularity-driven) in the same geometry. However, we also saw that if we have

more than one singularity in the 
ow (in
luding singularities at in�nity), the Stokes 
ow

solution will, in general, be diÆ
ult to realise in pra
ti
e, having moving singularities. This

is not the 
ase for Hele-Shaw 
ow; the basi
 reason (as dis
ussed in x5.1) is that the S
hwarz

fun
tion evolution for Stokes 
ow is determined in the �-plane, while for Hele-Shaw it is

determined in the physi
al plane. Hen
e only for Hele-Shaw 
ow 
an we expe
t to be able

to mat
h the singularities of the S
hwarz fun
tion with those of the 
ow.

� Both ZST problems are time-reversible. From this one may dedu
e that for both problems

a 
ontra
ting vis
ous blob, unless it is a 
ir
le with su
tion from the origin, must undergo

�nite time blow-up before all 
uid has been extra
ted.
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� It is a simple matter to demonstrate that a ZST Hele-Shaw 
ow with an advan
ing/retreating

vis
ous boundary, is stable/unstable, respe
tively (the latter, whi
h we loosely refer to as

the Hele-Shaw su
tion problem, is well known to be ill-posed). By 
ontrast, Stokes 
ow is

neutrally stable to rigid-body motions, and the question of stability of advan
ing/retreating

vis
ous boundaries does not arise. However, we are able to analyse nearly-
ir
ular \bubbles"

and \blobs" in ZST Stokes 
ow, and we �nd that an expanding/
ontra
ting bubble or blob

is stable/unstable respe
tively (see appendix A). For Hele-Shaw 
ow, the above stability

result means that a 
ontra
ting/expanding bubble is stable/unstable respe
tively, while an

expanding/
ontra
ting blob is stable/unstable respe
tively (see xx7.6, 7.8). The Hele-Shaw

instability is mu
h more dramati
 than the Stokes 
ow, as 
omparison of (7.38) and (7.52)

(with � = 0, and for large n) with (A.6) and (A.3) shows.

Our belief is that the ZST Hele-Shaw instability leads to either anti
ra
k formation, or �nite-

time blow-up via 
usp formation or self-overlapping of the free boundary. It is thought that

the only possibilities for Stokes 
ow are the latter two; no examples of Stokes anti
ra
ks are

known.

� In the 
ase of 3/2-power 
uspidal blow up (whi
h is always terminal for the ZST problems),

the behaviour of the velo
ity �elds at the 
usp as the blow up time t

�

is approa
hed is very

di�erent in the two 
ases. In Hele-Shaw, the velo
ity be
omes unbounded; for a 
ontra
ting

vis
ous blob of the kind 
onsidered in [49℄, the speed at the 
usp behaves like

speed �

1

p

t

�

� t

as t! t

�

;

while for Stokes 
ow,

speed � O(1) as t! t

�

:

� For 5/2-power 
uspidal blow-up it is possible for the solution to evolve through the 
usped


on�guration. An example of this behaviour for ZST Hele-Shaw 
ow arose in x5.3 (and many

others exist in the literature); for NZST Stokes 
ow see [85℄|we do not give an example

in this thesis. Note though, that in the 
ubi
 polynomial example of x6.2, 5/2-power 
usp

formation is terminal for the ZST Stokes 
ow problem, whereas for the analogous Hele-Shaw

problem, it is not [50℄. Our results there show that in the T ! 0 limit, the 5/2-power 
usp

be
omes a 3/2-power 
usp, although it is a borderline 
ase. It is possible that nonzero

surfa
e tension is ne
essary to have 
ontinuable 
uspidal solutions (meaning that the free

boundary be nonanalyti
 only for an instant, before smoothing again) for the Stokes 
ow

problem.

� For both problems, a T ! 0 regularisation may be 
onsidered. For Stokes 
ow we saw

that this leads to solutions whi
h have persistent 
usps in the free boundary (
hapter 6, the

\weak solution" 
on
ept). For Hele-Shaw, the 
onje
tured s
enario is the slit model (
hapter

7), with an air slit propagating into the 
uid domain from the 
usp, moving in�nitely fast

relative to the rest of the free boundary. Note that \weak" Stokes 
ow solutions are not

time reversible, as the 
usped \similarity" solutions of [49℄ demonstrate. A time-reversal

for slit solutions 
an be proposed, however, sin
e we would expe
t the slit to 
ontra
t ba
k

along its length to the 
usp, after whi
h the free boundary would instantly smooth, and


lassi
al theory take over.

One of the most striking similarities between the two problems is the existen
e of the \moments",

whi
h obey the same evolution equations for the point sink (or sour
e) problem, although they

are di�erently de�ned (xx2.5, 3.6, 3.6.2).

Underlying this di�eren
e in de�nition is the fa
t that the singularities of the S
hwarz fun
tion

for Hele-Shaw are determined in the physi
al domain, whereas for Stokes 
ow (in the 
ase �(0) = 0)

they are determined within the unit dis
 in �-spa
e. Re
all the reper
ussions that this had for
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many-singularity problems: the ZST Hele-Shaw results are readily extended to 
ope with su
h

problems, but the Stokes 
ow results are not.

Another analogy between the two problems is the existen
e of a Baio

hi transform for ea
h

(xx2.6, 3.9.1). Again these are di�erently de�ned; like the \moments", the integrals in the de�ni-

tions are 
arried out in physi
al spa
e for Hele-Shaw, and in �-spa
e for Stokes 
ow.

8.2 Further work

At some points in this thesis we have been unable to 
omplete the solution to parti
ular problems.

In other pla
es we 
hose to leave a problem at a 
ertain stage, when the work 
ould have been

extended in various dire
tions. We list below some of the more interesting and important areas

for future study related to the work of the thesis.

1. We have seen that, unlike the ZST Hele-Shaw theory, the ZST Stokes 
ow theory of 
hapter 3


an only deal with many driving singularities (or singularity-driven problems on unbounded

domains) if we allow them to move, leading to solutions whi
h are somewhat 
ontrived.

Essentially the same diÆ
ulty arose in x5.4.2 where, to avoid a moving singularity, we

required the solution to have �(0) 6= 0. This led to a very 
ompli
ated formula for the


onformal map, and we were unable to solve the problem fully. It is possible that there is a

better way of atta
king su
h problems (perhaps not involving 
omplex variable methods?).

Further investigation is needed if we are to develop a 
omprehensive theory to deal with

time-dependent problems of this kind (note that the existing methods are perfe
tly adequate

for steady problems).

2. It was mentioned in x8.1 above that although Hele-Shaw slit solutions are reversible in time,

the \weak" similarity solutions of [49℄, with persistent 
usps, are not|would inje
tion into

a 
usped 
on�guration give an expanding 
usped shape of similarity type, or would the free

boundary smooth instantly? This is an interesting open question, and may be 
ompared

with the Hele-Shaw results of [56℄, where weak solutions to the inje
tion problem (with

an a
ute-angled 
orner in the initial free boundary) are found to exhibit \waiting time"

behaviour. In su
h solutions, the 
orner persists for the waiting time, at whi
h the 
orner

angle jumps to its supplement, then instantaneously smooths.

3. Re
all the 
omment in footnote (3) of 
hapter 3, that the governing equations (3.18) have

the form of a general 
onservation law. This enables a possible weak formulation to be

written down, whi
h we did not pursue. It would be interesting to investigate this point

further, in parti
ular, to see if it 
an be linked to the \weak solution" theory of 
hapter 6.

It is possible that the ZST breakdown time t = t

�

may be asso
iated with a sho
k surfa
e,

a
ross whi
h the form of the solution 
hanges, and that Rankine-Hugoniot 
onditions may

be asso
iated with persistent 
usps. This suggestion is highly spe
ulative as yet.

4. The 
ra
k/anti
ra
k theory of 
hapter 7 is in
omplete. More work needs to be done on the


ra
k and slit theories, whi
h were already known to be ill-posed and under-determined,

respe
tively (and whi
h we did not attempt to extend). Although we saw how the anti
ra
k

\sele
tion at the root" worked for the expanding bubbles and 
ontra
ting blobs of Paterson's

experiments [73℄, we do not yet have a full understanding of the role played by surfa
e tension

in general anti
ra
k solutions, and in parti
ular, we do not have a 
lear idea of what we

expe
t in the T ! 0 limit (if 
ra
ks be
ome slits, what do anti
ra
ks be
ome? Se
tion 7.10

implies that the theory of extremal univalent maps 
annot help us in this 
ase). Finally,

although in x7.9 we 
onje
ture that the 
urvature of the free boundary may determine whi
h

parti
ular instability is observed in a given situation, this is still a very tentative suggestion,

whi
h needs ba
king up with some hard eviden
e.
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Appendix A

Stability of blobs and bubbles in

Stokes 
ow

In this appendix we show how 
omplex variable methods may be used to perform a simple linear

stability analysis of expanding and 
ontra
ting 
ir
ular blobs and bubbles in ZST Stokes 
ow. We

use known, exa
t solutions, in a suitable small parameter limit, to dedu
e our stability results.

A.1 The perturbed 
ir
ular blob

Howison & Ri
hardson [49℄ presented exa
t solutions for the sour
e or sink driven evolution of a

vis
ous blob, des
ribed by the 
onformal map

z = w(�) = a(� �

b

n

�

n

);

for positive integer n, and time-dependent parameters a and b whi
h may both be assumed real

and positive by a suitable 
hoi
e of axes. The equations governing the ZST evolution of a and b

are given as

a

2

b = k; (A.1)

dS

dt

=

d

dt

�

�a

2

�

1 +

b

2

n

��

= �Q; (A.2)

for some positive 
onstant k. Here, S(t) denotes the area of the 
uid domain, so Q > 0 for a

point sink at the origin, and Q < 0 for a sour
e. If we 
onsider the 
ase b = � � 1, then on the

free boundary,

jzj = a(1�

�

n


os(n� 1)� +O(�

2

));

whi
h is just a sinusoidal perturbation to an expanding or 
ontra
ting 
ir
ular blob (i.e. linear

stability theory).

To lowest order, (A.1) and (A.2) give the solution for �(t) as

�(t) =

�k

S(t)

: (A.3)

Hen
e we see that � is growing in time for a point sink (S(t) de
reasing), whi
h means an unstable

situation, and de
reasing in time for a point sour
e, i.e. a stable situation, the growth or de
ay

being algebrai
 in t. Thus for vis
ous blobs, we have the same situation as for Hele-Shaw 
ow

(see x7.8).
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A.2 The perturbed 
ir
ular bubble

The analogous bubble problem was solved by Tanveer & Vas
on
elos [96℄. The 
onformal map

for this 
ase is

z = w(�) = a

�

1

�

�

�

n

�

n

�

;

for positive integer n, where again a > 0 and 0 < �� 1. The free boundary here is su
h that

jzj = a(1�

�

n


os(n+ 1)� +O(�

2

));

and the ZST equations governing the parameters are

a

2

� = k; (A.4)

dB

dt

=

d

dt

�

�a

2

�

1�

�

2

n

��

= Q; (A.5)

for some positive 
onstant k, where now B(t) denotes the bubble area, so Q > 0 for a sink at

in�nity, i.e. a growing bubble, and Q < 0 for a shrinking bubble. Combining (A.4) and (A.5)

gives the evolution of �(t) (to lowest order) as

�(t) =

�k

B(t)

; (A.6)

so a growing bubble is stable (� de
reasing), while a shrinking bubble is unstable. This result is

in dire
t 
ontrast to the 
orresponding Hele-Shaw result of x7.6, where we saw that expanding

bubbles are unstable (giving rise to anti
ra
ks), while 
ontra
ting bubbles are stable.
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Appendix B

Results used for the 
ubi


polynomial map

In this Appendix we give the exa
t and asymptoti
 expressions for the fun
tions f

+

(0; t) and

f

0

+

(0; t) whi
h we omitted from the text in 
hapter 6.

Using the de�nition (3.8) we �nd

f

+

(0) �

1

�a

Z

�

0

d�

[b

2

+ (
� 1)

2

+ 2b(1 + 
) 
os � + 4
 
os

2

�℄

1=2

;

and f

0

+

(0) �

1

�a

Z

�

0


os � d�

[b

2

+ (
� 1)

2

+ 2b(1 + 
) 
os � + 4
 
os

2

�℄

1=2

;

the forms of whi
h fun
tions 
hange as we 
ross the 
urve b

2

= 4
 in V (a

ording to whether the

denominator has real or 
omplex roots as a fun
tion of 
os �); f

+

(0) itself is 
ontinuous a
ross

this 
urve, however. In b

2

< 4
 we use formula 3.145.2 in Gradshteyn & Ryzhik [30℄ (hen
eforth

G & R), and also the asymptoti
 result

K(1� �) � �

1

2

log(�=8) � �

1

2

log � as �! 0; (B.1)

where K( � ) is the 
omplete ellipti
 integral of the �rst kind. We �nd that

f

+

(0) =

2K(k

1

)

�a

p

(
+ 1)

2

� b

2

; where k

2

1

:=

4
� b

2

(
+ 1)

2

� b

2

;

�

�2

�a

p

4� b

2

log(1� 
) as 
 " 1;


 = 1 being the only singularity within this part of V . In b

2

> 4
 we need formulae 3.147.6 and

3.147.4 of G & R (in regions 
 > 0, 
 < 0 respe
tively) together with (B.1) to dedu
e that

f

+

(0) =

2K(k

2

)

�a

�

p

b

2

� 4
+ (1� 
)

�
where k

2

2

:=

4(1� 
)

p

b

2

� 4


[

p

b

2

� 4
+ (1� 
)℄

2

�

�1

�a(1� 
)

log(1 + 
� b) as (1 + 
� b) # 0;

b = 1 + 
 now being the only line of singularities within V . Expli
it formulae for f

0

+

(0) are mu
h

more 
ompli
ated; in b

2

< 4
 we �nd

f

0

+

(0) =

�b(1 + 
)K(k

1

)

2�a


p

(1 + 
)

2

� b

2

+

1

p




fE(k

1

)F ( ; k

0

1

) +K(k

1

)(E( ; k

0

1

)� F ( ; k

0

1

))g ;

where (k

0

1

)

2

= 1� k

2

1

;  = sin

�1

(

b

2

p




); (B.2)
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here k

1

is as previously de�ned, E( � ); E( � ; � ) denote the 
omplete and in
omplete (respe
tively)

ellipti
 integrals of the se
ond kind, and F ( � ; � ) denotes the in
omplete ellipti
 integral of the

�rst kind (so K( � ) � F (�=2; � )). The key formulae used in �nding this expression were 259.07

and 410.02 in Byrd & Friedman [8℄ (hen
eforth B & F), along with various properties of ellipti


integrals and Ja
obian ellipti
 fun
tions, all of whi
h may be found in B & F.

In b

2

> 4
 we �nd

f

0

+

(0) =

2

�a(

p

b

2

� 4
+ (1� 
))

�

AK(k

2

)� (1 +A)�

�

2

1�A

; k

2

��

;

where A =

1

4


�

�b(1 + 
) + (1� 
)

p

b

2

� 4


�

; (B.3)

again, k

2

is as previously de�ned, and �( � ; � ) denotes the 
omplete ellipti
 integral of the third

kind. In �nding this expression the formulae used were G & R 3.148.6 and 3.148.4 (in regions


 > 0 and 
 < 0 respe
tively).

In using these two books, 
are was ne
essary to a

ount for slight di�eren
es in de�nitions.

Likewise, when 
arrying out numeri
al 
he
ks on the analysis, 
are was needed due to di�erent

inbuilt de�nitions in the software pa
kage Mathemati
a. The above assumes the de�nitions:

F (�; k) =

Z

�

0

d�

p

1� k

2

sin

2

�

=

Z

sin�

0

dx

p

(1� x

2

)(1� k

2

x

2

)

; (B.4)

E(�; k) =

Z

�

0

p

1� k

2

sin

2

� d� =

Z

sin�

0

p

1� k

2

x

2

p

1� x

2

dx ;

�(�

2

; k) =

Z

�=2

0

d�

(1� �

2

sin

2

�)

p

1� k

2

sin

2

�

=

Z

1

0

dx

(1� �

2

x

2

)

p

(1� x

2

)(1� k

2

x

2

)

:

The results of x6.2 require the asymptoti
 evaluation of the ratio f

0

+

(0)=f

+

(0) near ea
h of the

lines 
 = 1 and b = 1 + 
. This is not too bad for the 
ase 
 " 1, and fairly nasty for the 
ase

b # (1 + 
); we give only brief details.

In b

2

< 4
 results of B & F xx111{112 are used, together with (B.1) above, to dedu
e that as


 " 1, the term in 
urly bra
kets in G

0

+

(0) (B.2) is everywhere negligible 
ompared to the �rst

term. Hen
e we see that the asymptoti
 behaviour here is

f

0

+

(0)

f

+

(0)

� �

b

2

: (B.5)

To study the behaviour of f

0

+

(0) as b " (1 + 
) in the region b

2

> 4
 we must 
onsider the


ases 
 > 0 and 
 < 0 separately, sin
e these give di�erent types of behaviour in (B.3). We write

� = 1+
�b and eliminate b to work with 
 and �, so that letting �! 0 
orresponds to approa
hing

the univalen
y boundary �V . We also de�ne the auxiliary parameter Æ := �

2

=(4(1� 
)

2

); this will

always be small sin
e we do not 
onsider the ellipti
al part of �V 
orresponding to blow-up via

overlapping of the free boundary, so 
 lies in the range �1 < 
 < 3=5. We �nd:

A = �1� 2Æ + � � � ; �(1 +A) = 2Æ + � � � ;

k

2

2

= 1� Æ

�

1 + 


1� 


�

2

+ � � � ; �

2

�

2

1�A

= 1� Æ + � � � :

We know the asymptoti
 behaviour of the �rst term in 
urly bra
kets in f

0

+

(0) (B.3), from (B.1).

The term outside, multiplying the 
urly bra
ket, is also straightforward. Hen
e we only need to

�nd the behaviour of the se
ond term within 
urly bra
kets, whi
h to lowest order is

�(1 +A)�

�

2

1�A

; k

2

�

� 2Æ�(�

2

; k

2

):
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Suppose �rst that 
 2 (0; 3=5). Then by the above expressions, 0 < �

2

< k

2

2

< 1, and so a

ording

to the 
lassi�
ations of B & F (p. 223) we have a 
ase II ellipti
 integral of the third kind (a


ir
ular 
ase).

1

Formula 412.01 in B & F thus applies, giving the result in terms of the Heuman

Lambda fun
tion. Results from x150 of the book may then be used to arrive at the approximation

2Æ�(�

2

; k

2

) =

1� 


p




�

�

2

� sin

�1

�

1� 


1 + 


��

+O(Æ log Æ);

whi
h gives ex
ellent agreement when 
he
ked numeri
ally. This term will thus be everywhere

negligible 
ompared to the �rst term in the 
urly bra
kets (K(k

2

) being singular as k

2

! 1),

hen
e we get the approximation

f

0

+

(0) �

1

�a(1� 
)

log(1 + 
� b):

It follows that for 
 in this parameter range we will have

f

0

+

(0)

f

+

(0)

� �1;

as we approa
h the boundary.

For 
 2 (�1; 0) (still using (B.3)) we have 0 < k

2

2

< �

2

< 1, whi
h is a 
ase III ellipti
 integral

of the third kind (a hyperboli
 
ase). Thus formula 414.01 of B & F applies, and it is relatively

easy to see that

2Æ�(�

2

; k

2

) '

1� 


p

�


K(k

2

)Z(�; k

2

) for � = sin

�1

�

�

k

2

�

=

�

2

�

2

p

�
Æ

1� 


+ � � � ;

where Z( � ; � ) denotes the Ja
obi Zeta fun
tion (dis
ussed in x140 of B & F). Then

f

0

+

(0) �

�K(k

2

)

�a(1� 
)

�

1�

1� 


p

�


Z(�; k

2

)

�

;

so that

f

0

+

(0)

f

+

(0)

� �1 +

1� 


p

�


Z(�; k

2

):

Results of x140 and x100 in B & F show that for small Æ,

Z(�; k

2

) �

1

K(k

2

)

log

 

2

p

�


1 + 


+

�

1�

4


(1 + 
)

2

�

1=2

!

:

Note that 
 = 0 is not a problem point, despite the fa
tor 1=

p

�
 in the above, be
ause for small 


we may expand the logarithmi
 term appearing in the expression for Z(�; k

2

). The only problem

is at 
 = �1; away from this point we 
an see that

f

0

+

(0)

f

+

(0)

� �1:

Near 
 = �1, the fun
tion Z(�; k

2

) will no longer be negligible a

ording to the above. Here we

have

f

0

+

(0)

f

+

(0)

� �1 + 2

�

1 +

log �

log(1 + 
)

�

�1

= �1 + 2

�

1 +

log �

log(�+ b)

�

�1

;

1

The 
ase 
 = 0 is the spe
ial 
ase �

2

= k

2

, and provides a 
he
k on the analysis in both regions 
 > 0, 
 < 0.
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for 
 
lose to �1 (or, b small and positive). So, for instan
e, if we take b = �� for some order one

quantity � we will have

f

0

+

(0)

f

+

(0)

! 0 as �! 0:

In parti
ular, this will be the 
ase as we approa
h the univalen
y boundary along the phase path

b � 0. We thus have a nonuniform limit, with

f

0

+

(0)

f

+

(0)

! �1 as �! 0 (B.6)

everywhere ex
ept 
 = �1 (or b = 0); at this point the limit is zero.
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Appendix C

The Stokes 
ow velo
ity �eld in

terms of w(�; t)

It is useful to have an expression for the Stokes 
ow velo
ity �eld in terms of the mapping fun
tion,

so that we 
an easily 
he
k on the behaviour at \problem points", su
h as at in�nity, for problems

on unbounded domains, or near \
usps", in the T ! 0 problem. We now derive su
h an expression,

starting from (3.41).

The form of this expression will depend on the behaviour of � at the origin. Consider �rst

the 
ase �(0) = 0, so that equations (3.14) and (3.18) apply. Substitution from these equations

into (3.41) yields, after a 
ertain amount of manipulation, the result

2(u � iv) = �w

t

(1=�) + w

t

(�) +

w

0

t

(�)

w

0

(�)

�

�w(1=�)� w(�)

�

�

T

2�

( �w(1=�)� w(�))

�

�

��

[�(2f

+

(�) � f

+

(0))℄ +

w

00

(�)

w

0

(�)

�(2f

+

(�)� f

+

(0))

�

+

T

2�

�

�w

0

(�)(2f

+

(�) � f

+

(0))�

1

�

�w

0

(1=�)(2f

+

(�) � f

+

(0))

�

: (C.1)

This has some symmetry, but is still very 
umbersome, save in the ZST 
ase, when most of the

terms vanish. Clearly, the analogous expression for �(0) = A 6= 0 will be even worse, but note

that by equations (3.15) and (3.19), terms in A and T are quite separate. Hen
e if we just �nd

the ZST version of (C.1) for this 
ase, the NZST version (should we need it) will follow by adding

on the surfa
e tension terms from (C.1). Setting T = 0 in (3.15) and (3.19) and substituting into

the formula (3.41) gives the result

2(u� iv) = �w

t

(1=�) + w

t

(�) +

2A

w

0

(0)

�

�w

0

(1=�)

�

1�

1

�

2

�

+ w

0

(�)(1�

�

�

2

)

�

+

1

w

0

(�)

( �w(1=�)� w(�))

�

w

0

t

(�) +

2A

w

0

(0)

�

��

[w

0

(�)(1� �

2

)℄

�

; (C.2)

or, in terms of the s
aled time variable � introdu
ed in x3.8,
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w

0

(0)

A

(u� iv) = �w

�

(1=�) + w

�

(�) +

�

�w

0

(1=�)

�

1�

1

�

2

�

+ w

0

(�)(1�

�

�

2

)

�

+

1

w

0

(�)

( �w(1=�)� w(�))

�

w

0

�

(�) +

�

��

[w

0

(�)(1 � �

2

)℄

�

: (C.3)
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